-
1
-
-
0346796118
-
Asymptotic properties of deviations of a sample path of a Gaussian process from approximation by regression broken line for decreasing width of quantization
-
Yu. K. Belyaev, ed., Moscow Univ. Press
-
BELYAEV, Yu. K. and SIMONYAN, A. H. (1979). Asymptotic properties of deviations of a sample path of a Gaussian process from approximation by regression broken line for decreasing width of quantization. In Random Processes and Fields (Yu. K. Belyaev, ed.) 9-21. Moscow Univ. Press.
-
(1979)
Random Processes and Fields
, pp. 9-21
-
-
Belyaev, Yu.K.1
Simonyan, A.H.2
-
2
-
-
84966199387
-
Maxima and high level excursions of stationary Gaussian processes
-
BERMAN, S. M. (1971). Maxima and high level excursions of stationary Gaussian processes. Trans. Amer. Math. Soc. 160 65-85.
-
(1971)
Trans. Amer. Math. Soc.
, vol.160
, pp. 65-85
-
-
Berman, S.M.1
-
3
-
-
0040785995
-
Sojourns and extremes of Gaussian process
-
[Corrections 8 (1980) 999; 12 (1984) 281.]
-
BERMAN, S. M. (1974). Sojourns and extremes of Gaussian process. Ann. Probab. 2 999-1026. [Corrections 8 (1980) 999; 12 (1984) 281.]
-
(1974)
Ann. Probab.
, vol.2
, pp. 999-1026
-
-
Berman, S.M.1
-
4
-
-
0040884032
-
The maximum of a Gaussian process with nonconstant variance
-
BERMAN, S. M. (1985). The maximum of a Gaussian process with nonconstant variance. Ann. Inst. H. Poincaré Probab. Statist. 21 383-391.
-
(1985)
Ann. Inst. H. Poincaré Probab. Statist.
, vol.21
, pp. 383-391
-
-
Berman, S.M.1
-
6
-
-
0346515168
-
On certain extremal problems in approximation theory of random processes
-
BUSLAEV, A. P. and SELEZNJEV, O. (1999). On certain extremal problems in approximation theory of random processes. East J. Approx. 5 467-481.
-
(1999)
East J. Approx.
, vol.5
, pp. 467-481
-
-
Buslaev, A.P.1
Seleznjev, O.2
-
9
-
-
0346165549
-
Approximation theory for simulation of continuous Gaussian processes
-
EPLETT, W. T. (1986). Approximation theory for simulation of continuous Gaussian processes. Probab. Theory Related Fields 73 159-181.
-
(1986)
Probab. Theory Related Fields
, vol.73
, pp. 159-181
-
-
Eplett, W.T.1
-
10
-
-
0039353950
-
Asymptotic approximation of crossing probabilities of random sequences
-
HÜSLER, J. (1983). Asymptotic approximation of crossing probabilities of random sequences. Z. Wahrsch. Verw. Gebiete 63 257-270.
-
(1983)
Z. Wahrsch. Verw. Gebiete
, vol.63
, pp. 257-270
-
-
Hüsler, J.1
-
11
-
-
0039013264
-
Extreme values and high boundary crossings for locally stationary Gaussian processes
-
HÜSLER, J. (1990). Extreme values and high boundary crossings for locally stationary Gaussian processes. Ann. Probab. 18 1141-1158.
-
(1990)
Ann. Probab.
, vol.18
, pp. 1141-1158
-
-
Hüsler, J.1
-
12
-
-
0042514732
-
A note on extreme values of locally stationary Gaussian processes
-
HÜSLER, J. (1995). A note on extreme values of locally stationary Gaussian processes. J. Statist. Plann. Inference 45 203-213.
-
(1995)
J. Statist. Plann. Inference
, vol.45
, pp. 203-213
-
-
Hüsler, J.1
-
13
-
-
0043223519
-
Extremes of Gaussian processes, on results of Piterbarg and Seleznjev
-
HÜSLER, J. (1999). Extremes of Gaussian processes, on results of Piterbarg and Seleznjev. Statist. Probab. Lett. 44 251-258.
-
(1999)
Statist. Probab. Lett.
, vol.44
, pp. 251-258
-
-
Hüsler, J.1
-
16
-
-
0345884366
-
Weak convergence of high level crossings and maxima for one or more Gaussian processes
-
LINDGREN, G., DE MARÉ, J. and ROOTZÉN, H. (1975). Weak convergence of high level crossings and maxima for one or more Gaussian processes. Ann. Probab. 3 961-978.
-
(1975)
Ann. Probab.
, vol.3
, pp. 961-978
-
-
Lindgren, G.1
De Maré, J.2
Rootzén, H.3
-
17
-
-
0030080044
-
Optimal designs for approximating the path of a stochastic process
-
MÜLLER-GRONBACH, T. (1996). Optimal designs for approximating the path of a stochastic process. J. Statist. Plann. Inference 49 371-385.
-
(1996)
J. Statist. Plann. Inference
, vol.49
, pp. 371-385
-
-
Müller-Gronbach, T.1
-
19
-
-
0040239854
-
Moment convergence of sample extremes
-
PICKANDS, J., III. (1968). Moment convergence of sample extremes. Ann. Math. Statist. 39 881-889.
-
(1968)
Ann. Math. Statist.
, vol.39
, pp. 881-889
-
-
Pickands III, J.1
-
20
-
-
0002289349
-
Upcrossing probabilities for stationary Gaussian processes
-
PICKANDS, J., III. (1969). Upcrossing probabilities for stationary Gaussian processes. Trans. Amer. Math. Soc. 145 51-73.
-
(1969)
Trans. Amer. Math. Soc.
, vol.145
, pp. 51-73
-
-
Pickands III, J.1
-
21
-
-
0003655789
-
Asymptotic Methods in the Theory of Gaussian Processes and Fields
-
Providence, RI
-
PITERBARG, V. (1996). Asymptotic Methods in the Theory of Gaussian Processes and Fields. Amer. Math. Soc., Providence, RI.
-
(1996)
Amer. Math. Soc.
-
-
Piterbarg, V.1
-
22
-
-
0008175220
-
Asymptotic behaviour of the probability of a large excursion of a non-stationary Gaussian process
-
PITERBARG, V. I. and PRISYAZHN'UK, V. (1978). Asymptotic behaviour of the probability of a large excursion of a non-stationary Gaussian process. Theory Probab. Math. Statist. 18 121-133.
-
(1978)
Theory Probab. Math. Statist.
, vol.18
, pp. 121-133
-
-
Piterbarg, V.I.1
Prisyazhn'uk, V.2
-
23
-
-
0042514733
-
Linear interpolation of random processes and extremes of a sequence of Gaussian non-stationary processes
-
Center Stoch. Process, North Carolina Univ., Chapel Hill
-
PITERBARG, V. and SELEZNJEV, O. (1994). Linear interpolation of random processes and extremes of a sequence of Gaussian non-stationary processes. Technical Report 1994:446, Center Stoch. Process, North Carolina Univ., Chapel Hill.
-
(1994)
Technical Report
, vol.1994
, Issue.446
-
-
Piterbarg, V.1
Seleznjev, O.2
-
24
-
-
0011554110
-
Asymptotic properties of Gaussian processes
-
QUALLS, C. and WATANABE, H. (1972). Asymptotic properties of Gaussian processes. Ann. Math. Statist. 43 580-596.
-
(1972)
Ann. Math. Statist.
, vol.43
, pp. 580-596
-
-
Qualls, C.1
Watanabe, H.2
-
26
-
-
0003237499
-
Average Case Analysis of Numerical Problems
-
Springer, New York
-
RITTER, K. (1999). Average Case Analysis of Numerical Problems. Lecture Notes in Math. 1733. Springer, New York.
-
(1999)
Lecture Notes in Math.
, vol.1733
-
-
Ritter, K.1
-
27
-
-
0001231555
-
Multivariate integration and approximation for random fields satisfying Sacks-Ylvisaker conditions
-
RITTER, K., WASILKOWSKI, G. W. and WOŹNIAKOWSKI, W. (1995). Multivariate integration and approximation for random fields satisfying Sacks-Ylvisaker conditions. Ann. Appl. Probab. 5 518-540.
-
(1995)
Ann. Appl. Probab.
, vol.5
, pp. 518-540
-
-
Ritter, K.1
Wasilkowski, G.W.2
Woźniakowski, W.3
-
28
-
-
84972517827
-
Design and analysis of computer experiment
-
SACKS, J., WELCH, W. J., MITCHELL, T. J. and WYNN, H. P. (1989). Design and analysis of computer experiment. Statist. Sci. 4 409-435.
-
(1989)
Statist. Sci.
, vol.4
, pp. 409-435
-
-
Sacks, J.1
Welch, W.J.2
Mitchell, T.J.3
Wynn, H.P.4
-
29
-
-
0002932504
-
Design for regression problems with correlated errors
-
SACKS, J. and YLVISAKER, D. (1966). Design for regression problems with correlated errors. Ann. Math. Statist. 37 66-89.
-
(1966)
Ann. Math. Statist.
, vol.37
, pp. 66-89
-
-
Sacks, J.1
Ylvisaker, D.2
-
30
-
-
0346515167
-
The best approximation of random processes and approximation of periodic random processes
-
Dept. Mathematical Statistics, Lund University, Sweden
-
SELEZNJEV, O. (1989). The best approximation of random processes and approximation of periodic random processes. Research Report 1989:6, Dept. Mathematical Statistics, Lund University, Sweden.
-
(1989)
Research Report
, vol.1989
, Issue.6
-
-
Seleznjev, O.1
-
31
-
-
0346165546
-
Limit theorems for maxima and crossings of a sequence of Gaussian processes and approximation of random processes
-
SELEZNJEV, O. (1991). Limit theorems for maxima and crossings of a sequence of Gaussian processes and approximation of random processes. J. Appl. Probab. 28 17-32.
-
(1991)
J. Appl. Probab.
, vol.28
, pp. 17-32
-
-
Seleznjev, O.1
-
33
-
-
0010826439
-
Large deviations in the piecewise linear approximation of Gaussian processes with stationary increments
-
SELEZNJEV, O. (1996). Large deviations in the piecewise linear approximation of Gaussian processes with stationary increments. Adv. in Appl. Probab. 28 481-499.
-
(1996)
Adv. in Appl. Probab.
, vol.28
, pp. 481-499
-
-
Seleznjev, O.1
-
34
-
-
0347775683
-
Linear approximation of random processes and sampling design problems
-
B. Grigelionis, J. Kubilius, V. Paulauskas, H. Pragauskas and V. Statulevicius, eds., VSP/TEV, The Netherlands
-
SELEZNJEV, O. (1999). Linear approximation of random processes and sampling design problems. In Probability Theory and Mathematical Statistics (B. Grigelionis, J. Kubilius, V. Paulauskas, H. Pragauskas and V. Statulevicius, eds.) 665-684. VSP/TEV, The Netherlands.
-
(1999)
Probability Theory and Mathematical Statistics
, pp. 665-684
-
-
Seleznjev, O.1
-
35
-
-
0347164836
-
Spline approximation of random processes and design problems
-
SELEZNJEV, O. (2000). Spline approximation of random processes and design problems. J. Statist. Plann. Inference 84 249-262.
-
(2000)
J. Statist. Plann. Inference
, vol.84
, pp. 249-262
-
-
Seleznjev, O.1
-
36
-
-
38249002021
-
Sampling designs for estimation of a random process
-
SU, Y. and CAMBANIS, S. (1993). Sampling designs for estimation of a random process. Stochastic Process. Appl. 46 47-89.
-
(1993)
Stochastic Process. Appl.
, vol.46
, pp. 47-89
-
-
Su, Y.1
Cambanis, S.2
-
38
-
-
0348056996
-
Simulation and approximation of stochastic processes by spline functions
-
WEBA, M. (1992). Simulation and approximation of stochastic processes by spline functions. SIAM J. Sci. Comput. 13 1085-1096.
-
(1992)
SIAM J. Sci. Comput.
, vol.13
, pp. 1085-1096
-
-
Weba, M.1
|