-
1
-
-
85037898906
-
Extending the Wong-Zakai theorem to reversible Markov processes via Levy area
-
(in press)
-
R.F. Bass, B.M. Hambly, T.J. Lyons. Extending the Wong-Zakai theorem to reversible Markov processes via Levy area. J. Euro. Math. Soc. (in press).
-
J. Euro. Math. Soc
-
-
Bass, R.F.1
Hambly, B.M.2
Lyons, T.J.3
-
2
-
-
0008607529
-
Variation totale d’une fonction
-
Springer-Verlag
-
M. Bruneau. Variation totale d’une fonction. Lecture Notes in Math., 413, Springer-Verlag (1974).
-
(1974)
Lecture Notes in Math
, vol.413
-
-
Bruneau, M.1
-
3
-
-
18744427246
-
Stochastic differential equations driven by fractional Brownian motions
-
Serie I
-
L. Coutin, Z. Qian. Stochastic differential equations driven by fractional Brownian motions. C.R. Acad. Sc. Paris, t.331, Serie I, 75-80, (2000).
-
(2000)
C.R. Acad. Sc. Paris
, vol.331
, pp. 75-80
-
-
Coutin, L.1
Qian, Z.2
-
4
-
-
0036002985
-
Stochastic Analysis, rough path Analysis, and fractional Brownian motions
-
L. Coutin, Z. Qian. Stochastic Analysis, rough path Analysis, and fractional Brownian motions. P.T.R.F., t.122, 108-140, (2002).
-
(2002)
P.T.R.F., T
, vol.122
, pp. 108-140
-
-
Coutin, L.1
Qian, Z.2
-
6
-
-
0042637937
-
Stochastic analysis of the fractional Brownian motion
-
L. Decreusefond, A.S. Ustunel. Stochastic analysis of the fractional Brownian motion. Potential Analysis, 10, 177-214, (1998).
-
(1998)
Potential Analysis
, vol.10
, pp. 177-214
-
-
Decreusefond, L.1
Ustunel, A.S.2
-
9
-
-
0033457813
-
Fractional Integrals and Brownian Processes
-
D. Feyel, A. de La Pradelle. Fractional Integrals and Brownian Processes. Potential Analysis, vol.10, 273-288, (1999).
-
(1999)
Potential Analysis
, vol.10
, pp. 273-288
-
-
Feyel, D.1
De La Pradelle, A.2
-
10
-
-
10644280652
-
The fBM Ito formula through analytic continuation
-
Paper no26
-
D. Feyel, A. de La Pradelle. The fBM Ito formula through analytic continuation. Electronic Journal of Probability, Vol. 6, 1-22, Paper no26 (2001).
-
(2001)
Electronic Journal of Probability
, vol.6
, pp. 1-2
-
-
Feyel, D.1
De La Pradelle, A.2
-
18
-
-
0036887749
-
Large deviations and support theorem for diffusions via rough paths
-
M. Ledoux, Z. Qian, T. Zhang. Large deviations and support theorem for diffusions via rough paths. Stoch. Process. Appl., 102:2, 265-283, (2002).
-
(2002)
Stoch. Process. Appl
, vol.102
, Issue.2
, pp. 265-283
-
-
Ledoux, M.1
Qian, Z.2
Zhang, T.3
-
19
-
-
23244461120
-
An introduction to rough paths
-
Secture Notes in Maths. Springer, To appear
-
A. Lejay An introduction to rough paths. Sem. Proba. XXXVII, Secture Notes in Maths. Springer (2003). To appear.
-
(2003)
Sem. Proba. XXXVII
-
-
Lejay, A.1
-
20
-
-
0039348870
-
The interpretation and solution of ordinary differential equations driven by rough signals
-
T.J. Lyons. The interpretation and solution of ordinary differential equations driven by rough signals. Proc. Symp. Pure Math. 57, 115-128, (1995).
-
(1995)
Proc. Symp. Pure Math
, vol.57
, pp. 115-128
-
-
Lyons, T.J.1
-
21
-
-
0032347402
-
Differential equations driven by rough signals
-
T.J. Lyons. Differential equations driven by rough signals. Rev. Math. Iberoamer. 14, 215-310, (1998).
-
(1998)
Rev. Math. Iberoamer
, vol.14
, pp. 215-310
-
-
Lyons, T.J.1
-
22
-
-
0039348869
-
Calculus for multiplicative functionals, Ito’s formula and differential equations
-
Springer, Tokyo
-
T.J. Lyons, Z. Qian. Calculus for multiplicative functionals, Ito’s formula and differential equations. Ito’s stochastic calculus and Probability theory, 233-250, Springer, Tokyo, (1996).
-
(1996)
Ito’s Stochastic Calculus and Probability Theory
, pp. 233-250
-
-
Lyons, T.J.1
Qian, Z.2
-
23
-
-
0031234681
-
Flow equations on spaces of rough paths
-
T.J. Lyons, Z. Qian. Flow equations on spaces of rough paths. J. Funct. Anal. 149, 135-159, (1997).
-
(1997)
J. Funct. Anal
, vol.149
, pp. 135-159
-
-
Lyons, T.J.1
Qian, Z.2
-
26
-
-
0000395295
-
On the support of diffusion processes with application to the strong maximum principle
-
Univ. Of California Press
-
D.W. Stoock, S.R.S. Varadhan. On the support of diffusion processes with application to the strong maximum principle. Proc. Of the sixth Berkeley symp. Math. Stat. Prob. III, 333-368, Univ. Of California Press (1972).
-
(1972)
Proc. Of the Sixth Berkeley Symp. Math. Stat. Prob. III
, pp. 333-368
-
-
Stoock, D.W.1
Varadhan, S.R.S.2
-
27
-
-
0000821514
-
An inequality of Holder type, connected with Stieltjes integration
-
L.C. Young. An inequality of Holder type, connected with Stieltjes integration. Acta Math. 67, 251-282 (1936).
-
(1936)
Acta Math
, vol.67
, pp. 251-282
-
-
Young, L.C.1
|