메뉴 건너뛰기




Volumn 68, Issue 4, 2013, Pages 778-785

Mechanisms of azole resistance in 52 clinical isolates of Candida tropicalis in China

Author keywords

Antifungals; Erg11; Ergosterol

Indexed keywords

ANTIFUNGAL AGENT; ERGOSTEROL; FLUCONAZOLE; FUNGAL PROTEIN; ITRACONAZOLE; MESSENGER RNA; MULTIDRUG RESISTANCE PROTEIN 1; PROTEIN CDR1; PROTEIN ERG11; PYRROLE; RHODAMINE 123; RHODAMINE 6G; UNCLASSIFIED DRUG; VORICONAZOLE;

EID: 84875276783     PISSN: 03057453     EISSN: 14602091     Source Type: Journal    
DOI: 10.1093/jac/dks481     Document Type: Article
Times cited : (125)

References (29)
  • 1
    • 33846466508 scopus 로고    scopus 로고
    • Epidemiology of invasive candidiasis: a persistent public health problem
    • Pfaller MA, Diekema DJ. Epidemiology of invasive candidiasis: a persistent public health problem. Clin Microbiol Rev 2007; 21: 133-63.
    • (2007) Clin Microbiol Rev , vol.21 , pp. 133-163
    • Pfaller, M.A.1    Diekema, D.J.2
  • 2
    • 0035889586 scopus 로고    scopus 로고
    • Risk factors for Candida tropicalis fungemia in patients with cancer
    • Kontoyiannis DP, Vaziri I, Hanna HA et al. Risk factors for Candida tropicalis fungemia in patients with cancer. Clin Infect Dis 2001; 33: 1676-81.
    • (2001) Clin Infect Dis , vol.33 , pp. 1676-1681
    • Kontoyiannis, D.P.1    Vaziri, I.2    Hanna, H.A.3
  • 3
    • 77955295116 scopus 로고    scopus 로고
    • Candida tropicalis: its prevalence, pathogenicity and increasing resistance to fluconazole
    • Kothavade RJ, Kura MM, Valand AG et al. Candida tropicalis: its prevalence, pathogenicity and increasing resistance to fluconazole. J Med Microbiol 2010; 59: 873-80.
    • (2010) J Med Microbiol , vol.59 , pp. 873-880
    • Kothavade, R.J.1    Kura, M.M.2    Valand, A.G.3
  • 4
    • 0033955216 scopus 로고    scopus 로고
    • Candidemia in allogeneic blood and marrow transplant recipients: evolution of risk factors after the adoption of prophylactic fluconazole
    • Marr KA, Seidel K, White TC et al. Candidemia in allogeneic blood and marrow transplant recipients: evolution of risk factors after the adoption of prophylactic fluconazole. J Infect Dis 2000; 181: 309-16.
    • (2000) J Infect Dis , vol.181 , pp. 309-316
    • Marr, K.A.1    Seidel, K.2    White, T.C.3
  • 5
    • 34249285829 scopus 로고    scopus 로고
    • Prospective observational study of candidemia in Sa{ogonek}o Paulo, Brazil: incidence rate, epidemiology, and predictors of mortality
    • Colombo AL, Guimara{ogonek}es T, Silva LR et al. Prospective observational study of candidemia in Sa{ogonek}o Paulo, Brazil: incidence rate, epidemiology, and predictors of mortality. Infect Control Hosp Epidemiol 2007; 28: 570-6.
    • (2007) Infect Control Hosp Epidemiol , vol.28 , pp. 570-576
    • Colombo, A.L.1    Guimaraes, T.2    Silva, L.R.3
  • 6
    • 67651250107 scopus 로고    scopus 로고
    • Invasive candidiasis: an overview from Taiwan
    • Ruan SY, Hsueh PR. Invasive candidiasis: an overview from Taiwan. J Formos Med Assoc 2009; 108: 443-51.
    • (2009) J Formos Med Assoc , vol.108 , pp. 443-451
    • Ruan, S.Y.1    Hsueh, P.R.2
  • 7
    • 12244257511 scopus 로고    scopus 로고
    • Candida tropicalis in a neonatal intensive care unit: epidemiologic and molecular analysis of an outbreak of infection with an uncommon neonatal pathogen
    • Roilides E, Farmaki E, Evdoridou J et al. Candida tropicalis in a neonatal intensive care unit: epidemiologic and molecular analysis of an outbreak of infection with an uncommon neonatal pathogen. J Clin Microbiol 2003; 41: 735-41.
    • (2003) J Clin Microbiol , vol.41 , pp. 735-741
    • Roilides, E.1    Farmaki, E.2    Evdoridou, J.3
  • 8
    • 84856690332 scopus 로고    scopus 로고
    • Candida glabrata, Candida parapsilosis and Candida tropicalis: biology, epidemiology, pathogenicity and antifungal resistance
    • Silva S, Negri M, Henriques M et al. Candida glabrata, Candida parapsilosis and Candida tropicalis: biology, epidemiology, pathogenicity and antifungal resistance. FEMS Microbiol Rev 2012; 36: 288-305.
    • (2012) FEMS Microbiol Rev , vol.36 , pp. 288-305
    • Silva, S.1    Negri, M.2    Henriques, M.3
  • 9
    • 12944263708 scopus 로고    scopus 로고
    • Mechanisms of azole resistance in clinical isolates of Candida glabrata collected during a hospital survey of antifungal resistance
    • Sanguinetti M, Posteraro B, Fiori B et al. Mechanisms of azole resistance in clinical isolates of Candida glabrata collected during a hospital survey of antifungal resistance. Antimicrob Agents Chemother 2005; 49: 668-79.
    • (2005) Antimicrob Agents Chemother , vol.49 , pp. 668-679
    • Sanguinetti, M.1    Posteraro, B.2    Fiori, B.3
  • 10
    • 79951972302 scopus 로고    scopus 로고
    • Genetic basis of antifungal drug resistance
    • Marie C, White TC. Genetic basis of antifungal drug resistance. Curr Fungal Infect Rep 2009; 3: 163-9.
    • (2009) Curr Fungal Infect Rep , vol.3 , pp. 163-169
    • Marie, C.1    White, T.C.2
  • 11
    • 73749084037 scopus 로고    scopus 로고
    • Regulation of multidrug resistance in pathogenic fungi
    • Morschhäuser J. Regulation of multidrug resistance in pathogenic fungi. Fungal Genet Biol 2010; 47: 94-106.
    • (2010) Fungal Genet Biol , vol.47 , pp. 94-106
    • Morschhäuser, J.1
  • 12
    • 0037416968 scopus 로고    scopus 로고
    • Relationships between respiration and susceptibility to azole antifungals in Candida glabrata
    • Brun S, Aubry C, Lima O et al. Relationships between respiration and susceptibility to azole antifungals in Candida glabrata. Antimicrob Agents Chemother 2003; 47: 847-53.
    • (2003) Antimicrob Agents Chemother , vol.47 , pp. 847-853
    • Brun, S.1    Aubry, C.2    Lima, O.3
  • 13
    • 0037015694 scopus 로고    scopus 로고
    • Characterization of the mitochondrial respiratory pathways in Candida albicans
    • Helmerhorst EJ, Murphy MP, Troxler RF et al. Characterization of the mitochondrial respiratory pathways in Candida albicans. Biochim Biophys Acta 2002; 1556: 73-80.
    • (2002) Biochim Biophys Acta , vol.1556 , pp. 73-80
    • Helmerhorst, E.J.1    Murphy, M.P.2    Troxler, R.F.3
  • 14
    • 79959193758 scopus 로고    scopus 로고
    • Clinical breakpoints for voriconazole and Candida spp. revisited: review of microbiologic, molecular, pharmacodynamic, and clinical data as they pertain to the development of species-specific interpretive criteria
    • Pfaller MA, Andes D, Arendrup MC et al. Clinical breakpoints for voriconazole and Candida spp. revisited: review of microbiologic, molecular, pharmacodynamic, and clinical data as they pertain to the development of species-specific interpretive criteria. Diagn Microbiol Infect Dis 2011; 70: 330-43.
    • (2011) Diagn Microbiol Infect Dis , vol.70 , pp. 330-343
    • Pfaller, M.A.1    Andes, D.2    Arendrup, M.C.3
  • 15
    • 77957893941 scopus 로고    scopus 로고
    • Wild-type MIC distributions, epidemiological cutoff values and species-specific clinical breakpoints for fluconazole and Candida: time for harmonization of CLSI and EUCAST broth microdilution methods
    • Pfaller MA, Andes D, Diekema DJ et al. Wild-type MIC distributions, epidemiological cutoff values and species-specific clinical breakpoints for fluconazole and Candida: time for harmonization of CLSI and EUCAST broth microdilution methods. Drug Resist Update 2010; 13: 180-95.
    • (2010) Drug Resist Update , vol.13 , pp. 180-195
    • Pfaller, M.A.1    Andes, D.2    Diekema, D.J.3
  • 16
    • 0032865613 scopus 로고    scopus 로고
    • Rhodamine 6G efflux for the detection of CDR1-overexpressing azole-resistant Candida albicans strains
    • Maesaki S, Marichal P, Vanden Bossche H et al. Rhodamine 6G efflux for the detection of CDR1-overexpressing azole-resistant Candida albicans strains. J Antimicrob Chemother 1999; 44: 27-31.
    • (1999) J Antimicrob Chemother , vol.44 , pp. 27-31
    • Maesaki, S.1    Marichal, P.2    Vanden Bossche, H.3
  • 17
    • 84865285771 scopus 로고    scopus 로고
    • Relationship between respiration deficiency and azole resistance in clinical Candida glabrata
    • Peng Y, Dong D, Jiang C et al. Relationship between respiration deficiency and azole resistance in clinical Candida glabrata. FEMS Yeast Res 2012; 12: 719-27.
    • (2012) FEMS Yeast Res , vol.12 , pp. 719-727
    • Peng, Y.1    Dong, D.2    Jiang, C.3
  • 18
    • 0025096435 scopus 로고
    • Flow cytometry as a tool to discriminate respiratory-competent and respiratory-deficient yeast cells
    • Skowronek P, Krummeck G, Haferkamp O et al. Flow cytometry as a tool to discriminate respiratory-competent and respiratory-deficient yeast cells. Curr Genet 1990; 18: 265-7.
    • (1990) Curr Genet , vol.18 , pp. 265-267
    • Skowronek, P.1    Krummeck, G.2    Haferkamp, O.3
  • 19
    • 0026323259 scopus 로고    scopus 로고
    • Distribution of repetitive DNA sequences in eubacteria and application to fingerprinting of bacterial genomes
    • Versalovic J, Koeuth T, Lupski JR. Distribution of repetitive DNA sequences in eubacteria and application to fingerprinting of bacterial genomes. Nucleic Acids Res 1999; 19: 6823-31.
    • (1999) Nucleic Acids Res , vol.19 , pp. 6823-6831
    • Versalovic, J.1    Koeuth, T.2    Lupski, J.R.3
  • 20
    • 27644564701 scopus 로고    scopus 로고
    • Mechanisms of azole resistance in a clinical isolate of Candida tropicalis
    • Vandeputte P, Larcher G, Berge's T et al. Mechanisms of azole resistance in a clinical isolate of Candida tropicalis. Antimicrob Agents Chemother 2005; 49: 4608-15.
    • (2005) Antimicrob Agents Chemother , vol.49 , pp. 4608-4615
    • Vandeputte, P.1    Larcher, G.2    Berge's, T.3
  • 21
    • 0027739728 scopus 로고
    • Molecular genetic analysis of azole antifungal mode of action
    • Kelly SL, Arnoldi A, Kelly DE. Molecular genetic analysis of azole antifungal mode of action. Biochem Soc Trans 1993; 21: 1034-8.
    • (1993) Biochem Soc Trans , vol.21 , pp. 1034-1038
    • Kelly, S.L.1    Arnoldi, A.2    Kelly, D.E.3
  • 22
    • 0023498489 scopus 로고
    • Primary structure of the P450 lanosterol demethylase gene from Saccharomyces cerevisiae
    • Kalb VF, Woods CW, Turi TG et al. Primary structure of the P450 lanosterol demethylase gene from Saccharomyces cerevisiae. DNA 1987; 6: 519-37.
    • (1987) DNA , vol.6 , pp. 519-537
    • Kalb, V.F.1    Woods, C.W.2    Turi, T.G.3
  • 23
    • 27644475881 scopus 로고    scopus 로고
    • Promoter-dependent disruption of genes: simple, rapid, and specific PCR-based method with application to three different yeast
    • Edlind TD, Henry KW, Vermitsky JP et al. Promoter-dependent disruption of genes: simple, rapid, and specific PCR-based method with application to three different yeast. Curr Genet 2005; 48: 117-25.
    • (2005) Curr Genet , vol.48 , pp. 117-125
    • Edlind, T.D.1    Henry, K.W.2    Vermitsky, J.P.3
  • 24
    • 0034075720 scopus 로고    scopus 로고
    • Experimental induction of fluconazole resistance in Candida tropicalis ATCC 750
    • Barchiesi F, Calabrese D, Sanglard D et al. Experimental induction of fluconazole resistance in Candida tropicalis ATCC 750. Antimicrob Agents Chemother 2000; 44: 1578-84.
    • (2000) Antimicrob Agents Chemother , vol.44 , pp. 1578-1584
    • Barchiesi, F.1    Calabrese, D.2    Sanglard, D.3
  • 25
    • 0033807662 scopus 로고    scopus 로고
    • Upregulation of ERG genes in Candida species by azoles and other sterol biosynthesis inhibitors
    • Henry KW, Nickels JT, Edlind TD. Upregulation of ERG genes in Candida species by azoles and other sterol biosynthesis inhibitors. Antimicrob Agents Chemother 2000; 44: 2693-700.
    • (2000) Antimicrob Agents Chemother , vol.44 , pp. 2693-2700
    • Henry, K.W.1    Nickels, J.T.2    Edlind, T.D.3
  • 26
    • 47049101245 scopus 로고    scopus 로고
    • A gain-of-function mutation in the transcription factor Upc2p causes upregulation of ergosterol biosynthesis genes and increased fluconazole resistance in a clinical Candida albicans isolate
    • Dunkel N, Liu TT, Barker KS et al. A gain-of-function mutation in the transcription factor Upc2p causes upregulation of ergosterol biosynthesis genes and increased fluconazole resistance in a clinical Candida albicans isolate. Eukaryotic Cell 2008; 7: 1180-90.
    • (2008) Eukaryotic Cell , vol.7 , pp. 1180-1190
    • Dunkel, N.1    Liu, T.T.2    Barker, K.S.3
  • 27
    • 0031938057 scopus 로고    scopus 로고
    • Amino acid substitutions in the cytochrome P-450 lanosterol 14a-demethylase (CYP51A1) from azole-resistant Candida albicans clinical isolates contribute to resistance to azole antifungal agents
    • Sanglard D, Ischer F, Koymans L et al. Amino acid substitutions in the cytochrome P-450 lanosterol 14a-demethylase (CYP51A1) from azole-resistant Candida albicans clinical isolates contribute to resistance to azole antifungal agents. Antimicrob Agents Chemother 1998; 42: 241-53.
    • (1998) Antimicrob Agents Chemother , vol.42 , pp. 241-253
    • Sanglard, D.1    Ischer, F.2    Koymans, L.3
  • 28
    • 0032880113 scopus 로고    scopus 로고
    • Multiple amino acid substitutions in lanosterol 14a-demethylase contribute to azole resistance in Candida albicans
    • Favre B, Didmon M, Ryder NS. Multiple amino acid substitutions in lanosterol 14a-demethylase contribute to azole resistance in Candida albicans. Microbiology 1999; 145: 2715-25.
    • (1999) Microbiology , vol.145 , pp. 2715-2725
    • Favre, B.1    Didmon, M.2    Ryder, N.S.3
  • 29
    • 77949344512 scopus 로고    scopus 로고
    • Relationship between antifungal resistance of fluconazole resistant Candida albicans and mutations in ERG11 gene
    • Feng LJ, Wan Z, Wang XH et al. Relationship between antifungal resistance of fluconazole resistant Candida albicans and mutations in ERG11 gene. Chin Med J (Engl) 2010; 123: 544-8.
    • (2010) Chin Med J (Engl) , vol.123 , pp. 544-548
    • Feng, L.J.1    Wan, Z.2    Wang, X.H.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.