-
2
-
-
34047148984
-
Operators associated with a stochastic differential equation driven by fractional Brownian motions
-
Baudoin, F., & Coutin, L. (2007). Operators associated with a stochastic differential equation driven by fractional Brownian motions. Stochastic Processes and Their Applications, 117, 550-574.
-
(2007)
Stochastic Processes and Their Applications
, vol.117
, pp. 550-574
-
-
Baudoin, F.1
Coutin, L.2
-
3
-
-
0346433436
-
On arbitrage-free pricing of weather derivatives based on fractional Brownian motion
-
Benth, F. E. (2003). On arbitrage-free pricing of weather derivatives based on fractional Brownian motion. Applied Mathematical Finance, 10, 303-324.
-
(2003)
Applied Mathematical Finance
, vol.10
, pp. 303-324
-
-
Benth, F.E.1
-
4
-
-
85008814939
-
Dynamical pricing of weather derivatives
-
Brody, D., Syroka, J., & Zervos, M. (2002). Dynamical pricing of weather derivatives. Quantitative Finance, 2, 189-198.
-
(2002)
Quantitative Finance
, vol.2
, pp. 189-198
-
-
Brody, D.1
Syroka, J.2
Zervos, M.3
-
5
-
-
0012307377
-
Simulation and identification of the fractional Brownian motion: a bibliographical and comparative study
-
Coeurjolly, J. F. (2000). Simulation and identification of the fractional Brownian motion: a bibliographical and comparative study. Journal of Statistical Software, 5, 1-53.
-
(2000)
Journal of Statistical Software
, vol.5
, pp. 1-53
-
-
Coeurjolly, J.F.1
-
6
-
-
0142137714
-
Simulating a class of stationary Gaussian processes using the Davies-Harte algorithm, with application to long memory processes
-
Craigmile, P. F. (2003). Simulating a class of stationary Gaussian processes using the Davies-Harte algorithm, with application to long memory processes. Journal of Time Series Analysis, 24, 505-511.
-
(2003)
Journal of Time Series Analysis
, vol.24
, pp. 505-511
-
-
Craigmile, P.F.1
-
7
-
-
34547972571
-
Transient noise simulation: modeling and simulation of 1/f-noise
-
Int. ser. numer. math, K. Antreich (Ed.), Basel: Birkhäuser
-
Denk, G., Meintrup, D., & Schäffler, S. (2001). Transient noise simulation: modeling and simulation of 1/f-noise. In K. Antreich et al. (Eds.), Int. ser. numer. math.: Vol. 146. Modeling, simulation, and optimization of integrated circuits (pp. 251-267). Basel: Birkhäuser.
-
(2001)
Modeling, Simulation, and Optimization of Integrated Circuits
, vol.146
, pp. 251-267
-
-
Denk, G.1
Meintrup, D.2
Schäffler, S.3
-
8
-
-
34547988243
-
Modelling and simulation of transient noise in circuit simulation
-
Denk, G., & Winkler, R. (2007). Modelling and simulation of transient noise in circuit simulation. Mathematical and Computer Modelling of Dynamical Systems, 13(4), 383-394.
-
(2007)
Mathematical and Computer Modelling of Dynamical Systems
, vol.13
, Issue.4
, pp. 383-394
-
-
Denk, G.1
Winkler, R.2
-
9
-
-
21344444681
-
Efficient Monte Carlo simulation of security prices
-
Duffie, D., & Glynn, P. (1995). Efficient Monte Carlo simulation of security prices. Annals of Applied Probability, 5(4), 897-905.
-
(1995)
Annals of Applied Probability
, vol.5
, Issue.4
, pp. 897-905
-
-
Duffie, D.1
Glynn, P.2
-
10
-
-
70449519425
-
Discretization of the attractor of a system driven by fractional Brownian motion
-
Garrido Atienza, M. J., Kloeden, P. E., & Neuenkirch, A. (2009). Discretization of the attractor of a system driven by fractional Brownian motion. Applied Mathematics & Optimization, 60(2), 151-172.
-
(2009)
Applied Mathematics & Optimization
, vol.60
, Issue.2
, pp. 151-172
-
-
Garrido Atienza, M.J.1
Kloeden, P.E.2
Neuenkirch, A.3
-
11
-
-
61449162945
-
Multilevel Monte Carlo path simulation
-
Giles, M. (2008). Multilevel Monte Carlo path simulation. Operations Research, 56(3), 607-617.
-
(2008)
Operations Research
, vol.56
, Issue.3
, pp. 607-617
-
-
Giles, M.1
-
12
-
-
84892272601
-
Improved multilevel Monte Carlo convergence using the Milstein scheme
-
A. Keller (Ed.), Berlin: Springer
-
Giles, M. (2007). Improved multilevel Monte Carlo convergence using the Milstein scheme. In A. Keller et al. (Eds.), Monte Carlo and quasi-Monte Carlo methods 2006. Proceedings (pp. 343-354). Berlin: Springer.
-
(2007)
Monte Carlo and Quasi-Monte Carlo Methods 2006. Proceedings
, pp. 343-354
-
-
Giles, M.1
-
14
-
-
33745022624
-
No arbitrage with transaction costs, with fractional Brownian motion and beyond
-
Guasoni, P. (2006). No arbitrage with transaction costs, with fractional Brownian motion and beyond. Mathematical Finance, 16, 569-582.
-
(2006)
Mathematical Finance
, vol.16
, pp. 569-582
-
-
Guasoni, P.1
-
16
-
-
33847667577
-
On the Wiener integral with respect to the fractional Brownian motion on an interval
-
Jolis, M. (2007). On the Wiener integral with respect to the fractional Brownian motion on an interval. Journal of Mathematical Analysis and Applications, 330, 1115-1127.
-
(2007)
Journal of Mathematical Analysis and Applications
, vol.330
, pp. 1115-1127
-
-
Jolis, M.1
-
18
-
-
54949102951
-
Stochastic modeling in nanoscale biophysics: subdiffusion within proteins
-
Kou, S. C. (2008). Stochastic modeling in nanoscale biophysics: subdiffusion within proteins. Annals of Applied Statistics, 2(2), 501-535.
-
(2008)
Annals of Applied Statistics
, vol.2
, Issue.2
, pp. 501-535
-
-
Kou, S.C.1
-
20
-
-
52149107530
-
The rate of convergence for Euler approximations of solutions of stochastic differential equations driven by fractional Brownian motion
-
Mishura, Y., & Shevchenko, G. (2008). The rate of convergence for Euler approximations of solutions of stochastic differential equations driven by fractional Brownian motion. Stochastics, 80(5), 489-511.
-
(2008)
Stochastics
, vol.80
, Issue.5
, pp. 489-511
-
-
Mishura, Y.1
Shevchenko, G.2
-
21
-
-
33746030737
-
Optimal approximation of SDE's with additive fractional noise
-
Neuenkirch, A. (2006). Optimal approximation of SDE's with additive fractional noise. Journal of Complexity, 22, 459-474.
-
(2006)
Journal of Complexity
, vol.22
, pp. 459-474
-
-
Neuenkirch, A.1
-
22
-
-
55649094460
-
Optimal pointwise approximation of stochastic differential equations driven by fractional Brownian motion
-
Neuenkirch, A. (2008). Optimal pointwise approximation of stochastic differential equations driven by fractional Brownian motion. Stochastic Processes and Their Applications, 118(12), 2294-2333.
-
(2008)
Stochastic Processes and Their Applications
, vol.118
, Issue.12
, pp. 2294-2333
-
-
Neuenkirch, A.1
-
23
-
-
35548963865
-
Exact rate of convergence of some approximation schemes associated to SDEs driven by a fBm
-
Neuenkirch, A., & Nourdin, I. (2007). Exact rate of convergence of some approximation schemes associated to SDEs driven by a fBm. Journal of Theoretical Probability, 20(4), 871-899.
-
(2007)
Journal of Theoretical Probability
, vol.20
, Issue.4
, pp. 871-899
-
-
Neuenkirch, A.1
Nourdin, I.2
-
24
-
-
18144383460
-
Schémas d'approximation associés à une équation différentielle dirigée par une fonction höldérienne cas du mouvement Brownien fractionnaire
-
Nourdin, I. (2005). Schémas d'approximation associés à une équation différentielle dirigée par une fonction höldérienne cas du mouvement Brownien fractionnaire. Comptes Rendus de l'Académie des Sciences. Série I. Mathématique, 340(8), 611-614.
-
(2005)
Comptes Rendus De L'académie Des Sciences. Série I. Mathématique
, vol.340
, Issue.8
, pp. 611-614
-
-
Nourdin, I.1
-
26
-
-
58549118426
-
Malliavin calculus for stochastic differential equations driven by fractional Brownian motion
-
Nualart, D., & Saussereau, B. (2009). Malliavin calculus for stochastic differential equations driven by fractional Brownian motion. Stochastic Processes and Their Applications, 119(2), 391-409.
-
(2009)
Stochastic Processes and Their Applications
, vol.119
, Issue.2
, pp. 391-409
-
-
Nualart, D.1
Saussereau, B.2
-
27
-
-
0000821514
-
An inequality of Hölder type connected with Stieltjes integration
-
Young, L. C. (1936). An inequality of Hölder type connected with Stieltjes integration. Acta Mathematica, 67, 251-282.
-
(1936)
Acta Mathematica
, vol.67
, pp. 251-282
-
-
Young, L.C.1
-
28
-
-
22144488750
-
Stochastic differential equations with fractal noise
-
Zähle, M. (2005). Stochastic differential equations with fractal noise. Mathematische Nachrichten, 278(9), 1097-1106.
-
(2005)
Mathematische Nachrichten
, vol.278
, Issue.9
, pp. 1097-1106
-
-
Zähle, M.1
|