메뉴 건너뛰기




Volumn 13, Issue 1, 2013, Pages 3-12

Automatic and parallel optimized learning for neural networks performing MIMO applications

Author keywords

[No Author keywords available]

Indexed keywords


EID: 84875323616     PISSN: 15827445     EISSN: 18447600     Source Type: Journal    
DOI: 10.4316/AECE.2013.01001     Document Type: Article
Times cited : (43)

References (28)
  • 2
    • 68449092482 scopus 로고    scopus 로고
    • Infinite-Mode Networks for Motion Control
    • August
    • B. Yalcin, K. Ohnishi, "Infinite-Mode Networks for Motion Control", IEEE Transactions on Ind. Elect., vol. 56, no. 8, August (2009), pp. 2933-2944.
    • (2009) IEEE Transactions on Ind. Elect. , vol.56 , Issue.8 , pp. 2933-2944
    • Yalcin, B.1    Ohnishi, K.2
  • 3
    • 2342620867 scopus 로고    scopus 로고
    • A neural network approach for the differentiation of numerical solutions of 3-D electromagnetic problems
    • G. Capizzi, S. Coco, C. Giuffrida, A. Laudani, "A neural network approach for the differentiation of numerical solutions of 3-D electromagnetic problems", IEEE Trans. on Magnetics, Vol. 40, No. 2, pp. 953-956, 2004
    • (2004) IEEE Trans. on Magnetics , vol.40 , Issue.2 , pp. 953-956
    • Capizzi, G.1    Coco, S.2    Giuffrida, C.3    Laudani, A.4
  • 4
    • 70350542357 scopus 로고    scopus 로고
    • Using Pattern Classification and Recognition Techniques for Diagnostic and Prediction
    • N. Morariu, S. Vlad, "Using Pattern Classification and Recognition Techniques for Diagnostic and Prediction," Advances in Electrical and Computer Engineering, vol. 7, no. 1, pp. 63-67, 2007.
    • (2007) Advances in Electrical and Computer Engineering , vol.7 , Issue.1 , pp. 63-67
    • Morariu, N.1    Vlad, S.2
  • 8
    • 84875343885 scopus 로고    scopus 로고
    • Identification Based on Layered Multi-subnet Neural Networks
    • on Intelligent Networks and Intelligent Systems. 1-3 November, Tianjin, China
    • L. Jianyo, L. Yongchun, B. Jianpeng, S. Xiaoyun, L. Aihua. Flaw, "Identification Based on Layered Multi-subnet Neural Networks", Proceedings of Second Int. Conf. on Intelligent Networks and Intelligent Systems. 1-3 November (2009). Tianjin, China, pp.118128.
    • (2009) Proceedings of Second Int. Conf , pp. 118128
    • Jianyo, L.1    Yongchun, L.2    Jianpeng, B.3    Xiaoyun, S.4    Flaw, L.A.5
  • 9
    • 34247279650 scopus 로고    scopus 로고
    • Largescale Artificial Neural Network Owning Function Subnet
    • June 25-28, Luoyang, China
    • A. Sun, A. Zhang, Y. Wang., "Largescale Artificial Neural Network Owning Function Subnet", Proceedings of 2006 IEEE Int. Conf. on Mechat. and Autom. June 25-28, (2006), Luoyang, China, pp. 2465-2470.
    • (2006) Proceedings of 2006 IEEE Int. Conf. on Mechat. and Autom , pp. 2465-2470
    • Sun, A.1    Zhang, A.2    Wang, Y.3
  • 11
    • 75449086085 scopus 로고    scopus 로고
    • High-Dimensional Neural-Network Technique and Applications to Microwave Filter Modeling
    • January
    • H. Kabir, Y. Wang, M. Yu and Q. J. Zhang, "High-Dimensional Neural-Network Technique and Applications to Microwave Filter Modeling", IEEE Trans on Micr. Theory and Tech., vol. 58, no. 1, January (2010), pp. 145-156.
    • (2010) IEEE Trans on Micr. Theory and Tech. , vol.58 , Issue.1 , pp. 145-156
    • Kabir, H.1    Wang, Y.2    Yu, M.3    Zhang, Q.J.4
  • 12
    • 84856394102 scopus 로고    scopus 로고
    • Neural Network Approach for Modelling Hysteretic Magnetic Materials under Distorted Excitations
    • F. Riganti Fulginei, A. Salvini, "Neural Network Approach for Modelling Hysteretic Magnetic Materials under Distorted Excitations", IEEE Transactions On Magnetics, vol. 48, p. 307 -310, 2012.
    • (2012) IEEE Transactions On Magnetics , vol.48
    • Fulginei, F.R.1    Salvini, A.2
  • 13
    • 0038182194 scopus 로고    scopus 로고
    • A Neuro-Genetic and Time-Frequency Approach Macromodeling Dynamic Hysteresis in Harmonic Regime
    • F. Riganti Fulginei, A. Salvini, C. Coltelli, "A Neuro-Genetic and Time-Frequency Approach Macromodeling Dynamic Hysteresis in Harmonic Regime", IEEE Transactions On Magnetics, vol. 39, p. 1401-1404, 2003.
    • (2003) IEEE Transactions On Magnetics , vol.39 , pp. 1401-1404
    • Riganti Fulginei, F.1    Salvini, A.2    Coltelli, C.3
  • 14
    • 29644438181 scopus 로고    scopus 로고
    • Singular Value Decomposition Learning On Double Stiefel Manifold
    • World Sci. Pub.Comp.
    • S. Fiori, Singular Value Decomposition Learning On Double Stiefel Manifold, Int.Journal of Neural Sys., Vol. 13, No. 2 (2003) World Sci. Pub.Comp. pp. 1-16.
    • (2003) Int.Journal of Neural Sys. , vol.13 , Issue.2 , pp. 1-16
    • Fiori, S.1
  • 15
    • 77749317296 scopus 로고    scopus 로고
    • Training Single Hidden Layer Feedforward Neural Networks by Singular Value Decomposition
    • Inf. Tech. 30 November -2 December Seoul, Korea
    • H. Trung Huynh, Y. Won, "Training Single Hidden Layer Feedforward Neural Networks by Singular Value Decomposition", Proceedings of 2009 Fourth Int. Conf. on Comp. Scie. and Conv. Inf. Tech. 30 November -2 December Seoul, Korea. pp. 1300-1304.
    • Proceedings of 2009 Fourth Int. Conf. on Comp. Scie. and Conv , pp. 1300-1304
    • Trung Huynh, H.1    Won, Y.2
  • 16
    • 0026953147 scopus 로고
    • Neural Subnet Design by Direct Polynomial Mapping
    • November
    • K. Rohani, M.S. Chen, M. T. Manry, "Neural Subnet Design by Direct Polynomial Mapping", IEEE Trans. on Neural Net., vol. 3, no. 6, November (1992). pp. 1024-1026.
    • (1992) IEEE Trans. on Neural Net. , vol.3 , Issue.6 , pp. 1024-1026
    • Rohani, K.1    Chen, M.S.2    Manry, M.T.3
  • 17
    • 84858644534 scopus 로고    scopus 로고
    • Learning Optimization Of Neural Networks Used For Mimo Applications Based On Multivariate Functions Decomposition
    • F. Riganti Fulginei, A. Salvini, M. Parodi, "Learning Optimization Of Neural Networks Used For Mimo Applications Based On Multivariate Functions Decomposition". Inverse Problems In Science & Engineering, vol. 20, p. 29-39, 2012
    • (2012) Inverse Problems In Science & Engineering , vol.20 , pp. 29-39
    • Fulginei, F.R.1    Salvini, A.2    Parodi, M.3
  • 18
    • 33751318064 scopus 로고    scopus 로고
    • Neural networks and seasonality: Some technical considerations
    • B. Curry, "Neural networks and seasonality: Some technical considerations", European Journal of Operational Research vol. 179, pp. 267-274, 2007.
    • (2007) European Journal of Operational Research , vol.179 , pp. 267-274
    • Curry, B.1
  • 19
    • 37849189858 scopus 로고    scopus 로고
    • Estimating the number of hidden neurons in a feedforward network using the singular value decomposition
    • E. J. Teoh, K. C. Tan, C. Xiang, "Estimating the number of hidden neurons in a feedforward network using the singular value decomposition", IEEE Trans. on Neural Networks, vol. 17, no. 6, pp. 1623-1629, nov. 2006.
    • (2006) IEEE Trans. on Neural Networks , vol.17 , Issue.6 , pp. 1623-1629
    • Teoh, E.J.1    Tan, K.C.2    Xiang, C.3
  • 20
    • 0028516118 scopus 로고
    • Optimal feed-forward neural network architectures
    • October
    • G. Bebis, M. Georgiopoulos, "Optimal feed-forward neural network architectures", IEEE Potentials, October 1994, pp. 27-31.
    • (1994) IEEE Potentials , pp. 27-31
    • Bebis, G.1    Georgiopoulos, M.2
  • 21
    • 77955635511 scopus 로고    scopus 로고
    • Training Neural Networks Using Input Data Characteristics
    • C. Cernazanu, "Training Neural Networks Using Input Data Characteristics," Advances in Electrical and Computer Engineering, vol. 8, no. 2, pp. 65-70, 2008.
    • (2008) Advances in Electrical and Computer Engineering , vol.8 , Issue.2 , pp. 65-70
    • Cernazanu, C.1
  • 23
    • 0027662338 scopus 로고
    • Pruning algorithms-A review
    • R. Reed, "Pruning algorithms-A review," IEEE Trans. Neural Networks, vol. 4, pp. 740-747, 1993.
    • (1993) IEEE Trans. Neural Networks , vol.4 , pp. 740-747
    • Reed, R.1
  • 24
    • 0031146959 scopus 로고    scopus 로고
    • Constructive algorithms for structure learning in feedforward neural networks for regression problems
    • T. Kwok, D. Yeung, "Constructive algorithms for structure learning in feedforward neural networks for regression problems," IEEE Trans. Neural Networks, vol. 8, n. 3, pp. 630-645, May 1997 .
    • (1997) IEEE Trans. Neural Networks , vol.8 , Issue.3 , pp. 630-645
    • Kwok, T.1    Yeung, D.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.