-
1
-
-
0346718762
-
Stochastic integration with respect to the fractional brownian motion
-
E. Alòs and D. Nualart. Stochastic integration with respect to the fractional Brownian motion. Stoch. Stoch. Rep. 75 (2003) 129-152.
-
(2003)
Stoch. Stoch. Rep.
, vol.75
, pp. 129-152
-
-
Alòs, E.1
Nualart, D.2
-
2
-
-
34047148984
-
Operators associated with a stochastic differential equation driven by fractional brownian motions
-
F. Baudoin and L. Coutin. Operators associated with a stochastic differential equation driven by fractional Brownian motions. Stochastic Process. Appl. 117 (2007) 550-574.
-
(2007)
Stochastic Process. Appl.
, vol.117
, pp. 550-574
-
-
Baudoin, F.1
Coutin, L.2
-
3
-
-
52949087905
-
Pricing by hedging and no-arbitrage beyond semimartingales
-
C. Bender, T. Sottinen and E. Valkeila. Pricing by hedging and no-arbitrage beyond semimartingales. Finance Stoch. 12 (2008) 441-468.
-
(2008)
Finance Stoch.
, vol.12
, pp. 441-468
-
-
Bender, C.1
Sottinen, T.2
Valkeila, E.3
-
4
-
-
0042050466
-
A law of large numbers for the maximum in a stationary Gaussian sequence
-
S. M. Berman. A law of large numbers for the maximum in a stationary Gaussian sequence. Ann. Math. Statist. 33 (1962) 93-97.
-
(1962)
Ann. Math. Statist.
, vol.33
, pp. 93-97
-
-
Berman, S.M.1
-
5
-
-
17444428635
-
A note on wick products and the fractional black-scholes model
-
T. Björk and H. Hult. A note on Wick products and the fractional Black-Scholes model. Finance Stoch. 9 (2005) 197-209.
-
(2005)
Finance Stoch.
, vol.9
, pp. 197-209
-
-
Björk, T.1
Hult, H.2
-
6
-
-
62549127896
-
Non-degeneracy of wiener functionals arising from rough differential equations
-
T. Cass, P. Friz and N. Victoir. Non-degeneracy of Wiener functionals arising from rough differential equations. Trans. Amer. Math. Soc. 361 (2009) 3359-3371.
-
(2009)
Trans. Amer. Math. Soc.
, vol.361
, pp. 3359-3371
-
-
Cass, T.1
Friz, P.2
Victoir, N.3
-
7
-
-
34548852567
-
Fractal dimension estimation via spectral distribution function and its application to physiological signals
-
S. Chang, S. Li, M. Chiang, S. Hu and M. Hsyu. Fractal dimension estimation via spectral distribution function and its application to physiological signals. IEEE Trans. Biol. Eng. 54 (2007) 1895-1898.
-
(2007)
IEEE Trans. Biol. Eng.
, vol.54
, pp. 1895-1898
-
-
Chang, S.1
Li, S.2
Chiang, M.3
Hu, S.4
Hsyu, M.5
-
8
-
-
84879314212
-
Power variation analysis of some integral long-memory processes
-
F. E. Benth et al. (Eds). Abel Symposia 2. Springer, Berlin
-
J. M. Corcuera. Power variation analysis of some integral long-memory processes. In Stochastic Analysis and Applications 219-234. F. E. Benth et al. (Eds). Abel Symposia 2. Springer, Berlin, 2007.
-
(2007)
Stochastic Analysis and Applications
, pp. 219-234
-
-
Corcuera, J.M.1
-
9
-
-
0036002985
-
Stochastic rough path analysis and fractional brownian motion
-
L. Coutin and Z. Qian. Stochastic rough path analysis and fractional Brownian motion. Probab. Theory Related. Fields 122 (2002) 108-140.
-
(2002)
Probab. Theory Related. Fields
, vol.122
, pp. 108-140
-
-
Coutin, L.1
Qian, Z.2
-
10
-
-
0009040449
-
Stock price returns and the joseph effect: A fractional version of the black-scholes model
-
E. Bolthausen et al. (Eds). Prog. Probab. 36. Birkhäuser, Basel
-
N. J. Cutland, P. E. Kopp and W. Willinger. Stock price returns and the Joseph effect: A fractional version of the Black-Scholes model. In Seminar on Stochastic Analysis, Random Fields and Applications 327-351. E. Bolthausen et al. (Eds). Prog. Probab. 36. Birkhäuser, Basel, 1995.
-
(1995)
Seminar on Stochastic Analysis, Random Fields and Applications
, pp. 327-351
-
-
Cutland, N.J.1
Kopp, P.E.2
Willinger, W.3
-
11
-
-
62649139100
-
Differential equations driven by rough paths: An approach via discrete approximation
-
A. Davie. Differential equations driven by rough paths: An approach via discrete approximation. Appl. Math. Res. Express 2 (2007) 1-40.
-
(2007)
Appl. Math. Res. Express
, vol.2
, pp. 1-40
-
-
Davie, A.1
-
12
-
-
77955845466
-
Flow properties of differential equations driven by fractional brownian motion
-
P. H. Baxendale et al. (Eds). Interdiscip. Math. Sci. 2. World Sci. Publ., Hackensack, NJ
-
L. Decreusefond and D. Nualart. Flow properties of differential equations driven by fractional Brownian motion. In Stochastic Differential Equations: Theory and Applications 249-262. P. H. Baxendale et al. (Eds). Interdiscip. Math. Sci. 2. World Sci. Publ., Hackensack, NJ, 2007.
-
(2007)
Stochastic Differential Equations: Theory and Applications
, pp. 249-262
-
-
Decreusefond, L.1
Nualart, D.2
-
14
-
-
34547972571
-
Transient noise simulation: Modeling and simulation of 1/f-noise
-
K. Antreich et al. (Eds). Int. Ser. Numer. Math. 146. Birkhäuser, Basel
-
G. Denk, D. Meintrup and S. Schäffler. Transient noise simulation: Modeling and simulation of 1/f-noise. In Modeling, Simulation, and Optimization of Integrated Circuits 251-267. K. Antreich et al. (Eds). Int. Ser. Numer. Math. 146. Birkhäuser, Basel, 2001.
-
(2001)
Modeling, Simulation, and Optimization of Integrated Circuits
, pp. 251-267
-
-
Denk, G.1
Meintrup, D.2
Schäffler, S.3
-
15
-
-
34547988243
-
Modelling and simulation of transient noise in circuit simulation
-
G. Denk and R. Winkler. Modelling and simulation of transient noise in circuit simulation. Math. Comput. Model. Dyn. Syst. 13 (2007) 383-394.
-
(2007)
Math. Comput. Model. Dyn. Syst.
, vol.13
, pp. 383-394
-
-
Denk, G.1
Winkler, R.2
-
16
-
-
33749665074
-
Curvilinear integrals along enriched paths
-
D. Feyel and A. de La Pradelle. Curvilinear integrals along enriched paths. Electron. J. Probab. 11 (2006) 860-892.
-
(2006)
Electron. J. Probab.
, vol.11
, pp. 860-892
-
-
Feyel, D.1
De La Pradelle, A.2
-
18
-
-
70449519425
-
Discretization of the attractor of a system driven by fractional brownian motion
-
M. J. Garrido Atienza, P. E. Kloeden and A. Neuenkirch. Discretization of the attractor of a system driven by fractional Brownian motion. Appl. Math. Optim. 60 (2009) 151-172.
-
(2009)
Appl. Math. Optim.
, vol.60
, pp. 151-172
-
-
Garrido Atienza, M.J.1
Kloeden, P.E.2
Neuenkirch, A.3
-
19
-
-
33745022624
-
No arbitrage under transaction costs, with fractional brownian motion and beyond
-
P. Guasoni. No arbitrage under transaction costs, with fractional Brownian motion and beyond. Math. Finance 16 (2006) 569-582.
-
(2006)
Math. Finance
, vol.16
, pp. 569-582
-
-
Guasoni, P.1
-
20
-
-
4344654665
-
Controlling rough paths
-
M. Gubinelli. Controlling rough paths. J. Funct. Anal. 216 (2004) 86-140.
-
(2004)
J. Funct. Anal.
, vol.216
, pp. 86-140
-
-
Gubinelli, M.1
-
21
-
-
73549099331
-
Ramification of rough paths
-
M. Gubinelli. Ramification of rough paths. J. Differential Equations 248 (2010) 693-721.
-
(2010)
J. Differential Equations
, vol.248
, pp. 693-721
-
-
Gubinelli, M.1
-
22
-
-
77953669175
-
Rough evolution equations
-
M. Gubinelli and S. Tindel. Rough evolution equations. Ann. Probab. 38 (2010) 1-75.
-
(2010)
Ann. Probab.
, vol.38
, pp. 1-75
-
-
Gubinelli, M.1
Tindel, S.2
-
23
-
-
51549086483
-
Ergodic theory for SDEs with extrinsic memory
-
M. Hairer and A. Ohashi. Ergodic theory for SDEs with extrinsic memory. Ann. Probab. 35 (2007) 1950-1977.
-
(2007)
Ann. Probab.
, vol.35
, pp. 1950-1977
-
-
Hairer, M.1
Ohashi, A.2
-
24
-
-
70449678769
-
Rough path analysis via fractional calculus
-
Y. Hu and D. Nualart. Rough path analysis via fractional calculus. Trans. Amer. Math. Soc. 361 (2009) 2689-2718.
-
(2009)
Trans. Amer. Math. Soc.
, vol.361
, pp. 2689-2718
-
-
Hu, Y.1
Nualart, D.2
-
25
-
-
0348173778
-
On convergence of the uniform norms for Gaussian processes and linear approximation problems
-
J. Hüsler, V. Piterbarg and O. Seleznjev. On convergence of the uniform norms for Gaussian processes and linear approximation problems. Ann. Appl. Probab. 13 (2003) 1615-1653.
-
(2003)
Ann. Appl. Probab.
, vol.13
, pp. 1615-1653
-
-
Hüsler, J.1
Piterbarg, V.2
Seleznjev, O.3
-
26
-
-
84894226734
-
Pathwise approximation of stochastic differential equations on domains: Higher order convergence rates without global lipschitz coefficients
-
A. Jentzen, P. E. Kloeden and A. Neuenkirch. Pathwise approximation of stochastic differential equations on domains: Higher order convergence rates without global Lipschitz coefficients. Numer. Math. 112 (2009) 41-64.
-
(2009)
Numer. Math.
, vol.112
, pp. 41-64
-
-
Jentzen, A.1
Kloeden, P.E.2
Neuenkirch, A.3
-
27
-
-
80052377200
-
Multilevel Monte Carlo for stochastic differential equations with additive fractional noise
-
P. E. Kloeden, A. Neuenkirch and R. Pavani. Multilevel Monte Carlo for stochastic differential equations with additive fractional noise. Ann. Oper. Res. 189 (2011) 255-276.
-
(2011)
Ann. Oper. Res.
, vol.189
, pp. 255-276
-
-
Kloeden, P.E.1
Neuenkirch, A.2
Pavani, R.3
-
29
-
-
54949102951
-
Stochastic modeling in nanoscale physics: Subdiffusion within proteins
-
S. Kou. Stochastic modeling in nanoscale physics: Subdiffusion within proteins. Ann. Appl. Statist. 2 (2008) 501-535.
-
(2008)
Ann. Appl. Statist.
, vol.2
, pp. 501-535
-
-
Kou, S.1
-
31
-
-
52149107530
-
The rate of convergence for euler approximations of solutions of stochastic differential equations driven by fractional brownian motion
-
Y. Mishura and G. Shevchenko. The rate of convergence for Euler approximations of solutions of stochastic differential equations driven by fractional Brownian motion. Stochastics 80 (2008) 489-511.
-
(2008)
Stochastics
, vol.80
, pp. 489-511
-
-
Mishura, Y.1
Shevchenko, G.2
-
32
-
-
56549118742
-
Minimal errors for strong and weak approximation of stochastic differential equations
-
A. Keller et al. (Eds). Springer, Berlin
-
T. Müller-Gronbach and K. Ritter. Minimal errors for strong and weak approximation of stochastic differential equations. In Monte Carlo and Quasi-Monte Carlo Methods 2006 53-82. A. Keller et al. (Eds). Springer, Berlin, 2008.
-
(2008)
Monte Carlo and Quasi-Monte Carlo Methods 2006
, pp. 53-82
-
-
Müller-Gronbach, T.1
Ritter, K.2
-
33
-
-
55649094460
-
Optimal pointwise approximation of stochastic differential equations driven by fractional brownian motion
-
A. Neuenkirch. Optimal pointwise approximation of stochastic differential equations driven by fractional Brownian motion. Stochastic Process. Appl. 118 (2008) 2294-2333.
-
(2008)
Stochastic Process. Appl.
, vol.118
, pp. 2294-2333
-
-
Neuenkirch, A.1
-
34
-
-
35548963865
-
Exact rate of convergence of some approximation schemes associated to SDEs driven by a fractional brownian motion
-
A. Neuenkirch and I. Nourdin. Exact rate of convergence of some approximation schemes associated to SDEs driven by a fractional Brownian motion. J. Theoret. Probab. 20 (2007) 871-899.
-
(2007)
J. Theoret. Probab.
, vol.20
, pp. 871-899
-
-
Neuenkirch, A.1
Nourdin, I.2
-
38
-
-
51849102908
-
A simple theory for the study of SDEs driven by a fractional brownian motion, in dimension one
-
Lecture Notes in Math. 1934. Springer, Berlin
-
I. Nourdin. A simple theory for the study of SDEs driven by a fractional Brownian motion, in dimension one. In Sém. Probab. XLI 181-197. Lecture Notes in Math. 1934. Springer, Berlin, 2008.
-
(2008)
Sém. Probab. XLI
, pp. 181-197
-
-
Nourdin, I.1
-
39
-
-
44049089660
-
Correcting newton-cotes integrals by lévy areas
-
I. Nourdin and T. Simon. Correcting Newton-Cotes integrals by Lévy areas. Bernoulli 13 (2007) 695-711.
-
(2007)
Bernoulli
, vol.13
, pp. 695-711
-
-
Nourdin, I.1
Simon, T.2
-
41
-
-
0038771348
-
Differential equationsrtfgh driven by fractional brownian motion
-
D. Nualart and A. Rǎşcanu. Differential equationsrtfgh driven by fractional Brownian motion. Collect. Math. 53 (2002) 55-81.
-
(2002)
Collect. Math.
, vol.53
, pp. 55-81
-
-
Nualart, D.1
Rǎşcanu, A.2
-
42
-
-
15844396187
-
Stochastic dynamics of the nerve growth cone and its microtubules during neurite outgrowth
-
D. Odde, E. Tanaka, S. Hawkins and H. Buettner. Stochastic dynamics of the nerve growth cone and its microtubules during neurite outgrowth. Biotechnol. Bioeng. 50 (1996) 452-461.
-
(1996)
Biotechnol. Bioeng.
, vol.50
, pp. 452-461
-
-
Odde, D.1
Tanaka, E.2
Hawkins, S.3
Buettner, H.4
-
43
-
-
79953703984
-
The rough path associated to the multidimensional analytic fBm with any hurst parameter
-
S. Tindel and J. Unterberger. The rough path associated to the multidimensional analytic fBm with any Hurst parameter. Collect. Math. 62 (2011) 197-223.
-
(2011)
Collect. Math.
, vol.62
, pp. 197-223
-
-
Tindel, S.1
Unterberger, J.2
-
44
-
-
66149191161
-
Stochastic calculus for fractional brownian motion with hurst exponent H > 1/4: A rough path method by analytic extension
-
J. Unterberger. Stochastic calculus for fractional Brownian motion with Hurst exponent H > 1/4: A rough path method by analytic extension. Ann. Probab. 37 (2009) 565-614.
-
(2009)
Ann. Probab.
, vol.37
, pp. 565-614
-
-
Unterberger, J.1
-
45
-
-
23044532516
-
On a functional limit result for increments of a fractional brownian motion
-
W. Wang. On a functional limit result for increments of a fractional Brownian motion. Acta Math. Hung. 93 (2001) 153-170.
-
(2001)
Acta Math. Hung.
, vol.93
, pp. 153-170
-
-
Wang, W.1
-
47
-
-
0038290919
-
Integration with respect to fractal functions and stochastic calculus I
-
M. Zähle. Integration with respect to fractal functions and stochastic calculus I. Probab. Theory Related Fields 111 (1998) 333-374.
-
(1998)
Probab. Theory Related Fields
, vol.111
, pp. 333-374
-
-
Zähle, M.1
|