-
1
-
-
33748564008
-
Microbial fuel cells - challenges and applications
-
Logan BE and Regan JM, Microbial fuel cells - challenges and applications. Environ Sci Technol 40:5172-5180 (2006).
-
(2006)
Environ Sci Technol
, vol.40
, pp. 5172-5180
-
-
Logan, B.E.1
Regan, J.M.2
-
2
-
-
34447285505
-
A state of the art review on microbial fuel cells: a promising technology for wastewater treatment and bioenergy
-
Du Z, Li H and Gu T, A state of the art review on microbial fuel cells: a promising technology for wastewater treatment and bioenergy. Biotechnol Adv 25:464-482 (2007).
-
(2007)
Biotechnol Adv
, vol.25
, pp. 464-482
-
-
Du, Z.1
Li, H.2
Gu, T.3
-
4
-
-
79952280859
-
An overview of electrode materials in microbial fuel cells
-
Zhou M, Chi M, Luo J, He H and Jin T, An overview of electrode materials in microbial fuel cells. J Power Sources 196:4427-4435 (2011).
-
(2011)
J Power Sources
, vol.196
, pp. 4427-4435
-
-
Zhou, M.1
Chi, M.2
Luo, J.3
He, H.4
Jin, T.5
-
5
-
-
80052699260
-
Recent progress in electrodes for microbial fuel cells
-
Wei J, Liang P and Huang X, Recent progress in electrodes for microbial fuel cells. Bioresource Technol 102:9335-9344 (2011).
-
(2011)
Bioresource Technol
, vol.102
, pp. 9335-9344
-
-
Wei, J.1
Liang, P.2
Huang, X.3
-
6
-
-
77957338115
-
Recent advances in the separators for microbial fuel cells
-
Li W, Sheng G, Liu X and Yu H, Recent advances in the separators for microbial fuel cells. Bioresource Technol 102:244-252 (2011).
-
(2011)
Bioresource Technol
, vol.102
, pp. 244-252
-
-
Li, W.1
Sheng, G.2
Liu, X.3
Yu, H.4
-
7
-
-
74549151753
-
A review of the substrates used in microbial fuel cells (MFCs) for sustainable energy production
-
Pant D, Van Bogaert G, Diels L and Vanbroekhoven K, A review of the substrates used in microbial fuel cells (MFCs) for sustainable energy production. Bioresource Technol 101:1533-1543 (2010).
-
(2010)
Bioresource Technol
, vol.101
, pp. 1533-1543
-
-
Pant, D.1
Van Bogaert, G.2
Diels, L.3
Vanbroekhoven, K.4
-
8
-
-
77957348875
-
Electron transfer mechanisms, new applications, and performance of biocathode microbial fuel cells
-
Huang L, Regan JM and Quan X, Electron transfer mechanisms, new applications, and performance of biocathode microbial fuel cells. Bioresource Technol 102:316-323 (2011).
-
(2011)
Bioresource Technol
, vol.102
, pp. 316-323
-
-
Huang, L.1
Regan, J.M.2
Quan, X.3
-
9
-
-
79952606428
-
Bioelectrochemical systems for efficient recalcitrant wastes treatment
-
Huang LP, Cheng SA and Chen GH, Bioelectrochemical systems for efficient recalcitrant wastes treatment. J Chem Technol Biotechnol 86:481-491 (2011).
-
(2011)
J Chem Technol Biotechnol
, vol.86
, pp. 481-491
-
-
Huang, L.P.1
Cheng, S.A.2
Chen, G.H.3
-
10
-
-
77957369865
-
Micro-sized microbial fuel cell: a mini-review
-
Wang HY, Bernarda A, Huang CY, Lee DJ and Chang JS, Micro-sized microbial fuel cell: a mini-review. Bioresource Technol 102:235-243 (2011).
-
(2011)
Bioresource Technol
, vol.102
, pp. 235-243
-
-
Wang, H.Y.1
Bernarda, A.2
Huang, C.Y.3
Lee, D.J.4
Chang, J.S.5
-
11
-
-
78751627328
-
Miniaturizing microbial fuel cells
-
Qian F and Morse DE, Miniaturizing microbial fuel cells. Trends Biotechnol 29:62-69 (2011).
-
(2011)
Trends Biotechnol
, vol.29
, pp. 62-69
-
-
Qian, F.1
Morse, D.E.2
-
12
-
-
18344391948
-
Microbial phenazine production enhances electron transfer in biofuel cells
-
Rabaey K, Boon N, Hofte M and Verstraete W, Microbial phenazine production enhances electron transfer in biofuel cells. Environ Sci Technol 39:3401-3408 (2005).
-
(2005)
Environ Sci Technol
, vol.39
, pp. 3401-3408
-
-
Rabaey, K.1
Boon, N.2
Hofte, M.3
Verstraete, W.4
-
13
-
-
78651395312
-
Novel methanogenic rotatable bioelectrochemical system operated with polarity inversion
-
Cheng KY, Ho G and Cord-Ruwisch R, Novel methanogenic rotatable bioelectrochemical system operated with polarity inversion. Environ Sci Technol 45:796-802 (2011).
-
(2011)
Environ Sci Technol
, vol.45
, pp. 796-802
-
-
Cheng, K.Y.1
Ho, G.2
Cord-Ruwisch, R.3
-
14
-
-
34447523820
-
Anodic electron transfer mechanisms in microbial fuel cells and their energy efficiency
-
Schröder U, Anodic electron transfer mechanisms in microbial fuel cells and their energy efficiency. Phys Chem Chem Phys 9:2619-2629 (2007).
-
(2007)
Phys Chem Chem Phys
, vol.9
, pp. 2619-2629
-
-
Schröder, U.1
-
15
-
-
71849109386
-
Carbon nanotubes as electrode modifier promoting direct electron transfer from Shewanella oneidensis
-
Peng L, You S and Wang J, Carbon nanotubes as electrode modifier promoting direct electron transfer from Shewanella oneidensis. Biosens Bioelectron 25:1248-1251 (2010).
-
(2010)
Biosens Bioelectron
, vol.25
, pp. 1248-1251
-
-
Peng, L.1
You, S.2
Wang, J.3
-
16
-
-
84875499700
-
-
Bioenergetics explains when and why more severe MIC pitting by SRB can occur. Paper No. 11426, CORROSION/. Houston, TX, March 13-17, 2011.
-
Xu D and Gu T, Bioenergetics explains when and why more severe MIC pitting by SRB can occur. Paper No. 11426, CORROSION/2011. Houston, TX, March 13-17, 2011.
-
(2011)
-
-
Xu, D.1
Gu, T.2
-
17
-
-
78751578919
-
Characterizing the effect of carbon steel exposure in sulfide containing solutions to microbially induced corrosion
-
Sherar BWA, Power IM, Keech PG, Mitlin S, Southam G and Shoesmith DW, Characterizing the effect of carbon steel exposure in sulfide containing solutions to microbially induced corrosion. Corros Sci 53:955-960 (2011).
-
(2011)
Corros Sci
, vol.53
, pp. 955-960
-
-
Sherar, B.W.A.1
Power, I.M.2
Keech, P.G.3
Mitlin, S.4
Southam, G.5
Shoesmith, D.W.6
-
18
-
-
84875503175
-
-
Can acid producing bacteria be responsible for very fast MIC pitting? Paper No. C2012-0001214, CORROSION/, Salt Lake City, UT, March 11-15, 2012.
-
Gu T, Can acid producing bacteria be responsible for very fast MIC pitting? Paper No. C2012-0001214, CORROSION/2012, Salt Lake City, UT, March 11-15, 2012.
-
(2012)
-
-
Gu, T.1
-
19
-
-
33746624663
-
Electrically conductive bacterial nanowires produced by Shewanella oneidensis strain MR-1 and other microorganisms
-
Gorby YA, Yanina S, McLean JS, Rosso KM, Moyles D, Dohnalkova A, et al, Electrically conductive bacterial nanowires produced by Shewanella oneidensis strain MR-1 and other microorganisms. Proc Natl Acad Sci USA 103:11358-11363 (2006).
-
(2006)
Proc Natl Acad Sci USA
, vol.103
, pp. 11358-11363
-
-
Gorby, Y.A.1
Yanina, S.2
McLean, J.S.3
Rosso, K.M.4
Moyles, D.5
Dohnalkova, A.6
-
20
-
-
68549110313
-
Lactococcus lactis catalyses electricity generation at microbial fuel cell anodes via excretion of a soluble quinone
-
Freguia S, Masuda M, Tsujimura S and Kano K, Lactococcus lactis catalyses electricity generation at microbial fuel cell anodes via excretion of a soluble quinone. Bioelectrochem 76:14-18 (2009).
-
(2009)
Bioelectrochem
, vol.76
, pp. 14-18
-
-
Freguia, S.1
Masuda, M.2
Tsujimura, S.3
Kano, K.4
-
21
-
-
75649088505
-
A study of electron-shuttle mechanism in Klebsiella pneumoniae based-microbial fuel cells
-
Deng L, Li F, Zhou S, Huang D and Ni J, A study of electron-shuttle mechanism in Klebsiella pneumoniae based-microbial fuel cells. Chinese Sci Bull 55:99-104 (2010).
-
(2010)
Chinese Sci Bull
, vol.55
, pp. 99-104
-
-
Deng, L.1
Li, F.2
Zhou, S.3
Huang, D.4
Ni, J.5
-
22
-
-
0036727193
-
Identification that are formed during the degradation of naphthalene-2-sulfonate by Sphingomonasxenophaga BN6
-
Keck A, Rau J, Teemtsma T, Mattes R, Stolz A and Klein J, Identification that are formed during the degradation of naphthalene-2-sulfonate by Sphingomonasxenophaga BN6. Appl Environ Microbiol 68:4341-4349 (2002).
-
(2002)
Appl Environ Microbiol
, vol.68
, pp. 4341-4349
-
-
Keck, A.1
Rau, J.2
Teemtsma, T.3
Mattes, R.4
Stolz, A.5
Klein, J.6
-
23
-
-
78649707496
-
Direct exchange of electrons within aggregates of an evolved syntrophic coculture of anaerobic bacteria
-
Summers ZM, Fogarty HE, Leang C, Franks AE, Malvankar NS and Lovley DR, Direct exchange of electrons within aggregates of an evolved syntrophic coculture of anaerobic bacteria. Science 330:1413-1415 (2010).
-
(2010)
Science
, vol.330
, pp. 1413-1415
-
-
Summers, Z.M.1
Fogarty, H.E.2
Leang, C.3
Franks, A.E.4
Malvankar, N.S.5
Lovley, D.R.6
-
24
-
-
83555164625
-
Anode modification by electrochemical oxidation: an alternative to improve the performance of microbial fuel cells
-
Zhou M, Chi M, Wang H and Jin T, Anode modification by electrochemical oxidation: an alternative to improve the performance of microbial fuel cells. Biochem Eng J 60:151-155 (2012).
-
(2012)
Biochem Eng J
, vol.60
, pp. 151-155
-
-
Zhou, M.1
Chi, M.2
Wang, H.3
Jin, T.4
-
25
-
-
0027962186
-
High power density proton-exchange membrane fuel cells
-
Oliver JM, Duncan H and David JM, High power density proton-exchange membrane fuel cells. J Power Sources 47:353-368 (1994).
-
(1994)
J Power Sources
, vol.47
, pp. 353-368
-
-
Oliver, J.M.1
Duncan, H.2
David, J.M.3
-
26
-
-
59649086377
-
Electricity production by an overflow-type wetted-wall microbial fuel cell
-
Li Z, Zhang X, Zeng Y and Lei L, Electricity production by an overflow-type wetted-wall microbial fuel cell. Bioresource Technol 100:2551-2555 (2009).
-
(2009)
Bioresource Technol
, vol.100
, pp. 2551-2555
-
-
Li, Z.1
Zhang, X.2
Zeng, Y.3
Lei, L.4
-
27
-
-
84866352005
-
-
Energy-efficient treatment of organic wastewater streams using a rotatable bioelectrochemical contactor (RBEC). :-.
-
Cheng KY, Ho G and Cord-Ruwisch R, Energy-efficient treatment of organic wastewater streams using a rotatable bioelectrochemical contactor (RBEC). Bioresource Technol 126:431-436 (2012).
-
(2012)
Bioresource Technol
, vol.126
, pp. 431-436
-
-
Cheng, K.Y.1
Ho, G.2
Cord-Ruwisch, R.3
-
28
-
-
84862793444
-
Self-stacked submersible microbial fuel cell (SSMFC) for improved remote power generation from lake sediments
-
Zhang Y and Angelidaki I, Self-stacked submersible microbial fuel cell (SSMFC) for improved remote power generation from lake sediments. Biosens Bioelectron 35:265-270 (2012).
-
(2012)
Biosens Bioelectron
, vol.35
, pp. 265-270
-
-
Zhang, Y.1
Angelidaki, I.2
-
29
-
-
73349121599
-
A microbial fuel cell using manganese oxide oxygen reduction catalysts
-
Roche I, Katuri K and Scott K, A microbial fuel cell using manganese oxide oxygen reduction catalysts. J Appl Electrochem 40:13-21 (2010).
-
(2010)
J Appl Electrochem
, vol.40
, pp. 13-21
-
-
Roche, I.1
Katuri, K.2
Scott, K.3
-
30
-
-
75749129791
-
Polypyrrole/carbon black composite as a novel oxygen reduction catalyst for microbial fuel cells
-
Yuan Y, Zhou S and Zhuang L, Polypyrrole/carbon black composite as a novel oxygen reduction catalyst for microbial fuel cells. J Power Sources 195:3490-3493 (2010).
-
(2010)
J Power Sources
, vol.195
, pp. 3490-3493
-
-
Yuan, Y.1
Zhou, S.2
Zhuang, L.3
-
31
-
-
0037419705
-
Improved fuel cell and electrode designs for producing electricity from microbial degradation
-
Park DH and Zeikus JG, Improved fuel cell and electrode designs for producing electricity from microbial degradation. Biotechnol Bioeng 81:348-355 (2003).
-
(2003)
Biotechnol Bioeng
, vol.81
, pp. 348-355
-
-
Park, D.H.1
Zeikus, J.G.2
-
32
-
-
77950339768
-
Senthil Kumar SM, Ghangrekar MM and Scott K, Effect of chemically modified Vulcan XC-72R on the performance of air-breathing cathode in a single-chamber microbial fuel cell
-
Duteanu N, Erable B, Senthil Kumar SM, Ghangrekar MM and Scott K, Effect of chemically modified Vulcan XC-72R on the performance of air-breathing cathode in a single-chamber microbial fuel cell. Bioresource Technol 101:5250-5255 (2010).
-
(2010)
Bioresource Technol
, vol.101
, pp. 5250-5255
-
-
Duteanu, N.1
Erable, B.2
-
33
-
-
80054840953
-
Enhanced wastewater treatment efficiency through microbially catalyzed oxidation and reduction: synergistic effect of biocathode microenvironment
-
Mohan SV and Srikanth S, Enhanced wastewater treatment efficiency through microbially catalyzed oxidation and reduction: synergistic effect of biocathode microenvironment. Bioresource Technol 102:10210-10220 (2011).
-
(2011)
Bioresource Technol
, vol.102
, pp. 10210-10220
-
-
Mohan, S.V.1
Srikanth, S.2
-
34
-
-
77957342319
-
Simultaneous carbon and nitrogen removal using an oxic anoxic-biocathode microbial fuel cells coupled system
-
Xie S, Liang P, Chen Y, Xia X and Huang X, Simultaneous carbon and nitrogen removal using an oxic anoxic-biocathode microbial fuel cells coupled system. Bioresource Technol 102:348-354 (2011).
-
(2011)
Bioresource Technol
, vol.102
, pp. 348-354
-
-
Xie, S.1
Liang, P.2
Chen, Y.3
Xia, X.4
Huang, X.5
-
35
-
-
84455205481
-
Biocathode microbial fuel cell for efficient electricity recovery from dairy manure
-
Zhang G, Zhao Q, Jiao Y, Wang K, Lee DJ and Ren N, Biocathode microbial fuel cell for efficient electricity recovery from dairy manure. Biosens Bioelectron 31:537-543 (2012).
-
(2012)
Biosens Bioelectron
, vol.31
, pp. 537-543
-
-
Zhang, G.1
Zhao, Q.2
Jiao, Y.3
Wang, K.4
Lee, D.J.5
Ren, N.6
-
36
-
-
84928593553
-
Energy metabolism phylogenetic diversity of sulphate-reducing bacteria
-
ed by Barton LL and Hamilton WA. Cambridge University Press, Cambridge
-
Thauer RK, Stackebrandt E and Hamilton WA, Energy metabolism phylogenetic diversity of sulphate-reducing bacteria, in Sulphate-Reducing Bacteria: Environmental and Engineered Systems, ed by Barton LL and Hamilton WA. Cambridge University Press, Cambridge, 1-37 (2007).
-
(2007)
Sulphate-Reducing Bacteria: Environmental and Engineered Systems
, pp. 1-37
-
-
Thauer, R.K.1
Stackebrandt, E.2
Hamilton, W.A.3
-
37
-
-
69749100309
-
Nitrate removal in surface-flow constructed wetlands treating dilute agriculturalrunoff in the lower Yakima Basin
-
Beutel MW, Newton CD, Brouillard ES and Watts RJ, Nitrate removal in surface-flow constructed wetlands treating dilute agriculturalrunoff in the lower Yakima Basin, Washington. Ecol Eng 35:1538-1546 (2009).
-
(2009)
Washington. Ecol Eng
, vol.35
, pp. 1538-1546
-
-
Beutel, M.W.1
Newton, C.D.2
Brouillard, E.S.3
Watts, R.J.4
-
38
-
-
77955579002
-
Power recovery with multi-anode/cathode microbial fuel cells suitable for future large-scale applications
-
Jiang D, Li X, Raymond D, Mooradain J and Li B, Power recovery with multi-anode/cathode microbial fuel cells suitable for future large-scale applications. Int J Hydrogen Energy 35:8683-8689 (2010).
-
(2010)
Int J Hydrogen Energy
, vol.35
, pp. 8683-8689
-
-
Jiang, D.1
Li, X.2
Raymond, D.3
Mooradain, J.4
Li, B.5
-
39
-
-
77957342319
-
Simultaneous carbon and nitrogen removal using an oxic/anoxic-biocathode microbial fuel cells coupled system
-
Xie S, Liang P, Chen Y, Xia X and Huang X, Simultaneous carbon and nitrogen removal using an oxic/anoxic-biocathode microbial fuel cells coupled system. Bioresource Technol 102:348-354 (2011).
-
(2011)
Bioresource Technol
, vol.102
, pp. 348-354
-
-
Xie, S.1
Liang, P.2
Chen, Y.3
Xia, X.4
Huang, X.5
-
40
-
-
80055100759
-
Development of a hybrid microbial fuel cell (MFC) and fuel cell (FC) system for improved cathodic efficiency and sustainability: the M2FC reactor
-
Eom H, Chung K, Kim I and Han JI, Development of a hybrid microbial fuel cell (MFC) and fuel cell (FC) system for improved cathodic efficiency and sustainability: the M2FC reactor. Chemosphere 85:672-676 (2011).
-
(2011)
Chemosphere
, vol.85
, pp. 672-676
-
-
Eom, H.1
Chung, K.2
Kim, I.3
Han, J.I.4
-
41
-
-
84857232171
-
A novel sediment microbial fuel cell with a biocathode in the rice rhizosphere
-
Chen Z, Huang Y, Liang J, Zhao F and Zhu Y, A novel sediment microbial fuel cell with a biocathode in the rice rhizosphere. Bioresource Technol 108:55-59 (2012).
-
(2012)
Bioresource Technol
, vol.108
, pp. 55-59
-
-
Chen, Z.1
Huang, Y.2
Liang, J.3
Zhao, F.4
Zhu, Y.5
-
43
-
-
84861403761
-
Power generation enhancement in novel microbial carbon capture cells with immobilized Chlorella vulgaris
-
Zhou M, He H, Jin T and Wang H, Power generation enhancement in novel microbial carbon capture cells with immobilized Chlorella vulgaris. J Power Sources 214:216-219 (2012).
-
(2012)
J Power Sources
, vol.214
, pp. 216-219
-
-
Zhou, M.1
He, H.2
Jin, T.3
Wang, H.4
-
44
-
-
84875485246
-
Advances in microbial fuel cells for potential energy production from organic feed streams
-
ed by Arora R. CAB International, Oxon, UK.
-
Guo K, Hassett DJ and Gu T, Advances in microbial fuel cells for potential energy production from organic feed streams, in Microbial Biotechnology: Energy and Environment, ed by Arora R. CAB International, Oxon, UK (2012).
-
(2012)
Microbial Biotechnology: Energy and Environment
-
-
Guo, K.1
Hassett, D.J.2
Gu, T.3
-
45
-
-
0031754775
-
Shewanella putrefaciens mtrB encodes an outer membrane protein required for Fe(III) and Mn(IV) reduction
-
Beliaev AS and Saffarini DA, Shewanella putrefaciens mtrB encodes an outer membrane protein required for Fe(III) and Mn(IV) reduction. J Bacteriol 180:6292-6297 (1998).
-
(1998)
J Bacteriol
, vol.180
, pp. 6292-6297
-
-
Beliaev, A.S.1
Saffarini, D.A.2
-
46
-
-
79959370190
-
Structure of a bacterial cell surface decaheme electron conduit
-
Clarke TA, Edwards MJ, Gates AJ, Hall A, White GF, Bradley J, Reardon CL, Shi L, Beliaev AS, Marshall MJ, Wang Z, Watmough NJ, Fredrickson JK, Zachara JM, Butt JN and Richardson DJ, Structure of a bacterial cell surface decaheme electron conduit. Proc Nat Acad Sci USA 108:9384-9389 (2011).
-
(2011)
Proc Nat Acad Sci USA
, vol.108
, pp. 9384-9389
-
-
Clarke, T.A.1
Edwards, M.J.2
Gates, A.J.3
Hall, A.4
White, G.F.5
Bradley, J.6
Reardon, C.L.7
Shi, L.8
Beliaev, A.S.9
Marshall, M.J.10
Wang, Z.11
Watmough, N.J.12
Fredrickson, J.K.13
Zachara, J.M.14
Butt, J.N.15
Richardson, D.J.16
-
47
-
-
0035131413
-
MtrC, an outer membrane decahaem c cytochrome required for metal reduction in Shewanella putrefaciens MR-1
-
Beliaev AS, Saffarini DA, McLaughlin JL and Hunnicutt D, MtrC, an outer membrane decahaem c cytochrome required for metal reduction in Shewanella putrefaciens MR-1. Mol Microbiol 39:722-730 (2001).
-
(2001)
Mol Microbiol
, vol.39
, pp. 722-730
-
-
Beliaev, A.S.1
Saffarini, D.A.2
McLaughlin, J.L.3
Hunnicutt, D.4
-
48
-
-
33745449038
-
Isolation of a high-affinity functional protein complex between OmcA and MtrC: two outer membrane decaheme c-type cytochromes of Shewanella oneidensis MR-1
-
Shi L, Chen B, Wang Z, Elias DA, Mayer MU, Gorby YA, Ni S, Lower BH, Kennedy DW, Wunschel DS, Mottaz HM, Marshall MJ, Hill EA, Beliaev AS, Zachara JM and Fredrickson JK, Squier TC Isolation of a high-affinity functional protein complex between OmcA and MtrC: two outer membrane decaheme c-type cytochromes of Shewanella oneidensis MR-1. J Bacteriol 188:4705-4714 (2006).
-
(2006)
J Bacteriol
, vol.188
, pp. 4705-4714
-
-
Shi, L.1
Chen, B.2
Wang, Z.3
Elias, D.A.4
Mayer, M.U.5
Gorby, Y.A.6
Ni, S.7
Lower, B.H.8
Kennedy, D.W.9
Wunschel, D.S.10
Mottaz, H.M.11
Marshall, M.J.12
Hill, E.A.13
Beliaev, A.S.14
Zachara, J.M.15
Fredrickson, J.K.16
Squier, T.C.17
-
49
-
-
38949214833
-
Secretion of flavins by Shewanella species and their role in extracellular electron transfer
-
Canstein HV, Ogawa J, Shimizu S and Lloyd JR, Secretion of flavins by Shewanella species and their role in extracellular electron transfer. Appl Environ Microbiol 74:615-623 (2008).
-
(2008)
Appl Environ Microbiol
, vol.74
, pp. 615-623
-
-
Canstein, H.V.1
Ogawa, J.2
Shimizu, S.3
Lloyd, J.R.4
-
50
-
-
0031724115
-
Flagellar and twitching motility are necessary for Pseudomonas aeruginosa biofilm development
-
O'Toole GA and Kolter R, Flagellar and twitching motility are necessary for Pseudomonas aeruginosa biofilm development. Mol Microbiol 30:295-304 (1998).
-
(1998)
Mol Microbiol
, vol.30
, pp. 295-304
-
-
O'Toole, G.A.1
Kolter, R.2
-
51
-
-
0032502811
-
The involvement of cell-to-cell signals in the development of a bacterial biofilm
-
Davies DG, The involvement of cell-to-cell signals in the development of a bacterial biofilm. Science 280:295-298 (1998).
-
(1998)
Science
, vol.280
, pp. 295-298
-
-
Davies, D.G.1
-
52
-
-
33644516891
-
Analysis of Pseudomonas aeruginosa diguanylate cyclases and phosphodiesterases reveals a role for bis-(3'-5')-cyclic-GMP in virulence
-
Kulasakara H, Lee V, Brencic A, Liberati N, Urbach J, Miyata S, Lee DG, Neely AN, Hyodo M, Hayakawa Y, Ausubel FM and Lory S, Analysis of Pseudomonas aeruginosa diguanylate cyclases and phosphodiesterases reveals a role for bis-(3'-5')-cyclic-GMP in virulence. Proc Nat Acad Sci USA 103:2839-2844 (2006).
-
(2006)
Proc Nat Acad Sci USA
, vol.103
, pp. 2839-2844
-
-
Kulasakara, H.1
Lee, V.2
Brencic, A.3
Liberati, N.4
Urbach, J.5
Miyata, S.6
Lee, D.G.7
Neely, A.N.8
Hyodo, M.9
Hayakawa, Y.10
Ausubel, F.M.11
Lory, S.12
-
53
-
-
33750429987
-
BdlA, a chemotaxis regulator essential for biofilm dispersion in Pseudomonas aeruginosa
-
Morgan R, Kohn S, Hwang SH, Hassett DJ and Sauer K, BdlA, a chemotaxis regulator essential for biofilm dispersion in Pseudomonas aeruginosa. J Bacteriol 188:7335-7343 (2006).
-
(2006)
J Bacteriol
, vol.188
, pp. 7335-7343
-
-
Morgan, R.1
Kohn, S.2
Hwang, S.H.3
Hassett, D.J.4
Sauer, K.5
-
54
-
-
18944375979
-
Characterization of starvation-induced dispersion in Pseudomonas putida biofilms
-
Gjermansen M, Ragas P, Sternberg C, Molin S and Tolker-Nielsen T, Characterization of starvation-induced dispersion in Pseudomonas putida biofilms. Environ Microbiol 7:894-906 (2005).
-
(2005)
Environ Microbiol
, vol.7
, pp. 894-906
-
-
Gjermansen, M.1
Ragas, P.2
Sternberg, C.3
Molin, S.4
Tolker-Nielsen, T.5
-
55
-
-
2342437319
-
Gene expression in Bacillus subtilis surface biofilms with and without sporulation and the importance of yveR for biofilm maintenance
-
Ren D, Bedzyk LA, Setlow P, Thomas SM, Ye RW and Wood TK, Gene expression in Bacillus subtilis surface biofilms with and without sporulation and the importance of yveR for biofilm maintenance. Biotechnol Bioeng 86:344-364 (2004).
-
(2004)
Biotechnol Bioeng
, vol.86
, pp. 344-364
-
-
Ren, D.1
Bedzyk, L.A.2
Setlow, P.3
Thomas, S.M.4
Ye, R.W.5
Wood, T.K.6
-
56
-
-
0029814366
-
Microbial pathogenesis in cystic fibrosis: mucoid Pseudomonas aeruginosa and Burkholderia cepacia
-
Govan JRW and Deretic V, Microbial pathogenesis in cystic fibrosis: mucoid Pseudomonas aeruginosa and Burkholderia cepacia. Microbiol Rev 60:539-574 (1996).
-
(1996)
Microbiol Rev
, vol.60
, pp. 539-574
-
-
Govan, J.R.W.1
Deretic, V.2
-
57
-
-
3042735895
-
Two genetic loci produce distinct carbohydrate-rich structural components of the Pseudomonas aeruginosa biofilm matrix
-
Friedman L and Kolter R, Two genetic loci produce distinct carbohydrate-rich structural components of the Pseudomonas aeruginosa biofilm matrix. J Bacteriol 186:4457-4465 (2004).
-
(2004)
J Bacteriol
, vol.186
, pp. 4457-4465
-
-
Friedman, L.1
Kolter, R.2
-
58
-
-
3042856626
-
Identification of psl, a locus encoding a potential exopolysaccharide that is essential for Pseudomonas aeruginosa PAO1 biofilm formation
-
Jackson KD, Starkey M, Kremer S, Parsek MR and Wozniak DJ, Identification of psl, a locus encoding a potential exopolysaccharide that is essential for Pseudomonas aeruginosa PAO1 biofilm formation. J Bacteriol 186:4466-4475 (2004).
-
(2004)
J Bacteriol
, vol.186
, pp. 4466-4475
-
-
Jackson, K.D.1
Starkey, M.2
Kremer, S.3
Parsek, M.R.4
Wozniak, D.J.5
-
59
-
-
50549104615
-
Geobacter sulfurreducens strain engineered for increased rates of respiration
-
Izallalen M, Mahadevan R, Burgard A, Postier B, Didonato R Jr, Sun J, Schilling CH and Lovley DR, Geobacter sulfurreducens strain engineered for increased rates of respiration. Metab Eng 10:267-275 (2008).
-
(2008)
Metab Eng
, vol.10
, pp. 267-275
-
-
Izallalen, M.1
Mahadevan, R.2
Burgard, A.3
Postier, B.4
Didonato, Jr.R.5
Sun, J.6
Schilling, C.H.7
Lovley, D.R.8
-
60
-
-
68749114023
-
Microfabricated microbial fuel cell arrays reveal electrochemically active microbes
-
Hou H, Li L, Cho Y, de Figueiredo P and Han A, Microfabricated microbial fuel cell arrays reveal electrochemically active microbes. PLOS One 4: e6570 (2009).
-
(2009)
PLOS One
, vol.4
-
-
Hou, H.1
Li, L.2
Cho, Y.3
de Figueiredo, P.4
Han, A.5
-
61
-
-
84883159361
-
Microbial fuel cells for bioenergy and bioproducts
-
ed by Gopalakrishnan K, van Leeuwen J and Brown R. Springer-Verlag, Berlin/New York
-
Zhou M, Jin T, Wu Z, Chi M and Gu T, Microbial fuel cells for bioenergy and bioproducts, in Bioenergy and Bioproducts, ed by Gopalakrishnan K, van Leeuwen J and Brown R. Springer-Verlag, Berlin/New York, 131-172 (2012).
-
(2012)
Bioenergy and Bioproducts
, pp. 131-172
-
-
Zhou, M.1
Jin, T.2
Wu, Z.3
Chi, M.4
Gu, T.5
-
62
-
-
77955518655
-
Influence of catholyte pH and temperature on hydrogen production from acetate using a two chamber concentric tubular microbial electrolysis cell
-
Kyazze G, Popov A, Dinsdale R, Esteves S, Hawkes F, Premier G and Guwy A, Influence of catholyte pH and temperature on hydrogen production from acetate using a two chamber concentric tubular microbial electrolysis cell. Int J Hydrogen Energy 35:7716-7722 (2010).
-
(2010)
Int J Hydrogen Energy
, vol.35
, pp. 7716-7722
-
-
Kyazze, G.1
Popov, A.2
Dinsdale, R.3
Esteves, S.4
Hawkes, F.5
Premier, G.6
Guwy, A.7
-
63
-
-
79959262338
-
A method for high throughput bioelectrochemical research based on small scale microbial electrolysis cells
-
Call DF and Logan BE, A method for high throughput bioelectrochemical research based on small scale microbial electrolysis cells. Biosens Bioelectron 26:4526-4531 (2011).
-
(2011)
Biosens Bioelectron
, vol.26
, pp. 4526-4531
-
-
Call, D.F.1
Logan, B.E.2
-
64
-
-
51349090905
-
Hydrogen production using single-chamber membrane-free microbial electrolysis cells
-
Hu H, Fan Y and Liu H, Hydrogen production using single-chamber membrane-free microbial electrolysis cells. Water Res 42:4172-4178 (2008).
-
(2008)
Water Res
, vol.42
, pp. 4172-4178
-
-
Hu, H.1
Fan, Y.2
Liu, H.3
-
65
-
-
58549087922
-
High rate membrane-less microbial electrolysis cell for continuous hydrogen production
-
Tartakovsky B, Manuel MF, Wang H and Guiota SR, High rate membrane-less microbial electrolysis cell for continuous hydrogen production. Int J Hydrogen Energy 34:672-677 (2009).
-
(2009)
Int J Hydrogen Energy
, vol.34
, pp. 672-677
-
-
Tartakovsky, B.1
Manuel, M.F.2
Wang, H.3
Guiota, S.R.4
-
66
-
-
83955162188
-
A membrane-free, continuously feeding, single chamber up-flow biocatalyzed electrolysis reactor for nitrobenzene reduction
-
Wang A, Cui D, Cheng H, Guo Y, Kong F, Ren N and Wu W, A membrane-free, continuously feeding, single chamber up-flow biocatalyzed electrolysis reactor for nitrobenzene reduction. J Hazard Mater 199-200:401-409 (2012).
-
(2012)
J Hazard Mater
, vol.199-200
, pp. 401-409
-
-
Wang, A.1
Cui, D.2
Cheng, H.3
Guo, Y.4
Kong, F.5
Ren, N.6
Wu, W.7
-
67
-
-
77955918832
-
Multi-electrode continuous flow microbial electrolysis cell for biogas production from acetate
-
Rader GK and Logan BE, Multi-electrode continuous flow microbial electrolysis cell for biogas production from acetate. Int J Hydrogen Energy 35:8848-8854 (2010).
-
(2010)
Int J Hydrogen Energy
, vol.35
, pp. 8848-8854
-
-
Rader, G.K.1
Logan, B.E.2
-
68
-
-
77954815756
-
Hydrogen production from propionate in a biocatalyzed system with in-situ utilization of the electricity generated from a microbial fuel cell
-
Sun M, Mu Z, Sheng G, Shen N, Tong Z, Wang H and Yu H, Hydrogen production from propionate in a biocatalyzed system with in-situ utilization of the electricity generated from a microbial fuel cell. Int Biodeter Biodegr 64:378-382 (2010).
-
(2010)
Int Biodeter Biodegr
, vol.64
, pp. 378-382
-
-
Sun, M.1
Mu, Z.2
Sheng, G.3
Shen, N.4
Tong, Z.5
Wang, H.6
Yu, H.7
-
69
-
-
57949115357
-
Hydrogen gas production by electrohydrolysis of volatile fatty acid (VFA) containing dark fermentation effluent
-
Tuna E, Kargi F and Argun H, Hydrogen gas production by electrohydrolysis of volatile fatty acid (VFA) containing dark fermentation effluent. Int J Hydrogen Energy 34:262-269 (2009).
-
(2009)
Int J Hydrogen Energy
, vol.34
, pp. 262-269
-
-
Tuna, E.1
Kargi, F.2
Argun, H.3
-
70
-
-
76849084828
-
Scaling up microbial fuel cells and other bioelectrochemical systems
-
Logan BE, Scaling up microbial fuel cells and other bioelectrochemical systems. Appl Microbiol Biotechnol 85:1665-1671 (2010).
-
(2010)
Appl Microbiol Biotechnol
, vol.85
, pp. 1665-1671
-
-
Logan, B.E.1
-
71
-
-
79952558400
-
Performance of a pilot-scale continuous flow microbial electrolysis cell fed winery wastewater
-
Cusick RD, Bryan B, Parker DS, Merrill MD, Mehanna M, Kiely PD, Liu GL and Logan BE, Performance of a pilot-scale continuous flow microbial electrolysis cell fed winery wastewater. Appl Microbiol Biotechnol 89:2053-2063 (2011).
-
(2011)
Appl Microbiol Biotechnol
, vol.89
, pp. 2053-2063
-
-
Cusick, R.D.1
Bryan, B.2
Parker, D.S.3
Merrill, M.D.4
Mehanna, M.5
Kiely, P.D.6
Liu, G.L.7
Logan, B.E.8
-
72
-
-
0038546460
-
A novel electrochemically active and Fe(III)-reducing bacterium phylogenetically related to Aeromonas hydrophila, isolated from a microbial fuel cell
-
Pham CA, Jung SJ, Phung NT, Lee J, Chang IS, Kim BH, Yi H and Chun J, A novel electrochemically active and Fe(III)-reducing bacterium phylogenetically related to Aeromonas hydrophila, isolated from a microbial fuel cell. FEMS Microbiol Lett 223:129-134 (2003).
-
(2003)
FEMS Microbiol Lett
, vol.223
, pp. 129-134
-
-
Pham, C.A.1
Jung, S.J.2
Phung, N.T.3
Lee, J.4
Chang, I.S.5
Kim, B.H.6
Yi, H.7
Chun, J.8
-
73
-
-
18844451775
-
Electricity generation using membrane and salt bridge microbial fuel cells
-
Min B, Cheng S and Logan BE, Electricity generation using membrane and salt bridge microbial fuel cells. Water Res 39:1675-1686 (2005).
-
(2005)
Water Res
, vol.39
, pp. 1675-1686
-
-
Min, B.1
Cheng, S.2
Logan, B.E.3
-
74
-
-
0141542682
-
Electricity generation by direct oxidation of glucose in mediatorless microbial fuel cells
-
Chaudhuri SK and Lovley DR. Electricity generation by direct oxidation of glucose in mediatorless microbial fuel cells. Nat Biotechnol 21:1229-1232 (2003).
-
(2003)
Nat Biotechnol
, vol.21
, pp. 1229-1232
-
-
Chaudhuri, S.K.1
Lovley, D.R.2
-
75
-
-
0032933082
-
Direct electrode reaction of Fe(III)-reducing bacterium
-
Kim BH, Kim HJ, Hyun MS and Park DH, Direct electrode reaction of Fe(III)-reducing bacterium, Shewanella putrifaciens. J Microbiol Biotechnol 9:127-131 (1999).
-
(1999)
Shewanella putrifaciens. J Microbiol Biotechnol
, vol.9
, pp. 127-131
-
-
Kim, B.H.1
Kim, H.J.2
Hyun, M.S.3
Park, D.H.4
-
76
-
-
0008049769
-
Electricity generation in microbial fuel cells using neutral red as an electronophore
-
Park DH and Zeikus JG, Electricity generation in microbial fuel cells using neutral red as an electronophore. Appl Environ Microbiol 66:1292-1297 (2000).
-
(2000)
Appl Environ Microbiol
, vol.66
, pp. 1292-1297
-
-
Park, D.H.1
Zeikus, J.G.2
-
77
-
-
0032904869
-
Utilization of electrically reduced neutral red by Actinobacillus succinogenes: physiological function of neutral red in membrane-driven fumarate reduction and energy conservation
-
Park DH and Zeikus JG, Utilization of electrically reduced neutral red by Actinobacillus succinogenes: physiological function of neutral red in membrane-driven fumarate reduction and energy conservation. J Bacteriol 181:2403-2410 (1999).
-
(1999)
J Bacteriol
, vol.181
, pp. 2403-2410
-
-
Park, D.H.1
Zeikus, J.G.2
-
78
-
-
4644305766
-
Bio-fuel cells select for microbial consortia that self-mediate electron transfer
-
Rabaey K, Boon N, Siciliano SD, Verhaege M and Verstraete W, Bio-fuel cells select for microbial consortia that self-mediate electron transfer. Appl Environ Microbiol 70:5373-5382 (2004).
-
(2004)
Appl Environ Microbiol
, vol.70
, pp. 5373-5382
-
-
Rabaey, K.1
Boon, N.2
Siciliano, S.D.3
Verhaege, M.4
Verstraete, W.5
-
79
-
-
0021799472
-
Glucose metabolism in a microbial fuel cell. Stoichiometry of product formation in a thionine-mediated Proteus vulgaris fuel cell and its relation to Coulombic yields
-
Thurston CF, Bennetto HP, Delaney GM, Mason JR, Roller SD and Stirling JL, Glucose metabolism in a microbial fuel cell. Stoichiometry of product formation in a thionine-mediated Proteus vulgaris fuel cell and its relation to Coulombic yields. J Gen Microbiol 131:1393-1401 (1985).
-
(1985)
J Gen Microbiol
, vol.131
, pp. 1393-1401
-
-
Thurston, C.F.1
Bennetto, H.P.2
Delaney, G.M.3
Mason, J.R.4
Roller, S.D.5
Stirling, J.L.6
-
80
-
-
33646030010
-
High power density from a miniature microbial fuel cell using Shewanella oneidensis DSP10
-
Ringeisen BR, Henderson E, Wu PK, Pietron J, Ray R, Little B, Biffinger JC and Jones-Meehan JM, High power density from a miniature microbial fuel cell using Shewanella oneidensis DSP10. Environ Sci Technol 40:2629-2634 (2006).
-
(2006)
Environ Sci Technol
, vol.40
, pp. 2629-2634
-
-
Ringeisen, B.R.1
Henderson, E.2
Wu, P.K.3
Pietron, J.4
Ray, R.5
Little, B.6
Biffinger, J.C.7
Jones-Meehan, J.M.8
-
81
-
-
21344461500
-
Extracellular electron transfer via microbial nanowires
-
Reguera G, McCarthy KD, Mehta T. Nicoll JS, Tuominen MT and Lovley DR, Extracellular electron transfer via microbial nanowires. Nature 435:1098-1101 (2005).
-
(2005)
Nature
, vol.435
, pp. 1098-1101
-
-
Reguera, G.1
McCarthy, K.D.2
Nicoll, J.S.3
Tuominen, M.T.4
Lovley, D.R.5
-
82
-
-
34648831248
-
Qualitative and quantitative determination of a humic model compound in microbial cultures by cyclic voltammetry
-
Cadena A, Texier AC, Gonzalez I, Cervantes FJ and Gomez J, Qualitative and quantitative determination of a humic model compound in microbial cultures by cyclic voltammetry. Environ Technol 28:1035-1044 (2007).
-
(2007)
Environ Technol
, vol.28
, pp. 1035-1044
-
-
Cadena, A.1
Texier, A.C.2
Gonzalez, I.3
Cervantes, F.J.4
Gomez, J.5
-
83
-
-
0036134778
-
The high-molecular-weight cytochrome c Cyc2 of Acidithiobacillus ferrooxidans is an outer membrane protein
-
Yarzabal A, Brasseur G, Ratouchniak J, Lund K, Lemesle-Meunier D, DeMoss JA and Bonnefoy V, The high-molecular-weight cytochrome c Cyc2 of Acidithiobacillus ferrooxidans is an outer membrane protein. J Bacteriol 184:313-317 (2002).
-
(2002)
J Bacteriol
, vol.184
, pp. 313-317
-
-
Yarzabal, A.1
Brasseur, G.2
Ratouchniak, J.3
Lund, K.4
Lemesle-Meunier, D.5
DeMoss, J.A.6
Bonnefoy, V.7
-
84
-
-
70549089986
-
Electron transfer pathways in microbial oxygen biocathodes
-
Freguia S, Tsujimura S and Kano K, Electron transfer pathways in microbial oxygen biocathodes. Electrochim Acta 55:813-818 (2010).
-
(2010)
Electrochim Acta
, vol.55
, pp. 813-818
-
-
Freguia, S.1
Tsujimura, S.2
Kano, K.3
-
85
-
-
0000853670
-
Localization of cytochromes in the outer membrane of Desulfovibrio vulgaris (Hildenborough) and their role in anaerobic biocorrosion
-
Kloeke FV, Bryant RD and Laishley EJ, Localization of cytochromes in the outer membrane of Desulfovibrio vulgaris (Hildenborough) and their role in anaerobic biocorrosion. Anaerobe 1:351-358 (1995).
-
(1995)
Anaerobe
, vol.1
, pp. 351-358
-
-
Kloeke, F.V.1
Bryant, R.D.2
Laishley, E.J.3
-
86
-
-
0017616853
-
Sites and specificity of reaction of bipyridylium compounds with anaerobic respiratory enzymes of Escherichia coli - effects of permeability barriers imposed by cytoplasmic membrane
-
Jones RW and Garland PB, Sites and specificity of reaction of bipyridylium compounds with anaerobic respiratory enzymes of Escherichia coli - effects of permeability barriers imposed by cytoplasmic membrane. Biochem J 164:199-211 (1977).
-
(1977)
Biochem J
, vol.164
, pp. 199-211
-
-
Jones, R.W.1
Garland, P.B.2
-
87
-
-
39149116016
-
2 production in the fermentative pure culture Clostridium beijerinckii
-
2 production in the fermentative pure culture Clostridium beijerinckii. Curr Microbiol 56:268-273 (2008).
-
(2008)
Curr Microbiol
, vol.56
, pp. 268-273
-
-
Hatch, J.L.1
Finneran, K.T.2
-
88
-
-
76449116222
-
Quorum sensing regulates electric current generation of Pseudomonas aeruginosa PA14 in bioelectrochemical systems
-
Venkataraman A, Rosenbaum M, Arends JBA, Halitsche R and Angenent LT, Quorum sensing regulates electric current generation of Pseudomonas aeruginosa PA14 in bioelectrochemical systems. Electrochem Commun 12:459-462 (2010).
-
(2010)
Electrochem Commun
, vol.12
, pp. 459-462
-
-
Venkataraman, A.1
Rosenbaum, M.2
Arends, J.B.A.3
Halitsche, R.4
Angenent, L.T.5
-
89
-
-
41649085415
-
Shewanella secretes flavins that mediate extracellular electron transfer
-
Marsili E, Baron DB, Shikhare ID, Coursolle D, Gralnick JA and Bond DR, Shewanella secretes flavins that mediate extracellular electron transfer. Proc Nat Acad Sci USA 105:3968-3973 (2008).
-
(2008)
Proc Nat Acad Sci USA
, vol.105
, pp. 3968-3973
-
-
Marsili, E.1
Baron, D.B.2
Shikhare, I.D.3
Coursolle, D.4
Gralnick, J.A.5
Bond, D.R.6
-
90
-
-
71549134021
-
Improving power production in acetate-fed microbial fuel cells via enrichment of exoelectrogenic organisms in flow-through systems
-
Borole AP, Hamilton CY, Vishnivetskaya T, Leak D and Andras C, Improving power production in acetate-fed microbial fuel cells via enrichment of exoelectrogenic organisms in flow-through systems. Biochem Eng J 48:71-80 (2009).
-
(2009)
Biochem Eng J
, vol.48
, pp. 71-80
-
-
Borole, A.P.1
Hamilton, C.Y.2
Vishnivetskaya, T.3
Leak, D.4
Andras, C.5
-
91
-
-
84860427242
-
Removal and recovery of phosphorus as struvite from swine wastewater using microbial fuel cell
-
Ichihashi O and Hirooka K, Removal and recovery of phosphorus as struvite from swine wastewater using microbial fuel cell. Bioresource Technol 114:303-307 (2012).
-
(2012)
Bioresource Technol
, vol.114
, pp. 303-307
-
-
Ichihashi, O.1
Hirooka, K.2
-
92
-
-
79957448939
-
Treatment of cassava mill wastewater and production of electricity through microbial fuel cell technology
-
Kaewkannetra P, Chiwes W and Chiu TY, Treatment of cassava mill wastewater and production of electricity through microbial fuel cell technology. Fuel 90:2746-2750 (2011).
-
(2011)
Fuel
, vol.90
, pp. 2746-2750
-
-
Kaewkannetra, P.1
Chiwes, W.2
Chiu, T.Y.3
-
93
-
-
84866451194
-
Electricity generation using eight amino acids by air-cathode microbial fuel cells
-
Yang Q, Feng Y, Wang X, Lee H, Liu J, Shi X, Qu Y and Ren N, Electricity generation using eight amino acids by air-cathode microbial fuel cells. Fuel 102:478-482 (2012).
-
(2012)
Fuel
, vol.102
, pp. 478-482
-
-
Yang, Q.1
Feng, Y.2
Wang, X.3
Lee, H.4
Liu, J.5
Shi, X.6
Qu, Y.7
Ren, N.8
-
95
-
-
69549109859
-
Efficient hydrogen peroxide generation from organic matter in a bioelectrochemical system
-
Rozendal RA, Leone E, Keller J and Rabaey K, Efficient hydrogen peroxide generation from organic matter in a bioelectrochemical system. Electrochem Commun 11:1752-1755 (2009).
-
(2009)
Electrochem Commun
, vol.11
, pp. 1752-1755
-
-
Rozendal, R.A.1
Leone, E.2
Keller, J.3
Rabaey, K.4
-
96
-
-
80052479451
-
Electrochemically assisted methane production in a biofilm reactor
-
Villano M, Monaco G, Aulenta F and Majone M, Electrochemically assisted methane production in a biofilm reactor. J Power Sources 196:9467-9472 (2011).
-
(2011)
J Power Sources
, vol.196
, pp. 9467-9472
-
-
Villano, M.1
Monaco, G.2
Aulenta, F.3
Majone, M.4
-
97
-
-
62949091234
-
Methanogenesis in membraneless microbial electrolysis cells
-
Clauwaert P and Verstraete W, Methanogenesis in membraneless microbial electrolysis cells. Appl Microbiol Biotechnol 82:829-836 (2009).
-
(2009)
Appl Microbiol Biotechnol
, vol.82
, pp. 829-836
-
-
Clauwaert, P.1
Verstraete, W.2
-
98
-
-
77957335505
-
Pre-acclimation of a wastewater inoculum to cellulose in an aqueous-cathode MEC improves power generation in air-cathode MFCs
-
Cheng S, Kiely P and Logan BE, Pre-acclimation of a wastewater inoculum to cellulose in an aqueous-cathode MEC improves power generation in air-cathode MFCs. Bioresource Technol 102:367-371 (2011).
-
(2011)
Bioresource Technol
, vol.102
, pp. 367-371
-
-
Cheng, S.1
Kiely, P.2
Logan, B.E.3
-
99
-
-
47549087897
-
Towards environmental systems biology of Shewanella
-
Fredrickson JK, Romine MF, Beliaev AS, Auchtung JM, Driscoll ME, Gardner TS, Nealson KH, Osterman AL, Pinchuk G, Reed JL, Rodionov DA, Rodrigues JL, Saffarini DA, Serres MH, Spormann AM, Zhulin IB and Tiedje JM, Towards environmental systems biology of Shewanella. Nat Rev Microbiol 6:592-603 (2008).
-
(2008)
Nat Rev Microbiol
, vol.6
, pp. 592-603
-
-
Fredrickson, J.K.1
Romine, M.F.2
Beliaev, A.S.3
Auchtung, J.M.4
Driscoll, M.E.5
Gardner, T.S.6
Nealson, K.H.7
Osterman, A.L.8
Pinchuk, G.9
Reed, J.L.10
Rodionov, D.A.11
Rodrigues, J.L.12
Saffarini, D.A.13
Serres, M.H.14
Spormann, A.M.15
Zhulin, I.B.16
Tiedje, J.M.17
-
100
-
-
84857082945
-
Dissimilatory reduction of extracellular electron acceptors in anaerobic respiration
-
Richter K, Schicklberger M and Gescher J, Dissimilatory reduction of extracellular electron acceptors in anaerobic respiration. Appl Environ Microbiol 78:913-921 (2012).
-
(2012)
Appl Environ Microbiol
, vol.78
, pp. 913-921
-
-
Richter, K.1
Schicklberger, M.2
Gescher, J.3
|