메뉴 건너뛰기




Volumn 88, Issue 4, 2013, Pages 508-518

Recent advances in microbial fuel cells (MFCs) and microbial electrolysis cells (MECs) for wastewater treatment, bioenergy and bioproducts

Author keywords

Bioenergy; Biofilm; Electron transfer; Microbial electrolysis cell; Microbial fuel cells; Wastewater treatment

Indexed keywords

BIO-ENERGY; ELECTRON TRANSFER; ELECTRON TRANSPORT; GENETIC RECOMBINATIONS; MICROBIAL ELECTROLYSIS CELL (MECS); MICROBIAL ELECTROLYSIS CELLS; MICROBIAL FUEL CELLS (MFCS); RENEWABLE ENERGIES;

EID: 84875486681     PISSN: 02682575     EISSN: 10974660     Source Type: Journal    
DOI: 10.1002/jctb.4004     Document Type: Article
Times cited : (233)

References (100)
  • 1
    • 33748564008 scopus 로고    scopus 로고
    • Microbial fuel cells - challenges and applications
    • Logan BE and Regan JM, Microbial fuel cells - challenges and applications. Environ Sci Technol 40:5172-5180 (2006).
    • (2006) Environ Sci Technol , vol.40 , pp. 5172-5180
    • Logan, B.E.1    Regan, J.M.2
  • 2
    • 34447285505 scopus 로고    scopus 로고
    • A state of the art review on microbial fuel cells: a promising technology for wastewater treatment and bioenergy
    • Du Z, Li H and Gu T, A state of the art review on microbial fuel cells: a promising technology for wastewater treatment and bioenergy. Biotechnol Adv 25:464-482 (2007).
    • (2007) Biotechnol Adv , vol.25 , pp. 464-482
    • Du, Z.1    Li, H.2    Gu, T.3
  • 4
    • 79952280859 scopus 로고    scopus 로고
    • An overview of electrode materials in microbial fuel cells
    • Zhou M, Chi M, Luo J, He H and Jin T, An overview of electrode materials in microbial fuel cells. J Power Sources 196:4427-4435 (2011).
    • (2011) J Power Sources , vol.196 , pp. 4427-4435
    • Zhou, M.1    Chi, M.2    Luo, J.3    He, H.4    Jin, T.5
  • 5
    • 80052699260 scopus 로고    scopus 로고
    • Recent progress in electrodes for microbial fuel cells
    • Wei J, Liang P and Huang X, Recent progress in electrodes for microbial fuel cells. Bioresource Technol 102:9335-9344 (2011).
    • (2011) Bioresource Technol , vol.102 , pp. 9335-9344
    • Wei, J.1    Liang, P.2    Huang, X.3
  • 6
    • 77957338115 scopus 로고    scopus 로고
    • Recent advances in the separators for microbial fuel cells
    • Li W, Sheng G, Liu X and Yu H, Recent advances in the separators for microbial fuel cells. Bioresource Technol 102:244-252 (2011).
    • (2011) Bioresource Technol , vol.102 , pp. 244-252
    • Li, W.1    Sheng, G.2    Liu, X.3    Yu, H.4
  • 7
    • 74549151753 scopus 로고    scopus 로고
    • A review of the substrates used in microbial fuel cells (MFCs) for sustainable energy production
    • Pant D, Van Bogaert G, Diels L and Vanbroekhoven K, A review of the substrates used in microbial fuel cells (MFCs) for sustainable energy production. Bioresource Technol 101:1533-1543 (2010).
    • (2010) Bioresource Technol , vol.101 , pp. 1533-1543
    • Pant, D.1    Van Bogaert, G.2    Diels, L.3    Vanbroekhoven, K.4
  • 8
    • 77957348875 scopus 로고    scopus 로고
    • Electron transfer mechanisms, new applications, and performance of biocathode microbial fuel cells
    • Huang L, Regan JM and Quan X, Electron transfer mechanisms, new applications, and performance of biocathode microbial fuel cells. Bioresource Technol 102:316-323 (2011).
    • (2011) Bioresource Technol , vol.102 , pp. 316-323
    • Huang, L.1    Regan, J.M.2    Quan, X.3
  • 9
    • 79952606428 scopus 로고    scopus 로고
    • Bioelectrochemical systems for efficient recalcitrant wastes treatment
    • Huang LP, Cheng SA and Chen GH, Bioelectrochemical systems for efficient recalcitrant wastes treatment. J Chem Technol Biotechnol 86:481-491 (2011).
    • (2011) J Chem Technol Biotechnol , vol.86 , pp. 481-491
    • Huang, L.P.1    Cheng, S.A.2    Chen, G.H.3
  • 11
    • 78751627328 scopus 로고    scopus 로고
    • Miniaturizing microbial fuel cells
    • Qian F and Morse DE, Miniaturizing microbial fuel cells. Trends Biotechnol 29:62-69 (2011).
    • (2011) Trends Biotechnol , vol.29 , pp. 62-69
    • Qian, F.1    Morse, D.E.2
  • 12
    • 18344391948 scopus 로고    scopus 로고
    • Microbial phenazine production enhances electron transfer in biofuel cells
    • Rabaey K, Boon N, Hofte M and Verstraete W, Microbial phenazine production enhances electron transfer in biofuel cells. Environ Sci Technol 39:3401-3408 (2005).
    • (2005) Environ Sci Technol , vol.39 , pp. 3401-3408
    • Rabaey, K.1    Boon, N.2    Hofte, M.3    Verstraete, W.4
  • 13
    • 78651395312 scopus 로고    scopus 로고
    • Novel methanogenic rotatable bioelectrochemical system operated with polarity inversion
    • Cheng KY, Ho G and Cord-Ruwisch R, Novel methanogenic rotatable bioelectrochemical system operated with polarity inversion. Environ Sci Technol 45:796-802 (2011).
    • (2011) Environ Sci Technol , vol.45 , pp. 796-802
    • Cheng, K.Y.1    Ho, G.2    Cord-Ruwisch, R.3
  • 14
    • 34447523820 scopus 로고    scopus 로고
    • Anodic electron transfer mechanisms in microbial fuel cells and their energy efficiency
    • Schröder U, Anodic electron transfer mechanisms in microbial fuel cells and their energy efficiency. Phys Chem Chem Phys 9:2619-2629 (2007).
    • (2007) Phys Chem Chem Phys , vol.9 , pp. 2619-2629
    • Schröder, U.1
  • 15
    • 71849109386 scopus 로고    scopus 로고
    • Carbon nanotubes as electrode modifier promoting direct electron transfer from Shewanella oneidensis
    • Peng L, You S and Wang J, Carbon nanotubes as electrode modifier promoting direct electron transfer from Shewanella oneidensis. Biosens Bioelectron 25:1248-1251 (2010).
    • (2010) Biosens Bioelectron , vol.25 , pp. 1248-1251
    • Peng, L.1    You, S.2    Wang, J.3
  • 16
    • 84875499700 scopus 로고    scopus 로고
    • Bioenergetics explains when and why more severe MIC pitting by SRB can occur. Paper No. 11426, CORROSION/. Houston, TX, March 13-17, 2011.
    • Xu D and Gu T, Bioenergetics explains when and why more severe MIC pitting by SRB can occur. Paper No. 11426, CORROSION/2011. Houston, TX, March 13-17, 2011.
    • (2011)
    • Xu, D.1    Gu, T.2
  • 17
    • 78751578919 scopus 로고    scopus 로고
    • Characterizing the effect of carbon steel exposure in sulfide containing solutions to microbially induced corrosion
    • Sherar BWA, Power IM, Keech PG, Mitlin S, Southam G and Shoesmith DW, Characterizing the effect of carbon steel exposure in sulfide containing solutions to microbially induced corrosion. Corros Sci 53:955-960 (2011).
    • (2011) Corros Sci , vol.53 , pp. 955-960
    • Sherar, B.W.A.1    Power, I.M.2    Keech, P.G.3    Mitlin, S.4    Southam, G.5    Shoesmith, D.W.6
  • 18
    • 84875503175 scopus 로고    scopus 로고
    • Can acid producing bacteria be responsible for very fast MIC pitting? Paper No. C2012-0001214, CORROSION/, Salt Lake City, UT, March 11-15, 2012.
    • Gu T, Can acid producing bacteria be responsible for very fast MIC pitting? Paper No. C2012-0001214, CORROSION/2012, Salt Lake City, UT, March 11-15, 2012.
    • (2012)
    • Gu, T.1
  • 19
    • 33746624663 scopus 로고    scopus 로고
    • Electrically conductive bacterial nanowires produced by Shewanella oneidensis strain MR-1 and other microorganisms
    • Gorby YA, Yanina S, McLean JS, Rosso KM, Moyles D, Dohnalkova A, et al, Electrically conductive bacterial nanowires produced by Shewanella oneidensis strain MR-1 and other microorganisms. Proc Natl Acad Sci USA 103:11358-11363 (2006).
    • (2006) Proc Natl Acad Sci USA , vol.103 , pp. 11358-11363
    • Gorby, Y.A.1    Yanina, S.2    McLean, J.S.3    Rosso, K.M.4    Moyles, D.5    Dohnalkova, A.6
  • 20
    • 68549110313 scopus 로고    scopus 로고
    • Lactococcus lactis catalyses electricity generation at microbial fuel cell anodes via excretion of a soluble quinone
    • Freguia S, Masuda M, Tsujimura S and Kano K, Lactococcus lactis catalyses electricity generation at microbial fuel cell anodes via excretion of a soluble quinone. Bioelectrochem 76:14-18 (2009).
    • (2009) Bioelectrochem , vol.76 , pp. 14-18
    • Freguia, S.1    Masuda, M.2    Tsujimura, S.3    Kano, K.4
  • 21
    • 75649088505 scopus 로고    scopus 로고
    • A study of electron-shuttle mechanism in Klebsiella pneumoniae based-microbial fuel cells
    • Deng L, Li F, Zhou S, Huang D and Ni J, A study of electron-shuttle mechanism in Klebsiella pneumoniae based-microbial fuel cells. Chinese Sci Bull 55:99-104 (2010).
    • (2010) Chinese Sci Bull , vol.55 , pp. 99-104
    • Deng, L.1    Li, F.2    Zhou, S.3    Huang, D.4    Ni, J.5
  • 22
    • 0036727193 scopus 로고    scopus 로고
    • Identification that are formed during the degradation of naphthalene-2-sulfonate by Sphingomonasxenophaga BN6
    • Keck A, Rau J, Teemtsma T, Mattes R, Stolz A and Klein J, Identification that are formed during the degradation of naphthalene-2-sulfonate by Sphingomonasxenophaga BN6. Appl Environ Microbiol 68:4341-4349 (2002).
    • (2002) Appl Environ Microbiol , vol.68 , pp. 4341-4349
    • Keck, A.1    Rau, J.2    Teemtsma, T.3    Mattes, R.4    Stolz, A.5    Klein, J.6
  • 23
    • 78649707496 scopus 로고    scopus 로고
    • Direct exchange of electrons within aggregates of an evolved syntrophic coculture of anaerobic bacteria
    • Summers ZM, Fogarty HE, Leang C, Franks AE, Malvankar NS and Lovley DR, Direct exchange of electrons within aggregates of an evolved syntrophic coculture of anaerobic bacteria. Science 330:1413-1415 (2010).
    • (2010) Science , vol.330 , pp. 1413-1415
    • Summers, Z.M.1    Fogarty, H.E.2    Leang, C.3    Franks, A.E.4    Malvankar, N.S.5    Lovley, D.R.6
  • 24
    • 83555164625 scopus 로고    scopus 로고
    • Anode modification by electrochemical oxidation: an alternative to improve the performance of microbial fuel cells
    • Zhou M, Chi M, Wang H and Jin T, Anode modification by electrochemical oxidation: an alternative to improve the performance of microbial fuel cells. Biochem Eng J 60:151-155 (2012).
    • (2012) Biochem Eng J , vol.60 , pp. 151-155
    • Zhou, M.1    Chi, M.2    Wang, H.3    Jin, T.4
  • 25
    • 0027962186 scopus 로고
    • High power density proton-exchange membrane fuel cells
    • Oliver JM, Duncan H and David JM, High power density proton-exchange membrane fuel cells. J Power Sources 47:353-368 (1994).
    • (1994) J Power Sources , vol.47 , pp. 353-368
    • Oliver, J.M.1    Duncan, H.2    David, J.M.3
  • 26
    • 59649086377 scopus 로고    scopus 로고
    • Electricity production by an overflow-type wetted-wall microbial fuel cell
    • Li Z, Zhang X, Zeng Y and Lei L, Electricity production by an overflow-type wetted-wall microbial fuel cell. Bioresource Technol 100:2551-2555 (2009).
    • (2009) Bioresource Technol , vol.100 , pp. 2551-2555
    • Li, Z.1    Zhang, X.2    Zeng, Y.3    Lei, L.4
  • 27
    • 84866352005 scopus 로고    scopus 로고
    • Energy-efficient treatment of organic wastewater streams using a rotatable bioelectrochemical contactor (RBEC). :-.
    • Cheng KY, Ho G and Cord-Ruwisch R, Energy-efficient treatment of organic wastewater streams using a rotatable bioelectrochemical contactor (RBEC). Bioresource Technol 126:431-436 (2012).
    • (2012) Bioresource Technol , vol.126 , pp. 431-436
    • Cheng, K.Y.1    Ho, G.2    Cord-Ruwisch, R.3
  • 28
    • 84862793444 scopus 로고    scopus 로고
    • Self-stacked submersible microbial fuel cell (SSMFC) for improved remote power generation from lake sediments
    • Zhang Y and Angelidaki I, Self-stacked submersible microbial fuel cell (SSMFC) for improved remote power generation from lake sediments. Biosens Bioelectron 35:265-270 (2012).
    • (2012) Biosens Bioelectron , vol.35 , pp. 265-270
    • Zhang, Y.1    Angelidaki, I.2
  • 29
    • 73349121599 scopus 로고    scopus 로고
    • A microbial fuel cell using manganese oxide oxygen reduction catalysts
    • Roche I, Katuri K and Scott K, A microbial fuel cell using manganese oxide oxygen reduction catalysts. J Appl Electrochem 40:13-21 (2010).
    • (2010) J Appl Electrochem , vol.40 , pp. 13-21
    • Roche, I.1    Katuri, K.2    Scott, K.3
  • 30
    • 75749129791 scopus 로고    scopus 로고
    • Polypyrrole/carbon black composite as a novel oxygen reduction catalyst for microbial fuel cells
    • Yuan Y, Zhou S and Zhuang L, Polypyrrole/carbon black composite as a novel oxygen reduction catalyst for microbial fuel cells. J Power Sources 195:3490-3493 (2010).
    • (2010) J Power Sources , vol.195 , pp. 3490-3493
    • Yuan, Y.1    Zhou, S.2    Zhuang, L.3
  • 31
    • 0037419705 scopus 로고    scopus 로고
    • Improved fuel cell and electrode designs for producing electricity from microbial degradation
    • Park DH and Zeikus JG, Improved fuel cell and electrode designs for producing electricity from microbial degradation. Biotechnol Bioeng 81:348-355 (2003).
    • (2003) Biotechnol Bioeng , vol.81 , pp. 348-355
    • Park, D.H.1    Zeikus, J.G.2
  • 32
    • 77950339768 scopus 로고    scopus 로고
    • Senthil Kumar SM, Ghangrekar MM and Scott K, Effect of chemically modified Vulcan XC-72R on the performance of air-breathing cathode in a single-chamber microbial fuel cell
    • Duteanu N, Erable B, Senthil Kumar SM, Ghangrekar MM and Scott K, Effect of chemically modified Vulcan XC-72R on the performance of air-breathing cathode in a single-chamber microbial fuel cell. Bioresource Technol 101:5250-5255 (2010).
    • (2010) Bioresource Technol , vol.101 , pp. 5250-5255
    • Duteanu, N.1    Erable, B.2
  • 33
    • 80054840953 scopus 로고    scopus 로고
    • Enhanced wastewater treatment efficiency through microbially catalyzed oxidation and reduction: synergistic effect of biocathode microenvironment
    • Mohan SV and Srikanth S, Enhanced wastewater treatment efficiency through microbially catalyzed oxidation and reduction: synergistic effect of biocathode microenvironment. Bioresource Technol 102:10210-10220 (2011).
    • (2011) Bioresource Technol , vol.102 , pp. 10210-10220
    • Mohan, S.V.1    Srikanth, S.2
  • 34
    • 77957342319 scopus 로고    scopus 로고
    • Simultaneous carbon and nitrogen removal using an oxic anoxic-biocathode microbial fuel cells coupled system
    • Xie S, Liang P, Chen Y, Xia X and Huang X, Simultaneous carbon and nitrogen removal using an oxic anoxic-biocathode microbial fuel cells coupled system. Bioresource Technol 102:348-354 (2011).
    • (2011) Bioresource Technol , vol.102 , pp. 348-354
    • Xie, S.1    Liang, P.2    Chen, Y.3    Xia, X.4    Huang, X.5
  • 35
    • 84455205481 scopus 로고    scopus 로고
    • Biocathode microbial fuel cell for efficient electricity recovery from dairy manure
    • Zhang G, Zhao Q, Jiao Y, Wang K, Lee DJ and Ren N, Biocathode microbial fuel cell for efficient electricity recovery from dairy manure. Biosens Bioelectron 31:537-543 (2012).
    • (2012) Biosens Bioelectron , vol.31 , pp. 537-543
    • Zhang, G.1    Zhao, Q.2    Jiao, Y.3    Wang, K.4    Lee, D.J.5    Ren, N.6
  • 36
    • 84928593553 scopus 로고    scopus 로고
    • Energy metabolism phylogenetic diversity of sulphate-reducing bacteria
    • ed by Barton LL and Hamilton WA. Cambridge University Press, Cambridge
    • Thauer RK, Stackebrandt E and Hamilton WA, Energy metabolism phylogenetic diversity of sulphate-reducing bacteria, in Sulphate-Reducing Bacteria: Environmental and Engineered Systems, ed by Barton LL and Hamilton WA. Cambridge University Press, Cambridge, 1-37 (2007).
    • (2007) Sulphate-Reducing Bacteria: Environmental and Engineered Systems , pp. 1-37
    • Thauer, R.K.1    Stackebrandt, E.2    Hamilton, W.A.3
  • 37
    • 69749100309 scopus 로고    scopus 로고
    • Nitrate removal in surface-flow constructed wetlands treating dilute agriculturalrunoff in the lower Yakima Basin
    • Beutel MW, Newton CD, Brouillard ES and Watts RJ, Nitrate removal in surface-flow constructed wetlands treating dilute agriculturalrunoff in the lower Yakima Basin, Washington. Ecol Eng 35:1538-1546 (2009).
    • (2009) Washington. Ecol Eng , vol.35 , pp. 1538-1546
    • Beutel, M.W.1    Newton, C.D.2    Brouillard, E.S.3    Watts, R.J.4
  • 38
    • 77955579002 scopus 로고    scopus 로고
    • Power recovery with multi-anode/cathode microbial fuel cells suitable for future large-scale applications
    • Jiang D, Li X, Raymond D, Mooradain J and Li B, Power recovery with multi-anode/cathode microbial fuel cells suitable for future large-scale applications. Int J Hydrogen Energy 35:8683-8689 (2010).
    • (2010) Int J Hydrogen Energy , vol.35 , pp. 8683-8689
    • Jiang, D.1    Li, X.2    Raymond, D.3    Mooradain, J.4    Li, B.5
  • 39
    • 77957342319 scopus 로고    scopus 로고
    • Simultaneous carbon and nitrogen removal using an oxic/anoxic-biocathode microbial fuel cells coupled system
    • Xie S, Liang P, Chen Y, Xia X and Huang X, Simultaneous carbon and nitrogen removal using an oxic/anoxic-biocathode microbial fuel cells coupled system. Bioresource Technol 102:348-354 (2011).
    • (2011) Bioresource Technol , vol.102 , pp. 348-354
    • Xie, S.1    Liang, P.2    Chen, Y.3    Xia, X.4    Huang, X.5
  • 40
    • 80055100759 scopus 로고    scopus 로고
    • Development of a hybrid microbial fuel cell (MFC) and fuel cell (FC) system for improved cathodic efficiency and sustainability: the M2FC reactor
    • Eom H, Chung K, Kim I and Han JI, Development of a hybrid microbial fuel cell (MFC) and fuel cell (FC) system for improved cathodic efficiency and sustainability: the M2FC reactor. Chemosphere 85:672-676 (2011).
    • (2011) Chemosphere , vol.85 , pp. 672-676
    • Eom, H.1    Chung, K.2    Kim, I.3    Han, J.I.4
  • 41
    • 84857232171 scopus 로고    scopus 로고
    • A novel sediment microbial fuel cell with a biocathode in the rice rhizosphere
    • Chen Z, Huang Y, Liang J, Zhao F and Zhu Y, A novel sediment microbial fuel cell with a biocathode in the rice rhizosphere. Bioresource Technol 108:55-59 (2012).
    • (2012) Bioresource Technol , vol.108 , pp. 55-59
    • Chen, Z.1    Huang, Y.2    Liang, J.3    Zhao, F.4    Zhu, Y.5
  • 43
    • 84861403761 scopus 로고    scopus 로고
    • Power generation enhancement in novel microbial carbon capture cells with immobilized Chlorella vulgaris
    • Zhou M, He H, Jin T and Wang H, Power generation enhancement in novel microbial carbon capture cells with immobilized Chlorella vulgaris. J Power Sources 214:216-219 (2012).
    • (2012) J Power Sources , vol.214 , pp. 216-219
    • Zhou, M.1    He, H.2    Jin, T.3    Wang, H.4
  • 44
    • 84875485246 scopus 로고    scopus 로고
    • Advances in microbial fuel cells for potential energy production from organic feed streams
    • ed by Arora R. CAB International, Oxon, UK.
    • Guo K, Hassett DJ and Gu T, Advances in microbial fuel cells for potential energy production from organic feed streams, in Microbial Biotechnology: Energy and Environment, ed by Arora R. CAB International, Oxon, UK (2012).
    • (2012) Microbial Biotechnology: Energy and Environment
    • Guo, K.1    Hassett, D.J.2    Gu, T.3
  • 45
    • 0031754775 scopus 로고    scopus 로고
    • Shewanella putrefaciens mtrB encodes an outer membrane protein required for Fe(III) and Mn(IV) reduction
    • Beliaev AS and Saffarini DA, Shewanella putrefaciens mtrB encodes an outer membrane protein required for Fe(III) and Mn(IV) reduction. J Bacteriol 180:6292-6297 (1998).
    • (1998) J Bacteriol , vol.180 , pp. 6292-6297
    • Beliaev, A.S.1    Saffarini, D.A.2
  • 47
    • 0035131413 scopus 로고    scopus 로고
    • MtrC, an outer membrane decahaem c cytochrome required for metal reduction in Shewanella putrefaciens MR-1
    • Beliaev AS, Saffarini DA, McLaughlin JL and Hunnicutt D, MtrC, an outer membrane decahaem c cytochrome required for metal reduction in Shewanella putrefaciens MR-1. Mol Microbiol 39:722-730 (2001).
    • (2001) Mol Microbiol , vol.39 , pp. 722-730
    • Beliaev, A.S.1    Saffarini, D.A.2    McLaughlin, J.L.3    Hunnicutt, D.4
  • 49
    • 38949214833 scopus 로고    scopus 로고
    • Secretion of flavins by Shewanella species and their role in extracellular electron transfer
    • Canstein HV, Ogawa J, Shimizu S and Lloyd JR, Secretion of flavins by Shewanella species and their role in extracellular electron transfer. Appl Environ Microbiol 74:615-623 (2008).
    • (2008) Appl Environ Microbiol , vol.74 , pp. 615-623
    • Canstein, H.V.1    Ogawa, J.2    Shimizu, S.3    Lloyd, J.R.4
  • 50
    • 0031724115 scopus 로고    scopus 로고
    • Flagellar and twitching motility are necessary for Pseudomonas aeruginosa biofilm development
    • O'Toole GA and Kolter R, Flagellar and twitching motility are necessary for Pseudomonas aeruginosa biofilm development. Mol Microbiol 30:295-304 (1998).
    • (1998) Mol Microbiol , vol.30 , pp. 295-304
    • O'Toole, G.A.1    Kolter, R.2
  • 51
    • 0032502811 scopus 로고    scopus 로고
    • The involvement of cell-to-cell signals in the development of a bacterial biofilm
    • Davies DG, The involvement of cell-to-cell signals in the development of a bacterial biofilm. Science 280:295-298 (1998).
    • (1998) Science , vol.280 , pp. 295-298
    • Davies, D.G.1
  • 53
    • 33750429987 scopus 로고    scopus 로고
    • BdlA, a chemotaxis regulator essential for biofilm dispersion in Pseudomonas aeruginosa
    • Morgan R, Kohn S, Hwang SH, Hassett DJ and Sauer K, BdlA, a chemotaxis regulator essential for biofilm dispersion in Pseudomonas aeruginosa. J Bacteriol 188:7335-7343 (2006).
    • (2006) J Bacteriol , vol.188 , pp. 7335-7343
    • Morgan, R.1    Kohn, S.2    Hwang, S.H.3    Hassett, D.J.4    Sauer, K.5
  • 55
    • 2342437319 scopus 로고    scopus 로고
    • Gene expression in Bacillus subtilis surface biofilms with and without sporulation and the importance of yveR for biofilm maintenance
    • Ren D, Bedzyk LA, Setlow P, Thomas SM, Ye RW and Wood TK, Gene expression in Bacillus subtilis surface biofilms with and without sporulation and the importance of yveR for biofilm maintenance. Biotechnol Bioeng 86:344-364 (2004).
    • (2004) Biotechnol Bioeng , vol.86 , pp. 344-364
    • Ren, D.1    Bedzyk, L.A.2    Setlow, P.3    Thomas, S.M.4    Ye, R.W.5    Wood, T.K.6
  • 56
    • 0029814366 scopus 로고    scopus 로고
    • Microbial pathogenesis in cystic fibrosis: mucoid Pseudomonas aeruginosa and Burkholderia cepacia
    • Govan JRW and Deretic V, Microbial pathogenesis in cystic fibrosis: mucoid Pseudomonas aeruginosa and Burkholderia cepacia. Microbiol Rev 60:539-574 (1996).
    • (1996) Microbiol Rev , vol.60 , pp. 539-574
    • Govan, J.R.W.1    Deretic, V.2
  • 57
    • 3042735895 scopus 로고    scopus 로고
    • Two genetic loci produce distinct carbohydrate-rich structural components of the Pseudomonas aeruginosa biofilm matrix
    • Friedman L and Kolter R, Two genetic loci produce distinct carbohydrate-rich structural components of the Pseudomonas aeruginosa biofilm matrix. J Bacteriol 186:4457-4465 (2004).
    • (2004) J Bacteriol , vol.186 , pp. 4457-4465
    • Friedman, L.1    Kolter, R.2
  • 58
    • 3042856626 scopus 로고    scopus 로고
    • Identification of psl, a locus encoding a potential exopolysaccharide that is essential for Pseudomonas aeruginosa PAO1 biofilm formation
    • Jackson KD, Starkey M, Kremer S, Parsek MR and Wozniak DJ, Identification of psl, a locus encoding a potential exopolysaccharide that is essential for Pseudomonas aeruginosa PAO1 biofilm formation. J Bacteriol 186:4466-4475 (2004).
    • (2004) J Bacteriol , vol.186 , pp. 4466-4475
    • Jackson, K.D.1    Starkey, M.2    Kremer, S.3    Parsek, M.R.4    Wozniak, D.J.5
  • 60
    • 68749114023 scopus 로고    scopus 로고
    • Microfabricated microbial fuel cell arrays reveal electrochemically active microbes
    • Hou H, Li L, Cho Y, de Figueiredo P and Han A, Microfabricated microbial fuel cell arrays reveal electrochemically active microbes. PLOS One 4: e6570 (2009).
    • (2009) PLOS One , vol.4
    • Hou, H.1    Li, L.2    Cho, Y.3    de Figueiredo, P.4    Han, A.5
  • 61
    • 84883159361 scopus 로고    scopus 로고
    • Microbial fuel cells for bioenergy and bioproducts
    • ed by Gopalakrishnan K, van Leeuwen J and Brown R. Springer-Verlag, Berlin/New York
    • Zhou M, Jin T, Wu Z, Chi M and Gu T, Microbial fuel cells for bioenergy and bioproducts, in Bioenergy and Bioproducts, ed by Gopalakrishnan K, van Leeuwen J and Brown R. Springer-Verlag, Berlin/New York, 131-172 (2012).
    • (2012) Bioenergy and Bioproducts , pp. 131-172
    • Zhou, M.1    Jin, T.2    Wu, Z.3    Chi, M.4    Gu, T.5
  • 62
    • 77955518655 scopus 로고    scopus 로고
    • Influence of catholyte pH and temperature on hydrogen production from acetate using a two chamber concentric tubular microbial electrolysis cell
    • Kyazze G, Popov A, Dinsdale R, Esteves S, Hawkes F, Premier G and Guwy A, Influence of catholyte pH and temperature on hydrogen production from acetate using a two chamber concentric tubular microbial electrolysis cell. Int J Hydrogen Energy 35:7716-7722 (2010).
    • (2010) Int J Hydrogen Energy , vol.35 , pp. 7716-7722
    • Kyazze, G.1    Popov, A.2    Dinsdale, R.3    Esteves, S.4    Hawkes, F.5    Premier, G.6    Guwy, A.7
  • 63
    • 79959262338 scopus 로고    scopus 로고
    • A method for high throughput bioelectrochemical research based on small scale microbial electrolysis cells
    • Call DF and Logan BE, A method for high throughput bioelectrochemical research based on small scale microbial electrolysis cells. Biosens Bioelectron 26:4526-4531 (2011).
    • (2011) Biosens Bioelectron , vol.26 , pp. 4526-4531
    • Call, D.F.1    Logan, B.E.2
  • 64
    • 51349090905 scopus 로고    scopus 로고
    • Hydrogen production using single-chamber membrane-free microbial electrolysis cells
    • Hu H, Fan Y and Liu H, Hydrogen production using single-chamber membrane-free microbial electrolysis cells. Water Res 42:4172-4178 (2008).
    • (2008) Water Res , vol.42 , pp. 4172-4178
    • Hu, H.1    Fan, Y.2    Liu, H.3
  • 65
    • 58549087922 scopus 로고    scopus 로고
    • High rate membrane-less microbial electrolysis cell for continuous hydrogen production
    • Tartakovsky B, Manuel MF, Wang H and Guiota SR, High rate membrane-less microbial electrolysis cell for continuous hydrogen production. Int J Hydrogen Energy 34:672-677 (2009).
    • (2009) Int J Hydrogen Energy , vol.34 , pp. 672-677
    • Tartakovsky, B.1    Manuel, M.F.2    Wang, H.3    Guiota, S.R.4
  • 66
    • 83955162188 scopus 로고    scopus 로고
    • A membrane-free, continuously feeding, single chamber up-flow biocatalyzed electrolysis reactor for nitrobenzene reduction
    • Wang A, Cui D, Cheng H, Guo Y, Kong F, Ren N and Wu W, A membrane-free, continuously feeding, single chamber up-flow biocatalyzed electrolysis reactor for nitrobenzene reduction. J Hazard Mater 199-200:401-409 (2012).
    • (2012) J Hazard Mater , vol.199-200 , pp. 401-409
    • Wang, A.1    Cui, D.2    Cheng, H.3    Guo, Y.4    Kong, F.5    Ren, N.6    Wu, W.7
  • 67
    • 77955918832 scopus 로고    scopus 로고
    • Multi-electrode continuous flow microbial electrolysis cell for biogas production from acetate
    • Rader GK and Logan BE, Multi-electrode continuous flow microbial electrolysis cell for biogas production from acetate. Int J Hydrogen Energy 35:8848-8854 (2010).
    • (2010) Int J Hydrogen Energy , vol.35 , pp. 8848-8854
    • Rader, G.K.1    Logan, B.E.2
  • 68
    • 77954815756 scopus 로고    scopus 로고
    • Hydrogen production from propionate in a biocatalyzed system with in-situ utilization of the electricity generated from a microbial fuel cell
    • Sun M, Mu Z, Sheng G, Shen N, Tong Z, Wang H and Yu H, Hydrogen production from propionate in a biocatalyzed system with in-situ utilization of the electricity generated from a microbial fuel cell. Int Biodeter Biodegr 64:378-382 (2010).
    • (2010) Int Biodeter Biodegr , vol.64 , pp. 378-382
    • Sun, M.1    Mu, Z.2    Sheng, G.3    Shen, N.4    Tong, Z.5    Wang, H.6    Yu, H.7
  • 69
    • 57949115357 scopus 로고    scopus 로고
    • Hydrogen gas production by electrohydrolysis of volatile fatty acid (VFA) containing dark fermentation effluent
    • Tuna E, Kargi F and Argun H, Hydrogen gas production by electrohydrolysis of volatile fatty acid (VFA) containing dark fermentation effluent. Int J Hydrogen Energy 34:262-269 (2009).
    • (2009) Int J Hydrogen Energy , vol.34 , pp. 262-269
    • Tuna, E.1    Kargi, F.2    Argun, H.3
  • 70
    • 76849084828 scopus 로고    scopus 로고
    • Scaling up microbial fuel cells and other bioelectrochemical systems
    • Logan BE, Scaling up microbial fuel cells and other bioelectrochemical systems. Appl Microbiol Biotechnol 85:1665-1671 (2010).
    • (2010) Appl Microbiol Biotechnol , vol.85 , pp. 1665-1671
    • Logan, B.E.1
  • 72
    • 0038546460 scopus 로고    scopus 로고
    • A novel electrochemically active and Fe(III)-reducing bacterium phylogenetically related to Aeromonas hydrophila, isolated from a microbial fuel cell
    • Pham CA, Jung SJ, Phung NT, Lee J, Chang IS, Kim BH, Yi H and Chun J, A novel electrochemically active and Fe(III)-reducing bacterium phylogenetically related to Aeromonas hydrophila, isolated from a microbial fuel cell. FEMS Microbiol Lett 223:129-134 (2003).
    • (2003) FEMS Microbiol Lett , vol.223 , pp. 129-134
    • Pham, C.A.1    Jung, S.J.2    Phung, N.T.3    Lee, J.4    Chang, I.S.5    Kim, B.H.6    Yi, H.7    Chun, J.8
  • 73
    • 18844451775 scopus 로고    scopus 로고
    • Electricity generation using membrane and salt bridge microbial fuel cells
    • Min B, Cheng S and Logan BE, Electricity generation using membrane and salt bridge microbial fuel cells. Water Res 39:1675-1686 (2005).
    • (2005) Water Res , vol.39 , pp. 1675-1686
    • Min, B.1    Cheng, S.2    Logan, B.E.3
  • 74
    • 0141542682 scopus 로고    scopus 로고
    • Electricity generation by direct oxidation of glucose in mediatorless microbial fuel cells
    • Chaudhuri SK and Lovley DR. Electricity generation by direct oxidation of glucose in mediatorless microbial fuel cells. Nat Biotechnol 21:1229-1232 (2003).
    • (2003) Nat Biotechnol , vol.21 , pp. 1229-1232
    • Chaudhuri, S.K.1    Lovley, D.R.2
  • 76
    • 0008049769 scopus 로고    scopus 로고
    • Electricity generation in microbial fuel cells using neutral red as an electronophore
    • Park DH and Zeikus JG, Electricity generation in microbial fuel cells using neutral red as an electronophore. Appl Environ Microbiol 66:1292-1297 (2000).
    • (2000) Appl Environ Microbiol , vol.66 , pp. 1292-1297
    • Park, D.H.1    Zeikus, J.G.2
  • 77
    • 0032904869 scopus 로고    scopus 로고
    • Utilization of electrically reduced neutral red by Actinobacillus succinogenes: physiological function of neutral red in membrane-driven fumarate reduction and energy conservation
    • Park DH and Zeikus JG, Utilization of electrically reduced neutral red by Actinobacillus succinogenes: physiological function of neutral red in membrane-driven fumarate reduction and energy conservation. J Bacteriol 181:2403-2410 (1999).
    • (1999) J Bacteriol , vol.181 , pp. 2403-2410
    • Park, D.H.1    Zeikus, J.G.2
  • 79
    • 0021799472 scopus 로고
    • Glucose metabolism in a microbial fuel cell. Stoichiometry of product formation in a thionine-mediated Proteus vulgaris fuel cell and its relation to Coulombic yields
    • Thurston CF, Bennetto HP, Delaney GM, Mason JR, Roller SD and Stirling JL, Glucose metabolism in a microbial fuel cell. Stoichiometry of product formation in a thionine-mediated Proteus vulgaris fuel cell and its relation to Coulombic yields. J Gen Microbiol 131:1393-1401 (1985).
    • (1985) J Gen Microbiol , vol.131 , pp. 1393-1401
    • Thurston, C.F.1    Bennetto, H.P.2    Delaney, G.M.3    Mason, J.R.4    Roller, S.D.5    Stirling, J.L.6
  • 82
    • 34648831248 scopus 로고    scopus 로고
    • Qualitative and quantitative determination of a humic model compound in microbial cultures by cyclic voltammetry
    • Cadena A, Texier AC, Gonzalez I, Cervantes FJ and Gomez J, Qualitative and quantitative determination of a humic model compound in microbial cultures by cyclic voltammetry. Environ Technol 28:1035-1044 (2007).
    • (2007) Environ Technol , vol.28 , pp. 1035-1044
    • Cadena, A.1    Texier, A.C.2    Gonzalez, I.3    Cervantes, F.J.4    Gomez, J.5
  • 84
    • 70549089986 scopus 로고    scopus 로고
    • Electron transfer pathways in microbial oxygen biocathodes
    • Freguia S, Tsujimura S and Kano K, Electron transfer pathways in microbial oxygen biocathodes. Electrochim Acta 55:813-818 (2010).
    • (2010) Electrochim Acta , vol.55 , pp. 813-818
    • Freguia, S.1    Tsujimura, S.2    Kano, K.3
  • 85
    • 0000853670 scopus 로고
    • Localization of cytochromes in the outer membrane of Desulfovibrio vulgaris (Hildenborough) and their role in anaerobic biocorrosion
    • Kloeke FV, Bryant RD and Laishley EJ, Localization of cytochromes in the outer membrane of Desulfovibrio vulgaris (Hildenborough) and their role in anaerobic biocorrosion. Anaerobe 1:351-358 (1995).
    • (1995) Anaerobe , vol.1 , pp. 351-358
    • Kloeke, F.V.1    Bryant, R.D.2    Laishley, E.J.3
  • 86
    • 0017616853 scopus 로고
    • Sites and specificity of reaction of bipyridylium compounds with anaerobic respiratory enzymes of Escherichia coli - effects of permeability barriers imposed by cytoplasmic membrane
    • Jones RW and Garland PB, Sites and specificity of reaction of bipyridylium compounds with anaerobic respiratory enzymes of Escherichia coli - effects of permeability barriers imposed by cytoplasmic membrane. Biochem J 164:199-211 (1977).
    • (1977) Biochem J , vol.164 , pp. 199-211
    • Jones, R.W.1    Garland, P.B.2
  • 87
    • 39149116016 scopus 로고    scopus 로고
    • 2 production in the fermentative pure culture Clostridium beijerinckii
    • 2 production in the fermentative pure culture Clostridium beijerinckii. Curr Microbiol 56:268-273 (2008).
    • (2008) Curr Microbiol , vol.56 , pp. 268-273
    • Hatch, J.L.1    Finneran, K.T.2
  • 88
    • 76449116222 scopus 로고    scopus 로고
    • Quorum sensing regulates electric current generation of Pseudomonas aeruginosa PA14 in bioelectrochemical systems
    • Venkataraman A, Rosenbaum M, Arends JBA, Halitsche R and Angenent LT, Quorum sensing regulates electric current generation of Pseudomonas aeruginosa PA14 in bioelectrochemical systems. Electrochem Commun 12:459-462 (2010).
    • (2010) Electrochem Commun , vol.12 , pp. 459-462
    • Venkataraman, A.1    Rosenbaum, M.2    Arends, J.B.A.3    Halitsche, R.4    Angenent, L.T.5
  • 90
    • 71549134021 scopus 로고    scopus 로고
    • Improving power production in acetate-fed microbial fuel cells via enrichment of exoelectrogenic organisms in flow-through systems
    • Borole AP, Hamilton CY, Vishnivetskaya T, Leak D and Andras C, Improving power production in acetate-fed microbial fuel cells via enrichment of exoelectrogenic organisms in flow-through systems. Biochem Eng J 48:71-80 (2009).
    • (2009) Biochem Eng J , vol.48 , pp. 71-80
    • Borole, A.P.1    Hamilton, C.Y.2    Vishnivetskaya, T.3    Leak, D.4    Andras, C.5
  • 91
    • 84860427242 scopus 로고    scopus 로고
    • Removal and recovery of phosphorus as struvite from swine wastewater using microbial fuel cell
    • Ichihashi O and Hirooka K, Removal and recovery of phosphorus as struvite from swine wastewater using microbial fuel cell. Bioresource Technol 114:303-307 (2012).
    • (2012) Bioresource Technol , vol.114 , pp. 303-307
    • Ichihashi, O.1    Hirooka, K.2
  • 92
    • 79957448939 scopus 로고    scopus 로고
    • Treatment of cassava mill wastewater and production of electricity through microbial fuel cell technology
    • Kaewkannetra P, Chiwes W and Chiu TY, Treatment of cassava mill wastewater and production of electricity through microbial fuel cell technology. Fuel 90:2746-2750 (2011).
    • (2011) Fuel , vol.90 , pp. 2746-2750
    • Kaewkannetra, P.1    Chiwes, W.2    Chiu, T.Y.3
  • 93
    • 84866451194 scopus 로고    scopus 로고
    • Electricity generation using eight amino acids by air-cathode microbial fuel cells
    • Yang Q, Feng Y, Wang X, Lee H, Liu J, Shi X, Qu Y and Ren N, Electricity generation using eight amino acids by air-cathode microbial fuel cells. Fuel 102:478-482 (2012).
    • (2012) Fuel , vol.102 , pp. 478-482
    • Yang, Q.1    Feng, Y.2    Wang, X.3    Lee, H.4    Liu, J.5    Shi, X.6    Qu, Y.7    Ren, N.8
  • 95
    • 69549109859 scopus 로고    scopus 로고
    • Efficient hydrogen peroxide generation from organic matter in a bioelectrochemical system
    • Rozendal RA, Leone E, Keller J and Rabaey K, Efficient hydrogen peroxide generation from organic matter in a bioelectrochemical system. Electrochem Commun 11:1752-1755 (2009).
    • (2009) Electrochem Commun , vol.11 , pp. 1752-1755
    • Rozendal, R.A.1    Leone, E.2    Keller, J.3    Rabaey, K.4
  • 96
    • 80052479451 scopus 로고    scopus 로고
    • Electrochemically assisted methane production in a biofilm reactor
    • Villano M, Monaco G, Aulenta F and Majone M, Electrochemically assisted methane production in a biofilm reactor. J Power Sources 196:9467-9472 (2011).
    • (2011) J Power Sources , vol.196 , pp. 9467-9472
    • Villano, M.1    Monaco, G.2    Aulenta, F.3    Majone, M.4
  • 97
    • 62949091234 scopus 로고    scopus 로고
    • Methanogenesis in membraneless microbial electrolysis cells
    • Clauwaert P and Verstraete W, Methanogenesis in membraneless microbial electrolysis cells. Appl Microbiol Biotechnol 82:829-836 (2009).
    • (2009) Appl Microbiol Biotechnol , vol.82 , pp. 829-836
    • Clauwaert, P.1    Verstraete, W.2
  • 98
    • 77957335505 scopus 로고    scopus 로고
    • Pre-acclimation of a wastewater inoculum to cellulose in an aqueous-cathode MEC improves power generation in air-cathode MFCs
    • Cheng S, Kiely P and Logan BE, Pre-acclimation of a wastewater inoculum to cellulose in an aqueous-cathode MEC improves power generation in air-cathode MFCs. Bioresource Technol 102:367-371 (2011).
    • (2011) Bioresource Technol , vol.102 , pp. 367-371
    • Cheng, S.1    Kiely, P.2    Logan, B.E.3
  • 100
    • 84857082945 scopus 로고    scopus 로고
    • Dissimilatory reduction of extracellular electron acceptors in anaerobic respiration
    • Richter K, Schicklberger M and Gescher J, Dissimilatory reduction of extracellular electron acceptors in anaerobic respiration. Appl Environ Microbiol 78:913-921 (2012).
    • (2012) Appl Environ Microbiol , vol.78 , pp. 913-921
    • Richter, K.1    Schicklberger, M.2    Gescher, J.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.