메뉴 건너뛰기




Volumn 13, Issue 3, 2003, Pages 155-170

Singular value decomposition learning on double Stiefel manifold

Author keywords

Differential geometry; Lyapunov stability; Orthogonal matrix group; Singular value decomposition; Stiefel manifold

Indexed keywords


EID: 29644438181     PISSN: 01290657     EISSN: None     Source Type: Journal    
DOI: 10.1142/S0129065703001406     Document Type: Article
Times cited : (19)

References (33)
  • 1
    • 0000396062 scopus 로고    scopus 로고
    • Natural gradient works efficiently in learning
    • S.-I. Amari 1998, "Natural gradient works efficiently in learning," Neural Computation 10, 251-276.
    • (1998) Neural Computation , vol.10 , pp. 251-276
    • Amari, S.-I.1
  • 2
    • 0024220237 scopus 로고
    • Auto-association by multilayer perceptrons and singular value decomposition
    • H. Bourlard and Y. Kamp 1988, "Auto-association by multilayer perceptrons and singular value decomposition," Biological Cybernetics 59, 291-294.
    • (1988) Biological Cybernetics , vol.59 , pp. 291-294
    • Bourlard, H.1    Kamp, Y.2
  • 3
    • 0002412868 scopus 로고
    • Dynamical systems that sort lists, diagonalize matrices and solve linear programming problems
    • R. W. Brockett 1991, "Dynamical systems that sort lists, diagonalize matrices and solve linear programming problems," Linear Algebra and Its Applications 146, 79-91.
    • (1991) Linear Algebra and Its Applications , vol.146 , pp. 79-91
    • Brockett, R.W.1
  • 4
    • 0345627997 scopus 로고    scopus 로고
    • A unified algorithm for principal and minor component extraction
    • T.-P. Chen, S.-I. Amari and Q. Lin 1998, "A unified algorithm for principal and minor component extraction," Neural Networks 11, 385-390.
    • (1998) Neural Networks , vol.11 , pp. 385-390
    • Chen, T.-P.1    Amari, S.-I.2    Lin, Q.3
  • 5
    • 0000275748 scopus 로고
    • Neural networks for computing eigenvalues and eigenvectors
    • A. Cichocki and R. Unbehauen 1992, "Neural networks for computing eigenvalues and eigenvectors," Biological Cybernetics 68, 155-164.
    • (1992) Biological Cybernetics , vol.68 , pp. 155-164
    • Cichocki, A.1    Unbehauen, R.2
  • 7
    • 0004197034 scopus 로고
    • E. F. Deprette ed, Amsterdam, Elsevier Science
    • E. F. Deprette (ed.) 1988, SVD and Signal Processing (Amsterdam, Elsevier Science).
    • (1988) SVD and Signal Processing
  • 9
    • 0001586142 scopus 로고    scopus 로고
    • A theory for learning by weight flow on Stiefel-Grassman manifold
    • S. Fiori 2001, "A theory for learning by weight flow on Stiefel-Grassman manifold," Neural Computation 13(7), 1625-1647.
    • (2001) Neural Computation , vol.13 , Issue.7 , pp. 1625-1647
    • Fiori, S.1
  • 10
    • 0036565608 scopus 로고    scopus 로고
    • A theory for learning based on rigid bodies dynamics
    • S. Fiori 2002, "A theory for learning based on rigid bodies dynamics," IEEE Trans. on Neural Networks 13(3), 521-531.
    • (2002) IEEE Trans. on Neural Networks , vol.13 , Issue.3 , pp. 521-531
    • Fiori, S.1
  • 11
    • 0036609503 scopus 로고    scopus 로고
    • Complex-weighted one-unit 'Rigid-Bodies' learning rule for independent component analysis
    • S. Fiori 2002, "Complex-weighted one-unit 'Rigid-Bodies' learning rule for independent component analysis," Neural Processing Letters 15(3), 275-282.
    • (2002) Neural Processing Letters , vol.15 , Issue.3 , pp. 275-282
    • Fiori, S.1
  • 12
    • 0347651064 scopus 로고    scopus 로고
    • Unsupervised neural learning on Lie group
    • S. Fiori 2002, "Unsupervised neural learning on Lie group," International Journal of Neural Systems 12(3 & 4), 219-246.
    • (2002) International Journal of Neural Systems , vol.12 , Issue.3 4 , pp. 219-246
    • Fiori, S.1
  • 13
    • 0742301701 scopus 로고    scopus 로고
    • A minor subspace algorithm based on neural Stiefel dynamics
    • S. Fiori, "A minor subspace algorithm based on neural Stiefel dynamics," International Journal of Neural Systems 12(5), 339-350.
    • International Journal of Neural Systems , vol.12 , Issue.5 , pp. 339-350
    • Fiori, S.1
  • 15
  • 18
    • 0001065120 scopus 로고
    • Singular value decomposition via gradient and self-equivalent flows
    • U. Helmke and J. B. Moore 1992, "Singular value decomposition via gradient and self-equivalent flows," Linear Algebra and its Applications 169, 223-248.
    • (1992) Linear Algebra and its Applications , vol.169 , pp. 223-248
    • Helmke, U.1    Moore, J.B.2
  • 22
    • 0025218170 scopus 로고
    • Design of two-dimensional FIR digital filters by using the singular value decomposition
    • W.-S. Lu, H.-P. Wang and A. Antoniou 1990, "Design of two-dimensional FIR digital filters by using the singular value decomposition," IEEE Trans. on Circuits and Systems CAS-37, 35-46.
    • (1990) IEEE Trans. on Circuits and Systems , vol.CAS-37 , pp. 35-46
    • Lu, W.-S.1    Wang, H.-P.2    Antoniou, A.3
  • 24
    • 0019533482 scopus 로고
    • Principal component analysis in linear systems: Controllability, observability and model reduction
    • B. C. Moore 1981, "Principal component analysis in linear systems: Controllability, observability and model reduction," IEEE Trans. on Automatic Control AC-26(1), 17-31.
    • (1981) IEEE Trans. on Automatic Control , vol.AC-26 , Issue.1 , pp. 17-31
    • Moore, B.C.1
  • 25
    • 0038361429 scopus 로고    scopus 로고
    • Probabilistic estimation of optical flow in multiple band-pass directional channels
    • O. Nestares and R. Navarro 2001, "Probabilistic estimation of optical flow in multiple band-pass directional channels," Image and Vision Computing Journal 19(6), 339-351.
    • (2001) Image and Vision Computing Journal , vol.19 , Issue.6 , pp. 339-351
    • Nestares, O.1    Navarro, R.2
  • 26
    • 0002399288 scopus 로고    scopus 로고
    • Neural networks, principal components and subspaces
    • E. Oja, "Neural networks, principal components and subspaces," International Journal of Neural System 1, 61-68.
    • International Journal of Neural System , vol.1 , pp. 61-68
    • Oja, E.1
  • 27
    • 85038786787 scopus 로고    scopus 로고
    • T. D. Sanger 1994, Two iterative algorithms for computing the singular value decomposition from input/output samples, in J. D. Cowan, G. Tesauro and J. Alspector (eds), Morgan-Kauffman Publishers Inc., Advances in Neural Processing Systems 6, 1441-151.
    • T. D. Sanger 1994, "Two iterative algorithms for computing the singular value decomposition from input/output samples," in J. D. Cowan, G. Tesauro and J. Alspector (eds), Morgan-Kauffman Publishers Inc., Advances in Neural Processing Systems 6, 1441-151.
  • 28
    • 0035666428 scopus 로고    scopus 로고
    • Improved RAN sequential prediction using orthogonal techniques
    • M. Salmeron, J. Ortega, C. G. Puntonet and A. Prieto 2001, "Improved RAN sequential prediction using orthogonal techniques," Neurocomputing 41(1-4), 153-172.
    • (2001) Neurocomputing , vol.41 , Issue.1-4 , pp. 153-172
    • Salmeron, M.1    Ortega, J.2    Puntonet, C.G.3    Prieto, A.4
  • 29
    • 0043156303 scopus 로고
    • On the finite escape phenomena for matrix Riccati equations
    • T. Sasagawa 1982, "On the finite escape phenomena for matrix Riccati equations," IEEE Trans. on Automatic Control AC-27(4), 977-979.
    • (1982) IEEE Trans. on Automatic Control , vol.AC-27 , Issue.4 , pp. 977-979
    • Sasagawa, T.1
  • 30
    • 0026151838 scopus 로고
    • Dynamic system that perform the SVD
    • S. T. Smith 1991, "Dynamic system that perform the SVD," Systems and Control Letters 15, 319-327.
    • (1991) Systems and Control Letters , vol.15 , pp. 319-327
    • Smith, S.T.1
  • 32
    • 0031169660 scopus 로고    scopus 로고
    • SVD algorithms: APEX-like versus subspace methods
    • A. Weingessel and K. Hornik 1997, "SVD algorithms: APEX-like versus subspace methods," Neural Processing Letters 5, 177-184.
    • (1997) Neural Processing Letters , vol.5 , pp. 177-184
    • Weingessel, A.1    Hornik, K.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.