메뉴 건너뛰기




Volumn 179, Issue 1, 2007, Pages 267-274

Neural networks and seasonality: Some technical considerations

Author keywords

Approximation; Autoregressive models; Neural networks; Seasonality; Sinusoid

Indexed keywords

APPROXIMATION THEORY; ERROR ANALYSIS; MATHEMATICAL MODELS; NUMERICAL ANALYSIS; OPERATIONS RESEARCH;

EID: 33751318064     PISSN: 03772217     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.ejor.2006.03.012     Document Type: Article
Times cited : (14)

References (18)
  • 1
    • 0027599793 scopus 로고
    • Universal approximation bounds for superposition of a sigmoidal function
    • Barron A.R. Universal approximation bounds for superposition of a sigmoidal function. IEEE Transactions on Information Theory 39 (1993) 930-945
    • (1993) IEEE Transactions on Information Theory , vol.39 , pp. 930-945
    • Barron, A.R.1
  • 3
    • 33751346352 scopus 로고    scopus 로고
    • Crone, S.V., 2005. A new perspective on forecasting seasonal time series with artificial neural networks. In: 25th International Symposium on Forecasting, San Antonio, Texas.
  • 4
    • 33751327980 scopus 로고    scopus 로고
    • Curry, B., 2006. Parameter redundancy in neural networks: An application of Chebyshev Polynomials. Computational Management Science, in press.
  • 5
    • 26844455787 scopus 로고    scopus 로고
    • Model selection in neural networks: Some difficulties
    • Curry B., and Morgan P.H. Model selection in neural networks: Some difficulties. European Journal of Operational Research 170 2 (2006) 567-577
    • (2006) European Journal of Operational Research , vol.170 , Issue.2 , pp. 567-577
    • Curry, B.1    Morgan, P.H.2
  • 6
    • 21644481214 scopus 로고    scopus 로고
    • Neural networks, linear functions and neglected non linearity
    • Curry B., and Morgan P.H. Neural networks, linear functions and neglected non linearity. Computational Management Science 1 1 (2004) 17-30
    • (2004) Computational Management Science , vol.1 , Issue.1 , pp. 17-30
    • Curry, B.1    Morgan, P.H.2
  • 7
    • 33751338221 scopus 로고    scopus 로고
    • Dhawan, R., O'Connor, M., 2005. Time series forecasting competition: A multi-network approach. In: 25th International Symposium on Forecasting, San Antonio, Texas.
  • 8
    • 0024124325 scopus 로고    scopus 로고
    • Gallant, A.R., White, H., 1988. There exists a neural network that does not make avoidable mistakes. In: IEEE Second International Conference on Neural Networks, San Diego, vol. I, pp. 593-608.
  • 10
    • 0024880831 scopus 로고
    • Multilayer feedforward networks are universal approximators
    • Hornik K., Stinchcombe M., and White H. Multilayer feedforward networks are universal approximators. Neural Networks 2 (1989) 359-366
    • (1989) Neural Networks , vol.2 , pp. 359-366
    • Hornik, K.1    Stinchcombe, M.2    White, H.3
  • 11
    • 0026627415 scopus 로고
    • Kolmogorov's theorem and multilayer neural networks
    • Kurkova V. Kolmogorov's theorem and multilayer neural networks. Neural Networks 5 (1992) 501-506
    • (1992) Neural Networks , vol.5 , pp. 501-506
    • Kurkova, V.1
  • 12
    • 0000358945 scopus 로고
    • Approximation by superposition of sigmoidal and radial basis functions
    • Mhaskar H., and Miccelli C. Approximation by superposition of sigmoidal and radial basis functions. Advances in Applied Mathematics 13 (1992) 350-373
    • (1992) Advances in Applied Mathematics , vol.13 , pp. 350-373
    • Mhaskar, H.1    Miccelli, C.2
  • 13
    • 0032648867 scopus 로고    scopus 로고
    • Comparing neural network approximations for different functional forms
    • Morgan P., Curry B., and Beynon M. Comparing neural network approximations for different functional forms. Expert Systems 16 (1999) 2
    • (1999) Expert Systems , vol.16 , pp. 2
    • Morgan, P.1    Curry, B.2    Beynon, M.3
  • 14
    • 0345195977 scopus 로고    scopus 로고
    • Universal approximation using feedforward neural networks: A survey of some existing methods, and some new results
    • Scarselli F., and Tsoi A.C. Universal approximation using feedforward neural networks: A survey of some existing methods, and some new results. Neural Networks 11 1 (1998) 15-37
    • (1998) Neural Networks , vol.11 , Issue.1 , pp. 15-37
    • Scarselli, F.1    Tsoi, A.C.2
  • 15
    • 0036825795 scopus 로고    scopus 로고
    • Local stability of recurrent networks with time-varying weights and inputs
    • Steil J.J. Local stability of recurrent networks with time-varying weights and inputs. Neurocomputing 48 1-4 (2002) 39-51
    • (2002) Neurocomputing , vol.48 , Issue.1-4 , pp. 39-51
    • Steil, J.J.1
  • 16
    • 0031100287 scopus 로고    scopus 로고
    • Capabilities of a four layered feedforward neural network: Four layers versus three
    • Tamura S., and Tateishi M. Capabilities of a four layered feedforward neural network: Four layers versus three. IEEE Transactions on Neural Networks 8 2 (1997)
    • (1997) IEEE Transactions on Neural Networks , vol.8 , Issue.2
    • Tamura, S.1    Tateishi, M.2
  • 18
    • 4344591889 scopus 로고    scopus 로고
    • Neural network forecasting for seasonal and trend time series
    • Zhang G.P., and Qi M. Neural network forecasting for seasonal and trend time series. European Journal of Operational Research 160 (2005) 501-514
    • (2005) European Journal of Operational Research , vol.160 , pp. 501-514
    • Zhang, G.P.1    Qi, M.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.