메뉴 건너뛰기




Volumn 13, Issue 5, 2013, Pages 2375-2389

Nonlinear identification of a gasoline HCCI engine using neural networks coupled with principal component analysis

Author keywords

HCCI engine modeling; Multi layer perceptron; Neural networks; Nonlinear system identification; Principal component analysis; Radial basis network

Indexed keywords

COMPLEX NETWORKS; CONTROLLERS; FORECASTING; IGNITION; NETWORK LAYERS; NONLINEAR ANALYSIS;

EID: 84875154139     PISSN: 15684946     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.asoc.2013.01.006     Document Type: Article
Times cited : (75)

References (64)
  • 1
    • 85072434423 scopus 로고
    • Homogeneous-charge compression-ignition engines
    • R. Thring, Homogeneous-charge compression-ignition engines, SAE Paper 892068, 1989.
    • (1989) SAE Paper 892068
    • Thring, R.1
  • 2
    • 85172063486 scopus 로고    scopus 로고
    • Homogeneous charge compression ignition using iso-octane, ethanol and natural gas-A comparison to spark ignition operation
    • Tulsa, OK, USA, SAE Paper 972874
    • B. Johansson, M. Christensen, and P. Einewall Homogeneous charge compression ignition using iso-octane, ethanol and natural gas-a comparison to spark ignition operation International Fuels & Lubricants Meeting & Exposition Tulsa, OK, USA, SAE Paper 972874 1997
    • (1997) International Fuels & Lubricants Meeting & Exposition
    • Johansson, B.1    Christensen, M.2    Einewall, P.3
  • 3
    • 85172055044 scopus 로고    scopus 로고
    • An experimental study on premixed-charge compression ignition gasoline engine
    • Detroit, MI, USA, SAE Paper 960081
    • J. Mizuta, Y. Sato, T. Aoyama, and Y. Hattori An experimental study on premixed-charge compression ignition gasoline engine International Congress & Exposition Detroit, MI, USA, SAE Paper 960081 1996
    • (1996) International Congress & Exposition
    • Mizuta, J.1    Sato, Y.2    Aoyama, T.3    Hattori, Y.4
  • 5
    • 0036558135 scopus 로고    scopus 로고
    • Using exhaust gas recirculation in internal combustion engines: A review
    • DOI 10.1016/S0196-8904(01)00091-7, PII S0196890401000917
    • G.H. Abd-Alla Using exhaust gas recirculation in internal combustion engines: a review Energy Conversion and Management 43 2002 1027 1042 (Pubitemid 34181672)
    • (2002) Energy Conversion and Management , vol.43 , Issue.8 , pp. 1027-1042
    • Abd-Alla, G.H.1
  • 9
    • 34147122522 scopus 로고    scopus 로고
    • A study of natural gas/DME combustion in HCCI engines using CFD with detailed chemical kinetics
    • DOI 10.1016/j.fuel.2006.11.015, PII S001623610600456X
    • S.-C. Kong A study of natural gas/DME combustion in HCCI engines using CFD with detailed chemical kinetics Fuel 86 2007 1483 1489 (Pubitemid 46574591)
    • (2007) Fuel , vol.86 , Issue.10-11 , pp. 1483-1489
    • Kong, S.-C.1
  • 10
    • 55849116712 scopus 로고    scopus 로고
    • Charge stratification to control HCCI: Experiments and CFD modeling with n-heptane as fuel
    • Z. Zheng, and M. Yao Charge stratification to control HCCI: experiments and CFD modeling with n-heptane as fuel Fuel 88 2009 354 365
    • (2009) Fuel , vol.88 , pp. 354-365
    • Zheng, Z.1    Yao, M.2
  • 11
    • 33646511051 scopus 로고    scopus 로고
    • A computational study of direct injection gasoline HCCI engine with secondary injection
    • Z. Wang, S.-J. Shuai, J.-X. Wang, and G.-H. Tian A computational study of direct injection gasoline HCCI engine with secondary injection Fuel 85 2006 1831 1841
    • (2006) Fuel , vol.85 , pp. 1831-1841
    • Wang, Z.1    Shuai, S.-J.2    Wang, J.-X.3    Tian, G.-H.4
  • 12
    • 67949092767 scopus 로고    scopus 로고
    • Progress and recent trends in homogeneous charge compression ignition (HCCI) engines
    • M. Yao, Z. Zheng, and H. Liu Progress and recent trends in homogeneous charge compression ignition (HCCI) engines Progress in Energy and Combustion Science 35 2009 398 437
    • (2009) Progress in Energy and Combustion Science , vol.35 , pp. 398-437
    • Yao, M.1    Zheng, Z.2    Liu, H.3
  • 14
    • 0024880831 scopus 로고
    • Multilayer feedforward networks are universal approximators
    • DOI 10.1016/0893-6080(89)90020-8
    • K. Hornik, M. Stinchcombe, and H. White Multilayer feedforward networks are universal approximators Neural Networks 2 1989 359 366 (Pubitemid 20609008)
    • (1989) Neural Networks , vol.2 , Issue.5 , pp. 359-366
    • Hornik Kurt1    Stinchcombe Maxwell2    White Halbert3
  • 15
    • 0025399567 scopus 로고
    • Identification and control of dynamical systems using neural networks
    • DOI 10.1109/72.80202
    • K.S. Narendra, and K. Parthasarathy Identification and control of dynamical system using neural networks IEEE Transactions on Neural Networks, vol. 1, no. 1 1990 4 27 (Pubitemid 20689507)
    • (1990) IEEE Transactions on Neural Networks , vol.1 , Issue.1 , pp. 4-27
    • Narendra Kumpati, S.1    Parthasarathy Kannan2
  • 17
    • 0027154319 scopus 로고
    • Approximation of dynamical systems by continuous time recurrent neural networks
    • Y. Nakamura, and K.I. Funahashi Approximation of dynamical systems by continuous time recurrent neural networks Neural Networks, vol. 6 1993 801 806 (Pubitemid 23713279)
    • (1993) Neural Networks , vol.6 , Issue.6 , pp. 801-806
    • Funahashi Ken-ichi1    Nakamura Yuichi2
  • 19
    • 0035354681 scopus 로고    scopus 로고
    • On the approximation capability of neural networks-dynamic system modeling and control
    • G. Feng Chak, C. Kwong, and J. Ma On the approximation capability of neural networks-dynamic system modeling and control Asian Journal of Control 2001 122 130 (Pubitemid 33039562)
    • (2001) Asian Journal of Control , vol.3 , Issue.2 , pp. 122-130
    • Chak, C.K.1    Feng, G.2    Ma, J.3
  • 20
    • 7544239128 scopus 로고    scopus 로고
    • Modeling a variable valve timing spark ignition engine using different neural networks
    • D.L. Michael, and Y. Beham Modeling a variable valve timing spark ignition engine using different neural networks Journal of Automobile Engineering 218 2004 1159 1171
    • (2004) Journal of Automobile Engineering , vol.218 , pp. 1159-1171
    • Michael, D.L.1    Beham, Y.2
  • 23
    • 77953071925 scopus 로고    scopus 로고
    • Development of recurrent neural networks for virtual sensing of nox emissions in internal combustion engines
    • M. Sorrentino, I. Arsie, and C. Pianese Development of recurrent neural networks for virtual sensing of nox emissions in internal combustion engines SAE International Journal of Fuels and Lubrication 2 2010 354 361
    • (2010) SAE International Journal of Fuels and Lubrication , vol.2 , pp. 354-361
    • Sorrentino, M.1    Arsie, I.2    Pianese, C.3
  • 24
    • 79961018450 scopus 로고    scopus 로고
    • Recurrent neural networks for air-fuel ratio estimation and control in spark-ignited engines
    • Elsevier
    • C. Pianese, G. Rizzo, M. Sorrentino, I. Arsie, and S. Di Iorio Recurrent neural networks for air-fuel ratio estimation and control in spark-ignited engines IFAC World Congress 2008 Elsevier
    • (2008) IFAC World Congress
    • Pianese, C.1    Rizzo, G.2    Sorrentino, M.3    Arsie, I.4    Di Iorio, S.5
  • 28
    • 78649686872 scopus 로고    scopus 로고
    • On the high load limit of boosted gasoline HCCI engine operating in NVO mode
    • R. Scaringe, C. Wildman, and W.K. Cheng On the high load limit of boosted gasoline HCCI engine operating in NVO mode SAE International Journal of Engines 3 2010 35 45
    • (2010) SAE International Journal of Engines , vol.3 , pp. 35-45
    • Scaringe, R.1    Wildman, C.2    Cheng, W.K.3
  • 29
    • 0031331816 scopus 로고    scopus 로고
    • Remembering the past: The role of embedded memory in recurrent neural network architectures
    • IEEE Press
    • C.L. Giles, T. Lin, and B.G. Horne Remembering the past: the role of embedded memory in recurrent neural network architectures IEEE Workshop On Neural Networks For Signal Processing IEEE Press 1997 34 43
    • (1997) IEEE Workshop on Neural Networks for Signal Processing , pp. 34-43
    • Giles, C.L.1    Lin, T.2    Horne, B.G.3
  • 30
    • 0003066062 scopus 로고
    • Experimental analysis of the real-time recurrent learning algorithm
    • R.J. Williams, and D. Zipser Experimental analysis of the real-time recurrent learning algorithm Connection Science 1 1989 87 111
    • (1989) Connection Science , vol.1 , pp. 87-111
    • Williams, R.J.1    Zipser, D.2
  • 31
    • 26444565569 scopus 로고
    • Finding structure in time
    • J.L. Elman Finding structure in time Cognitive Science 14 1990 179 211
    • (1990) Cognitive Science , vol.14 , pp. 179-211
    • Elman, J.L.1
  • 32
    • 0026627415 scopus 로고
    • Kolmogorov's theorem and multilayer neural networks
    • V. Kurková Kolmogorov's theorem and multilayer neural networks Neural Networks 5 1992 501 506
    • (1992) Neural Networks , vol.5 , pp. 501-506
    • Kurková, V.1
  • 34
  • 35
    • 0033130747 scopus 로고    scopus 로고
    • Optimization of neural networks: A comparative analysis of the genetic algorithm and simulated annealing
    • R.S. Sexton, R.E. Dorsey, and J.D. Johnson Optimization of neural networks: a comparative analysis of the genetic algorithm and simulated annealing European Journal of Operational Research 114 1999 589 601
    • (1999) European Journal of Operational Research , vol.114 , pp. 589-601
    • Sexton, R.S.1    Dorsey, R.E.2    Johnson, J.D.3
  • 36
    • 0026820019 scopus 로고
    • Rapid, supervised training of a two-layer, opto-electronic neural network using simulated annealing
    • N.M. Barnes, A.W. O'Neill, and D. Wood Rapid, supervised training of a two-layer, opto-electronic neural network using simulated annealing Optics Communications 87 1992 203 206
    • (1992) Optics Communications , vol.87 , pp. 203-206
    • Barnes, N.M.1    O'Neill, A.W.2    Wood, D.3
  • 37
    • 0031037681 scopus 로고    scopus 로고
    • Efficient training of recurrent neural network with time delays
    • DOI 10.1016/S0893-6080(96)00072-X, PII S089360809600072X
    • B. Cohen, D. Saad, and E. Marom Efficient training of recurrent neural network with time delays Neural Networks 10 1997 51 59 (Pubitemid 27086445)
    • (1997) Neural Networks , vol.10 , Issue.1 , pp. 51-59
    • Cohen, B.1    Saad, D.2    Marom, E.3
  • 38
    • 0035186217 scopus 로고    scopus 로고
    • A real-coded genetic algorithm for training recurrent neural networks
    • DOI 10.1016/S0893-6080(00)00081-2, PII S0893608000000812
    • A. Blanco, M. Delgado, and M.C. Pegalajar A real-coded genetic algorithm for training recurrent neural networks Neural Networks 14 2001 93 105 (Pubitemid 32014347)
    • (2001) Neural Networks , vol.14 , Issue.1 , pp. 93-105
    • Blanco, A.1    Delgado, M.2    Pegalajar, M.C.3
  • 39
    • 0034316975 scopus 로고    scopus 로고
    • Comparative evaluation of genetic algorithm and backpropagation for training neural networks
    • DOI 10.1016/S0020-0255(00)00068-2
    • R.S. Sexton, and J.N.D. Gupta Comparative evaluation of genetic algorithm and backpropagation for training neural networks Information Sciences 129 2000 45 59 (Pubitemid 32034504)
    • (2000) Information sciences , vol.129 , Issue.1-4 , pp. 45-59
    • Sexton, R.S.1    Gupta, J.N.D.2
  • 40
    • 0000106040 scopus 로고
    • Universal approximation using radial-basis-function networks
    • J. Park, and I.W. Sandberg Universal approximation using radial-basis-function networks Neural Computation 3 1991 246 257
    • (1991) Neural Computation , vol.3 , pp. 246-257
    • Park, J.1    Sandberg, I.W.2
  • 41
    • 0001683814 scopus 로고
    • Layered neural networks with Gaussian hidden units as universal approximations
    • E. Hartman, J.D. Keeler, and J.M. Kowalski Layered neural networks with Gaussian hidden units as universal approximations Neural Computation 2 1990 210 215
    • (1990) Neural Computation , vol.2 , pp. 210-215
    • Hartman, E.1    Keeler, J.D.2    Kowalski, J.M.3
  • 42
    • 0029341753 scopus 로고
    • Approximation capability to functions of several variables, nonlinear functionals and operators by radial basis function neural networks
    • T. Chen, and R. Chen Approximation capability to functions of several variables, nonlinear functionals and operators by radial basis function neural networks IEEE Transactions on Neural Networks 6 4 1995 904 910
    • (1995) IEEE Transactions on Neural Networks , vol.6 , Issue.4 , pp. 904-910
    • Chen, T.1    Chen, R.2
  • 43
    • 84856745929 scopus 로고    scopus 로고
    • A novel training algorithm for rbf neural network using a hybrid fuzzy clustering approach
    • A.D. Niros, and G.E. Tsekouras A novel training algorithm for rbf neural network using a hybrid fuzzy clustering approach Fuzzy Sets and Systems 193 2012 62 84
    • (2012) Fuzzy Sets and Systems , vol.193 , pp. 62-84
    • Niros, A.D.1    Tsekouras, G.E.2
  • 44
    • 0742290061 scopus 로고    scopus 로고
    • A new algorithm for online structure and parameter adaptation of RBF networks
    • DOI 10.1016/S0893-6080(03)00052-2
    • A. Alexandridis, H. Sarimveis, and G. Bafas A new algorithm for online structure and parameter adaptation of RBF networks Neural Networks 16 2003 1003 1017 (Pubitemid 38147279)
    • (2003) Neural Networks , vol.16 , Issue.7 , pp. 1003-1017
    • Alexandridis, A.1    Sarimveis, H.2    Bafas, G.3
  • 45
    • 33745203522 scopus 로고    scopus 로고
    • Improving RBF networks performance in regression tasks by means of a supervised fuzzy clustering
    • DOI 10.1016/j.neucom.2005.06.014, PII S0925231205002304
    • A. Staiano, R. Tagliaferri, and W. Pedrycz Improving rbf networks performance in regression tasks by means of a supervised fuzzy clustering Neurocomputing 69 2006 1570 1581 (Pubitemid 43906053)
    • (2006) Neurocomputing , vol.69 , Issue.13-15 , pp. 1570-1581
    • Staiano, A.1    Tagliaferri, R.2    Pedrycz, W.3
  • 46
    • 34548186461 scopus 로고    scopus 로고
    • Using fuzzy logic to improve a clustering technique for function approximation
    • DOI 10.1016/j.neucom.2006.06.017, PII S0925231207001609
    • A. Guillén, J. González, I. Rojas, H. Pomares, L.J. Herrera, O. Valenzuela, and A. Prieto Using fuzzy logic to improve a clustering technique for function approximation Neurocomputing 70 2007 2853 2860 (Pubitemid 47308637)
    • (2007) Neurocomputing , vol.70 , Issue.16-18 , pp. 2853-2860
    • Guillen, A.1    Gonzalez, J.2    Rojas, I.3    Pomares, H.4    Herrera, L.J.5    Valenzuela, O.6    Prieto, A.7
  • 47
    • 33847020503 scopus 로고    scopus 로고
    • Fault diagnosis in a hydraulic position servo system using RBF neural network
    • H.M. Liu, S.P. Wang, and P.C. Ouyang Fault diagnosis in a hydraulic position servo system using RBF neural network Chinese Journal of Aeronautics 19 2006 346 353
    • (2006) Chinese Journal of Aeronautics , vol.19 , pp. 346-353
    • Liu, H.M.1    Wang, S.P.2    Ouyang, P.C.3
  • 48
    • 84859917101 scopus 로고    scopus 로고
    • Implementation of an optimal control strategy for a hydraulic hybrid vehicle using CMAC and RBF networks
    • A. Taghavipour, M.S. Foumani, and M. Boroushaki Implementation of an optimal control strategy for a hydraulic hybrid vehicle using CMAC and RBF networks Scientia Iranica 19 2 2012 327 334
    • (2012) Scientia Iranica , vol.19 , Issue.2 , pp. 327-334
    • Taghavipour, A.1    Foumani, M.S.2    Boroushaki, M.3
  • 49
    • 0036487235 scopus 로고    scopus 로고
    • New training strategies for RBF neural networks for X-ray agricultural product inspection
    • D. David Casasent, and X.W. Chen New training strategies for RBF neural networks for X-ray agricultural product inspection Pattern Recognition 36 2003 535 547
    • (2003) Pattern Recognition , vol.36 , pp. 535-547
    • David Casasent, D.1    Chen, X.W.2
  • 50
    • 0033732354 scopus 로고    scopus 로고
    • Selecting radial basis function network centers with recursive orthogonal least squares training
    • J.B. Gomm, and D.L. Yu Selecting radial basis function network centers with recursive orthogonal least squares training IEEE Transactions on Neural Networks 11 2000 306 314
    • (2000) IEEE Transactions on Neural Networks , vol.11 , pp. 306-314
    • Gomm, J.B.1    Yu, D.L.2
  • 51
    • 0026116468 scopus 로고
    • Orthogonal least squares learning algorithm for radial basis function networks
    • S. Chen, C.F.N. Cowan, and P.M. Grant Orthogonal least squares learning algorithm for radial basis function networks IEEE Transactions on Neural Networks 2 1991 302 309
    • (1991) IEEE Transactions on Neural Networks , vol.2 , pp. 302-309
    • Chen, S.1    Cowan, C.F.N.2    Grant, P.M.3
  • 52
    • 10444248803 scopus 로고    scopus 로고
    • Determining the centers of radial basis probabilistic neural networks by recursive orthogonal least square algorithms
    • D.-S. Huang, and W.-B. Zhao Determining the centers of radial basis probabilistic neural networks by recursive orthogonal least square algorithms Applied Mathematics and Computation 162 2005 461 473
    • (2005) Applied Mathematics and Computation , vol.162 , pp. 461-473
    • Huang, D.-S.1    Zhao, W.-B.2
  • 53
    • 14944379643 scopus 로고    scopus 로고
    • A fundamental study on the control of the HCCI combustion and emissions by fuel design concept combined with controllable EGR. Part 2: Effect of operating conditions and EGR on HCCI combustion
    • X. Lu, W. Chen, and Z. Huang A fundamental study on the control of the HCCI combustion and emissions by fuel design concept combined with controllable EGR. Part 2: Effect of operating conditions and EGR on HCCI combustion Fuel 84 2005 1084 1092
    • (2005) Fuel , vol.84 , pp. 1084-1092
    • Lu, X.1    Chen, W.2    Huang, Z.3
  • 55
    • 46449108250 scopus 로고    scopus 로고
    • Dynamics of homogeneous charge compression ignition (HCCI) engines with high dilution
    • C.J. Chiang, and A.G. Stefanopoulou Dynamics of homogeneous charge compression ignition (HCCI) engines with high dilution American Control Conference 2007 2979 2984
    • (2007) American Control Conference , pp. 2979-2984
    • Chiang, C.J.1    Stefanopoulou, A.G.2
  • 56
    • 70350755576 scopus 로고    scopus 로고
    • Stability analysis of residual-affected HCCI using convex optimization
    • G.M. Shaver Stability analysis of residual-affected HCCI using convex optimization Control Engineering Practice 17 2009 1454 1460
    • (2009) Control Engineering Practice , vol.17 , pp. 1454-1460
    • Shaver, G.M.1
  • 58
    • 33745787886 scopus 로고    scopus 로고
    • Simultaneous temperature and exhaust-gas recirculation-measurements in a homogeneous charge-compression ignition engine by use of pure rotational coherent anti-Stokes Raman spectroscopy
    • DOI 10.1364/AO.45.003646
    • M.C. Weikl, F. Beyrau, and A. Leipertz Simultaneous temperature and exhaust-gas recirculation-measurements in a homogeneous charge-compression ignition engine by use of pure rotational coherent anti-stokes Raman spectroscopy Applied Optics 45 2006 3646 3651 (Pubitemid 44021538)
    • (2006) Applied Optics , vol.45 , Issue.15 , pp. 3646-3651
    • Weik, M.C.1    Beyrau, F.2    Leipertz, A.3
  • 60
    • 85072351350 scopus 로고    scopus 로고
    • HCCI operating range in a turbo-charged multi cylinder engine with vvt and spray-guided di
    • T. Johansson, B. Johansson, P. Tunestal, H. Aulin, HCCI operating range in a turbo-charged multi cylinder engine with vvt and spray-guided di, SAE 2009-01-04, 2009.
    • (2009) SAE 2009-01-04
    • Johansson, T.1    Johansson, B.2    Tunestal, P.3    Aulin, H.4
  • 62
    • 85172057306 scopus 로고    scopus 로고
    • Modern statistical modelling and evolutionary optimisation methods for the broad use in ECU calibration
    • T. Lang, T. Kruse, and S. Kurz Modern statistical modelling and evolutionary optimisation methods for the broad use in ECU calibration 6th IFAC Symposium Advances in Automotive Control 2010
    • (2010) 6th IFAC Symposium Advances in Automotive Control
    • Lang, T.1    Kruse, T.2    Kurz, S.3
  • 63
    • 34247470880 scopus 로고    scopus 로고
    • Clinical data analysis using artificial neural networks (ANN) and principal component analysis (PCA) of patients with breast cancer after mastectomy
    • A. Bucinski, T. Baczek, J. Krysinski, R. Szoszkiewicz, and J. Zaluski Clinical data analysis using artificial neural networks (ANN) and principal component analysis (PCA) of patients with breast cancer after mastectomy Reports of Practical Oncology & Radiotherapy 12 2007 9 17 (Pubitemid 46663387)
    • (2007) Reports of Practical Oncology and Radiotherapy , vol.12 , Issue.1 , pp. 9-17
    • Bucinski, A.1    Baczek, T.2    Krysinski, J.3    Szoszkiewicz, R.4    Zaluski, J.5
  • 64
    • 79751528788 scopus 로고    scopus 로고
    • A novel approach for analog fault diagnosis based on neural networks and improved kernel PCA
    • Y. Xiao, and Y. He A novel approach for analog fault diagnosis based on neural networks and improved kernel PCA Neurocomputing 74 2011 1102 1115
    • (2011) Neurocomputing , vol.74 , pp. 1102-1115
    • Xiao, Y.1    He, Y.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.