메뉴 건너뛰기




Volumn 118, Issue 12, 2008, Pages 2294-2333

Optimal pointwise approximation of stochastic differential equations driven by fractional Brownian motion

Author keywords

Chaos decomposition; Conditional expectation; Exact rate of convergence; Fractional Brownian motion; Lamperti transformation; McShane's scheme; Stochastic differential equation

Indexed keywords

APPROXIMATION THEORY; CONVERGENCE OF NUMERICAL METHODS; DIFFERENTIAL EQUATIONS; DISPERSIONS; EQUATIONS OF MOTION; MATHEMATICAL TRANSFORMATIONS; MEASUREMENT THEORY; POLYNOMIAL APPROXIMATION; STOCHASTIC CONTROL SYSTEMS;

EID: 55649094460     PISSN: 03044149     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.spa.2008.01.002     Document Type: Article
Times cited : (26)

References (36)
  • 2
    • 0032246690 scopus 로고    scopus 로고
    • Approximating integrals of stochastic processes: Extensions
    • Benhenni K. Approximating integrals of stochastic processes: Extensions. J. Appl. Probab. 35 (1998) 843-855
    • (1998) J. Appl. Probab. , vol.35 , pp. 843-855
    • Benhenni, K.1
  • 3
    • 0346433436 scopus 로고    scopus 로고
    • On arbitrage-free pricing of weather derivatives based on fractional Brownian motion
    • Benth F.E. On arbitrage-free pricing of weather derivatives based on fractional Brownian motion. Appl. Math. Finance 10 (2003) 303-324
    • (2003) Appl. Math. Finance , vol.10 , pp. 303-324
    • Benth, F.E.1
  • 4
    • 85008814939 scopus 로고    scopus 로고
    • Dynamical pricing of weather derivatives
    • Brody D., Syroka J., and Zervos M. Dynamical pricing of weather derivatives. Quant. Finance 2 (2002) 189-198
    • (2002) Quant. Finance , vol.2 , pp. 189-198
    • Brody, D.1    Syroka, J.2    Zervos, M.3
  • 5
    • 0007470214 scopus 로고    scopus 로고
    • Exact convergence rate of the Euler-Maruyama scheme, with application to sampling design
    • Cambanis S., and Hu Y. Exact convergence rate of the Euler-Maruyama scheme, with application to sampling design. Stoch. Stoch. Rep. 59 (1996) 211-240
    • (1996) Stoch. Stoch. Rep. , vol.59 , pp. 211-240
    • Cambanis, S.1    Hu, Y.2
  • 6
    • 21344466895 scopus 로고    scopus 로고
    • The ordinary differential equation approach to asymptotically efficient schemes for solution of stochastic differential equations
    • Castell F., and Gaines J. The ordinary differential equation approach to asymptotically efficient schemes for solution of stochastic differential equations. Ann. Inst. Henri Poincaré Probab. Stat. 32 2 (1996) 231-250
    • (1996) Ann. Inst. Henri Poincaré Probab. Stat. , vol.32 , Issue.2 , pp. 231-250
    • Castell, F.1    Gaines, J.2
  • 7
    • 0007508207 scopus 로고
    • The maximum rate of convergence of discrete approximations
    • Stochastic Differential Systems. Grigelionis B. (Ed), Springer, Berlin
    • Clark J.M.C., and Cameron R.J. The maximum rate of convergence of discrete approximations. In: Grigelionis B. (Ed). Stochastic Differential Systems. Lect. Notes Control Inf Sci. vol. 25 (1980), Springer, Berlin 161-171
    • (1980) Lect. Notes Control Inf Sci. , vol.25 , pp. 161-171
    • Clark, J.M.C.1    Cameron, R.J.2
  • 8
    • 0012307377 scopus 로고    scopus 로고
    • Simulation and identification of the fractional Brownian motion: a bibliographical and comparative study
    • Coeurjolly J.F. Simulation and identification of the fractional Brownian motion: a bibliographical and comparative study. J. Statist. Software 5 (2000) 1-53
    • (2000) J. Statist. Software , vol.5 , pp. 1-53
    • Coeurjolly, J.F.1
  • 9
    • 0142137714 scopus 로고    scopus 로고
    • Simulating a class of stationary Gaussian processes using the Davies-Harte algorithm, with application to long memory processes
    • Craigmile P.F. Simulating a class of stationary Gaussian processes using the Davies-Harte algorithm, with application to long memory processes. J. Time Ser. Anal. 24 (2003) 505-511
    • (2003) J. Time Ser. Anal. , vol.24 , pp. 505-511
    • Craigmile, P.F.1
  • 10
    • 33845455397 scopus 로고    scopus 로고
    • Power variation of some integral long-memory processes
    • Corcuera J.M., Nualart D., and Woerner J.H.C. Power variation of some integral long-memory processes. Bernoulli 12 (2006) 713-735
    • (2006) Bernoulli , vol.12 , pp. 713-735
    • Corcuera, J.M.1    Nualart, D.2    Woerner, J.H.C.3
  • 11
    • 34547972571 scopus 로고    scopus 로고
    • Transient noise simulation: Modeling and simulation of 1 / f-noise
    • Modeling, Simulation, and Optimization of Integrated Circuits. Antreich K., et al. (Ed), Birkhäuser, Basel
    • Denk G., Meintrup D., and Schäffler S. Transient noise simulation: Modeling and simulation of 1 / f-noise. In: Antreich K., et al. (Ed). Modeling, Simulation, and Optimization of Integrated Circuits. ISNM, Int. Ser. Numer. Math. vol. 146 (2003), Birkhäuser, Basel 251-267
    • (2003) ISNM, Int. Ser. Numer. Math. , vol.146 , pp. 251-267
    • Denk, G.1    Meintrup, D.2    Schäffler, S.3
  • 12
    • 21244459875 scopus 로고    scopus 로고
    • Representation formulas for Malliavin derivatives of diffusion processes
    • Detemple J., Garsia R., and Rindisbacher M. Representation formulas for Malliavin derivatives of diffusion processes. Finance Stoch. 9 3 (2005) 349-367
    • (2005) Finance Stoch. , vol.9 , Issue.3 , pp. 349-367
    • Detemple, J.1    Garsia, R.2    Rindisbacher, M.3
  • 13
    • 55649097569 scopus 로고    scopus 로고
    • M. Gradinaru, I. Nourdin, Convergence of weighted power variations of fractional Brownian motion, 2007, Working paper
    • M. Gradinaru, I. Nourdin, Convergence of weighted power variations of fractional Brownian motion, 2007, Working paper
  • 14
    • 55649106182 scopus 로고    scopus 로고
    • Y. Hu, D. Nualart, Differential equations driven by Hölder continuous functions of order greater than 1/2, 2006, Working Paper
    • Y. Hu, D. Nualart, Differential equations driven by Hölder continuous functions of order greater than 1/2, 2006, Working Paper
  • 15
    • 33847667577 scopus 로고    scopus 로고
    • On the Wiener integral with respect to the fractional Brownian motion on an interval
    • Jolis M. On the Wiener integral with respect to the fractional Brownian motion on an interval. J. Math. Anal. Appl. 330 (2007) 1115-1127
    • (2007) J. Math. Anal. Appl. , vol.330 , pp. 1115-1127
    • Jolis, M.1
  • 16
    • 19744382497 scopus 로고    scopus 로고
    • Generalized Langevin equation with fractional Gaussian noise: Subdiffusion within a single protein molecule
    • Kou S.C., and Sunney Xie X. Generalized Langevin equation with fractional Gaussian noise: Subdiffusion within a single protein molecule. Phys. Rev. Lett. 93 18 (2004)
    • (2004) Phys. Rev. Lett. , vol.93 , Issue.18
    • Kou, S.C.1    Sunney Xie, X.2
  • 19
    • 52149107530 scopus 로고    scopus 로고
    • Y. Mishura, G. Shevchenko, The rate of convergence for Euler approximations of solutions of stochastic differential equations driven by fractional Brownian motion, 2007, Working paper
    • Y. Mishura, G. Shevchenko, The rate of convergence for Euler approximations of solutions of stochastic differential equations driven by fractional Brownian motion, 2007, Working paper
  • 20
    • 26844485169 scopus 로고    scopus 로고
    • Optimal pointwise approximation of SDEs based on Brownian motion at discrete points
    • Müller-Gronbach T. Optimal pointwise approximation of SDEs based on Brownian motion at discrete points. Ann. Appl. Probab. 14 4 (2004) 1605-1642
    • (2004) Ann. Appl. Probab. , vol.14 , Issue.4 , pp. 1605-1642
    • Müller-Gronbach, T.1
  • 21
    • 33746030737 scopus 로고    scopus 로고
    • Optimal approximation of SDE's with additive fractional noise
    • Neuenkirch A. Optimal approximation of SDE's with additive fractional noise. J. Complexity 22 (2006) 459-474
    • (2006) J. Complexity , vol.22 , pp. 459-474
    • Neuenkirch, A.1
  • 22
    • 55649113137 scopus 로고    scopus 로고
    • A. Neuenkirch, Optimal approximation of stochastic differential equations with additive fractional noise, Ph.D. Thesis, TU Darmstadt. Shaker Verlag, Aachen, 2006
    • A. Neuenkirch, Optimal approximation of stochastic differential equations with additive fractional noise, Ph.D. Thesis, TU Darmstadt. Shaker Verlag, Aachen, 2006
  • 23
    • 35548963865 scopus 로고    scopus 로고
    • Exact rate of convergence of some approximation schemes associated to SDEs driven by a fBm
    • Neuenkirch A., and Nourdin I. Exact rate of convergence of some approximation schemes associated to SDEs driven by a fBm. J. Theor. Probab. 20 4 (2007) 871-899
    • (2007) J. Theor. Probab. , vol.20 , Issue.4 , pp. 871-899
    • Neuenkirch, A.1    Nourdin, I.2
  • 24
    • 0039911183 scopus 로고
    • An asymptotically efficient difference formula for solving stochastic differential equations
    • Newton N.J. An asymptotically efficient difference formula for solving stochastic differential equations. Stochastics 19 (1986) 175-206
    • (1986) Stochastics , vol.19 , pp. 175-206
    • Newton, N.J.1
  • 25
    • 0026138294 scopus 로고
    • Asymptotically efficient Runge-Kutta methods for a class of Itô and Stratonovich equations
    • Newton N.J. Asymptotically efficient Runge-Kutta methods for a class of Itô and Stratonovich equations. SIAM J. Appl. Math. 51 2 (1991) 542-567
    • (1991) SIAM J. Appl. Math. , vol.51 , Issue.2 , pp. 542-567
    • Newton, N.J.1
  • 26
    • 55649124868 scopus 로고    scopus 로고
    • I. Nourdin, A simple theory for the study of SDEs driven by a fractional Brownian motion, in dimension one, Séminaire de Probabilités XLI (2007) (in press)
    • I. Nourdin, A simple theory for the study of SDEs driven by a fractional Brownian motion, in dimension one, Séminaire de Probabilités XLI (2007) (in press)
  • 27
    • 33645536656 scopus 로고    scopus 로고
    • On the absolute continuity of one-dimensional SDEs driven by a fractional Brownian motion
    • Nourdin I., and Simon T. On the absolute continuity of one-dimensional SDEs driven by a fractional Brownian motion. Stat. Probab. Lett. 76 9 (2006) 907-912
    • (2006) Stat. Probab. Lett. , vol.76 , Issue.9 , pp. 907-912
    • Nourdin, I.1    Simon, T.2
  • 28
    • 13344283509 scopus 로고    scopus 로고
    • Stochastic calculus with respect to the fractional Brownian motion and applications
    • Nualart D. Stochastic calculus with respect to the fractional Brownian motion and applications. Contemp. Math. 336 (2003) 3-39
    • (2003) Contemp. Math. , vol.336 , pp. 3-39
    • Nualart, D.1
  • 30
    • 55649111170 scopus 로고    scopus 로고
    • D. Nualart, B. Saussereau, Malliavin calculus for stochastic differential equations driven by a fractional Brownian motion, 2005, Working paper
    • D. Nualart, B. Saussereau, Malliavin calculus for stochastic differential equations driven by a fractional Brownian motion, 2005, Working paper
  • 32
    • 0009613401 scopus 로고
    • An integrated fractional Fourier transform
    • Singer P. An integrated fractional Fourier transform. J. Comput. Appl. Math. 54 (1994) 221-237
    • (1994) J. Comput. Appl. Math. , vol.54 , pp. 221-237
    • Singer, P.1
  • 33
    • 0000048671 scopus 로고
    • Predicting integrals of stochastic processes
    • Stein M.L. Predicting integrals of stochastic processes. Ann. Appl. Probab. 5 1 (1995) 158-170
    • (1995) Ann. Appl. Probab. , vol.5 , Issue.1 , pp. 158-170
    • Stein, M.L.1
  • 34
    • 21344446999 scopus 로고
    • Predicting integrals of random fields using observations on a lattice
    • Stein M.L. Predicting integrals of random fields using observations on a lattice. Ann. Statist. 23 (1995) 1975-1990
    • (1995) Ann. Statist. , vol.23 , pp. 1975-1990
    • Stein, M.L.1
  • 35
    • 0010821255 scopus 로고
    • Stochastic differential equations and nilpotent Lie algebras
    • Yamato Y. Stochastic differential equations and nilpotent Lie algebras. Z. Wahrscheinlichkeitstheor. Verw. Geb. 47 (1979) 213-229
    • (1979) Z. Wahrscheinlichkeitstheor. Verw. Geb. , vol.47 , pp. 213-229
    • Yamato, Y.1
  • 36
    • 22144488750 scopus 로고    scopus 로고
    • Stochastic differential equations with fractal noise
    • Zähle M. Stochastic differential equations with fractal noise. Math. Nachr. 278 9 (2005) 1097-1106
    • (2005) Math. Nachr. , vol.278 , Issue.9 , pp. 1097-1106
    • Zähle, M.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.