-
2
-
-
0032246690
-
Approximating integrals of stochastic processes: Extensions
-
Benhenni K. Approximating integrals of stochastic processes: Extensions. J. Appl. Probab. 35 (1998) 843-855
-
(1998)
J. Appl. Probab.
, vol.35
, pp. 843-855
-
-
Benhenni, K.1
-
3
-
-
0346433436
-
On arbitrage-free pricing of weather derivatives based on fractional Brownian motion
-
Benth F.E. On arbitrage-free pricing of weather derivatives based on fractional Brownian motion. Appl. Math. Finance 10 (2003) 303-324
-
(2003)
Appl. Math. Finance
, vol.10
, pp. 303-324
-
-
Benth, F.E.1
-
4
-
-
85008814939
-
Dynamical pricing of weather derivatives
-
Brody D., Syroka J., and Zervos M. Dynamical pricing of weather derivatives. Quant. Finance 2 (2002) 189-198
-
(2002)
Quant. Finance
, vol.2
, pp. 189-198
-
-
Brody, D.1
Syroka, J.2
Zervos, M.3
-
5
-
-
0007470214
-
Exact convergence rate of the Euler-Maruyama scheme, with application to sampling design
-
Cambanis S., and Hu Y. Exact convergence rate of the Euler-Maruyama scheme, with application to sampling design. Stoch. Stoch. Rep. 59 (1996) 211-240
-
(1996)
Stoch. Stoch. Rep.
, vol.59
, pp. 211-240
-
-
Cambanis, S.1
Hu, Y.2
-
6
-
-
21344466895
-
The ordinary differential equation approach to asymptotically efficient schemes for solution of stochastic differential equations
-
Castell F., and Gaines J. The ordinary differential equation approach to asymptotically efficient schemes for solution of stochastic differential equations. Ann. Inst. Henri Poincaré Probab. Stat. 32 2 (1996) 231-250
-
(1996)
Ann. Inst. Henri Poincaré Probab. Stat.
, vol.32
, Issue.2
, pp. 231-250
-
-
Castell, F.1
Gaines, J.2
-
7
-
-
0007508207
-
The maximum rate of convergence of discrete approximations
-
Stochastic Differential Systems. Grigelionis B. (Ed), Springer, Berlin
-
Clark J.M.C., and Cameron R.J. The maximum rate of convergence of discrete approximations. In: Grigelionis B. (Ed). Stochastic Differential Systems. Lect. Notes Control Inf Sci. vol. 25 (1980), Springer, Berlin 161-171
-
(1980)
Lect. Notes Control Inf Sci.
, vol.25
, pp. 161-171
-
-
Clark, J.M.C.1
Cameron, R.J.2
-
8
-
-
0012307377
-
Simulation and identification of the fractional Brownian motion: a bibliographical and comparative study
-
Coeurjolly J.F. Simulation and identification of the fractional Brownian motion: a bibliographical and comparative study. J. Statist. Software 5 (2000) 1-53
-
(2000)
J. Statist. Software
, vol.5
, pp. 1-53
-
-
Coeurjolly, J.F.1
-
9
-
-
0142137714
-
Simulating a class of stationary Gaussian processes using the Davies-Harte algorithm, with application to long memory processes
-
Craigmile P.F. Simulating a class of stationary Gaussian processes using the Davies-Harte algorithm, with application to long memory processes. J. Time Ser. Anal. 24 (2003) 505-511
-
(2003)
J. Time Ser. Anal.
, vol.24
, pp. 505-511
-
-
Craigmile, P.F.1
-
10
-
-
33845455397
-
Power variation of some integral long-memory processes
-
Corcuera J.M., Nualart D., and Woerner J.H.C. Power variation of some integral long-memory processes. Bernoulli 12 (2006) 713-735
-
(2006)
Bernoulli
, vol.12
, pp. 713-735
-
-
Corcuera, J.M.1
Nualart, D.2
Woerner, J.H.C.3
-
11
-
-
34547972571
-
Transient noise simulation: Modeling and simulation of 1 / f-noise
-
Modeling, Simulation, and Optimization of Integrated Circuits. Antreich K., et al. (Ed), Birkhäuser, Basel
-
Denk G., Meintrup D., and Schäffler S. Transient noise simulation: Modeling and simulation of 1 / f-noise. In: Antreich K., et al. (Ed). Modeling, Simulation, and Optimization of Integrated Circuits. ISNM, Int. Ser. Numer. Math. vol. 146 (2003), Birkhäuser, Basel 251-267
-
(2003)
ISNM, Int. Ser. Numer. Math.
, vol.146
, pp. 251-267
-
-
Denk, G.1
Meintrup, D.2
Schäffler, S.3
-
12
-
-
21244459875
-
Representation formulas for Malliavin derivatives of diffusion processes
-
Detemple J., Garsia R., and Rindisbacher M. Representation formulas for Malliavin derivatives of diffusion processes. Finance Stoch. 9 3 (2005) 349-367
-
(2005)
Finance Stoch.
, vol.9
, Issue.3
, pp. 349-367
-
-
Detemple, J.1
Garsia, R.2
Rindisbacher, M.3
-
13
-
-
55649097569
-
-
M. Gradinaru, I. Nourdin, Convergence of weighted power variations of fractional Brownian motion, 2007, Working paper
-
M. Gradinaru, I. Nourdin, Convergence of weighted power variations of fractional Brownian motion, 2007, Working paper
-
-
-
-
14
-
-
55649106182
-
-
Y. Hu, D. Nualart, Differential equations driven by Hölder continuous functions of order greater than 1/2, 2006, Working Paper
-
Y. Hu, D. Nualart, Differential equations driven by Hölder continuous functions of order greater than 1/2, 2006, Working Paper
-
-
-
-
15
-
-
33847667577
-
On the Wiener integral with respect to the fractional Brownian motion on an interval
-
Jolis M. On the Wiener integral with respect to the fractional Brownian motion on an interval. J. Math. Anal. Appl. 330 (2007) 1115-1127
-
(2007)
J. Math. Anal. Appl.
, vol.330
, pp. 1115-1127
-
-
Jolis, M.1
-
16
-
-
19744382497
-
Generalized Langevin equation with fractional Gaussian noise: Subdiffusion within a single protein molecule
-
Kou S.C., and Sunney Xie X. Generalized Langevin equation with fractional Gaussian noise: Subdiffusion within a single protein molecule. Phys. Rev. Lett. 93 18 (2004)
-
(2004)
Phys. Rev. Lett.
, vol.93
, Issue.18
-
-
Kou, S.C.1
Sunney Xie, X.2
-
19
-
-
52149107530
-
-
Y. Mishura, G. Shevchenko, The rate of convergence for Euler approximations of solutions of stochastic differential equations driven by fractional Brownian motion, 2007, Working paper
-
Y. Mishura, G. Shevchenko, The rate of convergence for Euler approximations of solutions of stochastic differential equations driven by fractional Brownian motion, 2007, Working paper
-
-
-
-
20
-
-
26844485169
-
Optimal pointwise approximation of SDEs based on Brownian motion at discrete points
-
Müller-Gronbach T. Optimal pointwise approximation of SDEs based on Brownian motion at discrete points. Ann. Appl. Probab. 14 4 (2004) 1605-1642
-
(2004)
Ann. Appl. Probab.
, vol.14
, Issue.4
, pp. 1605-1642
-
-
Müller-Gronbach, T.1
-
21
-
-
33746030737
-
Optimal approximation of SDE's with additive fractional noise
-
Neuenkirch A. Optimal approximation of SDE's with additive fractional noise. J. Complexity 22 (2006) 459-474
-
(2006)
J. Complexity
, vol.22
, pp. 459-474
-
-
Neuenkirch, A.1
-
22
-
-
55649113137
-
-
A. Neuenkirch, Optimal approximation of stochastic differential equations with additive fractional noise, Ph.D. Thesis, TU Darmstadt. Shaker Verlag, Aachen, 2006
-
A. Neuenkirch, Optimal approximation of stochastic differential equations with additive fractional noise, Ph.D. Thesis, TU Darmstadt. Shaker Verlag, Aachen, 2006
-
-
-
-
23
-
-
35548963865
-
Exact rate of convergence of some approximation schemes associated to SDEs driven by a fBm
-
Neuenkirch A., and Nourdin I. Exact rate of convergence of some approximation schemes associated to SDEs driven by a fBm. J. Theor. Probab. 20 4 (2007) 871-899
-
(2007)
J. Theor. Probab.
, vol.20
, Issue.4
, pp. 871-899
-
-
Neuenkirch, A.1
Nourdin, I.2
-
24
-
-
0039911183
-
An asymptotically efficient difference formula for solving stochastic differential equations
-
Newton N.J. An asymptotically efficient difference formula for solving stochastic differential equations. Stochastics 19 (1986) 175-206
-
(1986)
Stochastics
, vol.19
, pp. 175-206
-
-
Newton, N.J.1
-
25
-
-
0026138294
-
Asymptotically efficient Runge-Kutta methods for a class of Itô and Stratonovich equations
-
Newton N.J. Asymptotically efficient Runge-Kutta methods for a class of Itô and Stratonovich equations. SIAM J. Appl. Math. 51 2 (1991) 542-567
-
(1991)
SIAM J. Appl. Math.
, vol.51
, Issue.2
, pp. 542-567
-
-
Newton, N.J.1
-
26
-
-
55649124868
-
-
I. Nourdin, A simple theory for the study of SDEs driven by a fractional Brownian motion, in dimension one, Séminaire de Probabilités XLI (2007) (in press)
-
I. Nourdin, A simple theory for the study of SDEs driven by a fractional Brownian motion, in dimension one, Séminaire de Probabilités XLI (2007) (in press)
-
-
-
-
27
-
-
33645536656
-
On the absolute continuity of one-dimensional SDEs driven by a fractional Brownian motion
-
Nourdin I., and Simon T. On the absolute continuity of one-dimensional SDEs driven by a fractional Brownian motion. Stat. Probab. Lett. 76 9 (2006) 907-912
-
(2006)
Stat. Probab. Lett.
, vol.76
, Issue.9
, pp. 907-912
-
-
Nourdin, I.1
Simon, T.2
-
28
-
-
13344283509
-
Stochastic calculus with respect to the fractional Brownian motion and applications
-
Nualart D. Stochastic calculus with respect to the fractional Brownian motion and applications. Contemp. Math. 336 (2003) 3-39
-
(2003)
Contemp. Math.
, vol.336
, pp. 3-39
-
-
Nualart, D.1
-
30
-
-
55649111170
-
-
D. Nualart, B. Saussereau, Malliavin calculus for stochastic differential equations driven by a fractional Brownian motion, 2005, Working paper
-
D. Nualart, B. Saussereau, Malliavin calculus for stochastic differential equations driven by a fractional Brownian motion, 2005, Working paper
-
-
-
-
32
-
-
0009613401
-
An integrated fractional Fourier transform
-
Singer P. An integrated fractional Fourier transform. J. Comput. Appl. Math. 54 (1994) 221-237
-
(1994)
J. Comput. Appl. Math.
, vol.54
, pp. 221-237
-
-
Singer, P.1
-
33
-
-
0000048671
-
Predicting integrals of stochastic processes
-
Stein M.L. Predicting integrals of stochastic processes. Ann. Appl. Probab. 5 1 (1995) 158-170
-
(1995)
Ann. Appl. Probab.
, vol.5
, Issue.1
, pp. 158-170
-
-
Stein, M.L.1
-
34
-
-
21344446999
-
Predicting integrals of random fields using observations on a lattice
-
Stein M.L. Predicting integrals of random fields using observations on a lattice. Ann. Statist. 23 (1995) 1975-1990
-
(1995)
Ann. Statist.
, vol.23
, pp. 1975-1990
-
-
Stein, M.L.1
-
35
-
-
0010821255
-
Stochastic differential equations and nilpotent Lie algebras
-
Yamato Y. Stochastic differential equations and nilpotent Lie algebras. Z. Wahrscheinlichkeitstheor. Verw. Geb. 47 (1979) 213-229
-
(1979)
Z. Wahrscheinlichkeitstheor. Verw. Geb.
, vol.47
, pp. 213-229
-
-
Yamato, Y.1
-
36
-
-
22144488750
-
Stochastic differential equations with fractal noise
-
Zähle M. Stochastic differential equations with fractal noise. Math. Nachr. 278 9 (2005) 1097-1106
-
(2005)
Math. Nachr.
, vol.278
, Issue.9
, pp. 1097-1106
-
-
Zähle, M.1
|