메뉴 건너뛰기




Volumn 29, Issue 5, 2013, Pages 622-629

Reconciling differential gene expression data with molecular interaction networks

Author keywords

[No Author keywords available]

Indexed keywords

GLUCOSE; INSULIN;

EID: 84874753125     PISSN: 13674803     EISSN: 14602059     Source Type: Journal    
DOI: 10.1093/bioinformatics/btt007     Document Type: Article
Times cited : (9)

References (34)
  • 1
    • 77954376945 scopus 로고    scopus 로고
    • GOing Bayesian: Model-based gene set analysis of genome-scale data
    • Bauer, S. et al. (2010) GOing Bayesian: model-based gene set analysis of genome-scale data. Nucleic Acids Res., 38, 3523-3532.
    • (2010) Nucleic Acids Res. , vol.38 , pp. 3523-3532
    • Bauer, S.1
  • 2
    • 77951972600 scopus 로고    scopus 로고
    • BioNet: An R-Package for the functional analysis of biological networks
    • Beisser, D. et al. (2010) BioNet: an R-Package for the functional analysis of biological networks. Bioinformatics, 26, 1129-1130.
    • (2010) Bioinformatics , vol.26 , pp. 1129-1130
    • Beisser, D.1
  • 3
    • 79952423666 scopus 로고    scopus 로고
    • Subnetwork state functions define dysregulated subnetworks in cancer
    • Chowdhury, S. et al. (2011) Subnetwork state functions define dysregulated subnetworks in cancer. J. Comput. Biol., 18, 263-281.
    • (2011) J. Comput. Biol. , vol.18 , pp. 263-281
    • Chowdhury, S.1
  • 4
    • 33745619564 scopus 로고    scopus 로고
    • Exploiting indirect neighbours and topological weight to predict protein function from protein-protein interactions
    • DOI 10.1093/bioinformatics/btl145
    • Chua, H. N. et al. (2006) Exploiting indirect neighbours and topological weight to predict protein function from protein-protein interactions. Bioinformatics, 22, 1623-1630. (Pubitemid 43985296)
    • (2006) Bioinformatics , vol.22 , Issue.13 , pp. 1623-1630
    • Chua, H.N.1    Sung, W.-K.2    Wong, L.3
  • 5
    • 38049186509 scopus 로고    scopus 로고
    • The heat kernel as the pagerank of a graph
    • Chung, F. (2007) The heat kernel as the pagerank of a graph. Proc. Natl. Acad. Sci., 104, 19735-19740.
    • (2007) Proc. Natl. Acad. Sci. , vol.104 , pp. 19735-19740
    • Chung, F.1
  • 6
    • 1242316296 scopus 로고    scopus 로고
    • Insulin and neurodegenerative disease: Shared and specific mechanisms
    • DOI 10.1016/S1474-4422(04)00681-7
    • Craft, S. and Watson, H S. (2004) Insulin and neurodegenerative disease: shared and specific mechanisms. Lancet Neurol., 3, 169-178. (Pubitemid 38229951)
    • (2004) Lancet Neurology , vol.3 , Issue.3 , pp. 169-178
    • Craft, S.1    Watson, G.S.2
  • 7
    • 2942552470 scopus 로고    scopus 로고
    • Unlocking the code of 14-3-3
    • DOI 10.1242/jcs.01171
    • Dougherty, M. K. and Morrison, D. K. (2004) Unlocking the code of 14-3-3. J. Cell Sci., 117, 1875-1884. (Pubitemid 38745122)
    • (2004) Journal of Cell Science , vol.117 , Issue.10 , pp. 1875-1884
    • Dougherty, M.K.1    Morrison, D.K.2
  • 8
    • 80755171153 scopus 로고    scopus 로고
    • TFRank: Network-based prioritization of regulatory associations underlying transcriptional responses
    • Gonçalves, J. P. et al. (2011) TFRank: network-based prioritization of regulatory associations underlying transcriptional responses. Bioinformatics, 27, 3149-3157.
    • (2011) Bioinformatics , vol.27 , pp. 3149-3157
    • Gonçalves, J.P.1
  • 9
    • 41649119247 scopus 로고    scopus 로고
    • Protein networks in disease
    • DOI 10.1101/gr.071852.107
    • Ideker, T. and Sharan, R. (2008) Protein networks in disease. Genome Res., 18, 644-652. (Pubitemid 351482789)
    • (2008) Genome Research , vol.18 , Issue.4 , pp. 644-652
    • Ideker, T.1    Sharan, R.2
  • 10
    • 0000801240 scopus 로고    scopus 로고
    • Discovering regulatory and signalling circuits in molecular interaction networks
    • Ideker, T. et al. (2002) Discovering regulatory and signalling circuits in molecular interaction networks. Bioinformatics, 18 (Suppl. 1), S233-S240. (Pubitemid 41185658)
    • (2002) Bioinformatics , vol.18 , Issue.SUPPL. 1
    • Ideker, T.1    Ozier, O.2    Schwikowski, B.3    Siegel, A.F.4
  • 11
    • 77955886691 scopus 로고    scopus 로고
    • Integration of pathway knowledge into a reweighted recursive feature elimination approach for risk stratification of cancer patients
    • Johannes, M. et al. (2010) Integration of pathway knowledge into a reweighted recursive feature elimination approach for risk stratification of cancer patients. Bioinformatics, 26, 2136-2144.
    • (2010) Bioinformatics , vol.26 , pp. 2136-2144
    • Johannes, M.1
  • 12
    • 77349091815 scopus 로고    scopus 로고
    • NetPath: A public resource of curated signal transduction pathways
    • Kandasamy, K. et al. (2010) NetPath: a public resource of curated signal transduction pathways. Genome Biol., 11, R3.
    • (2010) Genome Biol. , vol.11
    • Kandasamy, K.1
  • 14
    • 70350701855 scopus 로고    scopus 로고
    • A novel algorithm for detecting differentially regulated paths based on gene set enrichment analysis
    • Keller, A. et al. (2009) A novel algorithm for detecting differentially regulated paths based on gene set enrichment analysis. Bioinformatics, 25, 2787-2794.
    • (2009) Bioinformatics , vol.25 , pp. 2787-2794
    • Keller, A.1
  • 15
    • 41549139527 scopus 로고    scopus 로고
    • Walking the interactome for prioritization of candidate disease genes
    • Kohler, S. et al. (2008) Walking the interactome for prioritization of candidate disease genes. Am. J. Hum. Genet., 82, 949-958.
    • (2008) Am. J. Hum. Genet. , vol.82 , pp. 949-958
    • Kohler, S.1
  • 16
    • 78049437880 scopus 로고    scopus 로고
    • Use of data-biased random walks on graphs for the retrieval of context-specific networks from genomic data
    • Komurov, K. et al. (2010) Use of data-biased random walks on graphs for the retrieval of context-specific networks from genomic data. PLoS Comput. Biol., 6, e1000889.
    • (2010) PLoS Comput. Biol. , vol.6
    • Komurov, K.1
  • 17
    • 47549107689 scopus 로고    scopus 로고
    • GeneMANIA: A real-time multiple association network integration algorithm for predicting gene function
    • Mostafavi, S. et al. (2008) GeneMANIA: a real-time multiple association network integration algorithm for predicting gene function. Genome Biol., 9 (Suppl. 1), S4.
    • (2008) Genome Biol. , vol.9 , Issue.SUPPL. 1
    • Mostafavi, S.1
  • 18
    • 77956477380 scopus 로고    scopus 로고
    • Candidate gene prioritization by network analysis of differential expression using machine learning approaches
    • Nitsch, D. et al. (2010) Candidate gene prioritization by network analysis of differential expression using machine learning approaches. BMC Bioinformatics, 11, 460.
    • (2010) BMC Bioinformatics , vol.11 , pp. 460
    • Nitsch, D.1
  • 19
    • 0003780986 scopus 로고    scopus 로고
    • The PageRank citation ranking: Bringing order to the web
    • Page, L. et al. (1999) The PageRank citation ranking: bringing order to the web. In: Technical report 1999-66.
    • (1999) Technical Report , pp. 1999-1976
    • Page, L.1
  • 20
    • 77349088313 scopus 로고    scopus 로고
    • Detecting disease associated modules and prioritizing active genes based on high throughput data
    • Stanford InfoLab. Qiu, Y. Q. et al. (2010) Detecting disease associated modules and prioritizing active genes based on high throughput data. BMC Bioinformatics, 11, 26.
    • (2010) BMC Bioinformatics , vol.11 , pp. 26
    • Infolab, S.1    Qiu, Y.Q.2
  • 22
    • 58149186477 scopus 로고    scopus 로고
    • PID: The pathway interaction database
    • Schaefer, C. F. et al. (2009) PID: the Pathway Interaction Database. Nucleic Acids Res., 37, D674-D679.
    • (2009) Nucleic Acids Res. , vol.37
    • Schaefer, C.F.1
  • 25
    • 77649222972 scopus 로고    scopus 로고
    • Network-based elucidation of human disease similarities reveals common functional modules enriched for pluripotent drug targets
    • Suthram, S. et al. (2010) Network-based elucidation of human disease similarities reveals common functional modules enriched for pluripotent drug targets. PLoS Comput. Biol., 6, e1000662.
    • (2010) PLoS Comput. Biol. , vol.6
    • Suthram, S.1
  • 26
    • 58149181372 scopus 로고    scopus 로고
    • Michigan molecular interactions r2: From interacting proteins to pathways
    • Tarcea, V. H. et al. (2009) Michigan molecular interactions r2: from interacting proteins to pathways. Nucleic Acids Res., 37, D642-D646.
    • (2009) Nucleic Acids Res. , vol.37
    • Tarcea, V.G.1
  • 27
    • 78149460182 scopus 로고    scopus 로고
    • DEGAS: De Novo discovery of dysregulated pathways in human diseases
    • Ulitsky, I. et al. (2010) DEGAS: De Novo discovery of dysregulated pathways in human diseases. PLoS One, 5, e13367.
    • (2010) PLoS One , vol.5
    • Ulitsky, I.1
  • 28
    • 78650280312 scopus 로고    scopus 로고
    • Algorithms for detecting significantly mutated pathways in cancer research in computational molecular biology
    • chapter 33. Springer Berlin/Heidelberg, Berlin, Heidelberg
    • Vandin, F. et al. (2010) Algorithms for Detecting Significantly Mutated Pathways in Cancer Research in Computational Molecular Biology. In: Lecture Notes in Computer Science. Vol. 6044, chapter 33. Springer Berlin/Heidelberg, Berlin, Heidelberg, pp. 506-521.
    • (2010) Lecture Notes in Computer Science , vol.6044 , pp. 506-521
    • Vandin, F.1
  • 29
    • 76749134818 scopus 로고    scopus 로고
    • Associating genes and protein complexes with disease via network propagation
    • Vanunu, O. et al. (2010) Associating genes and protein complexes with disease via network propagation. PLoS Comput. Biol., 6, e1000641.
    • (2010) PLoS Comput. Biol. , vol.6
    • Vanunu, O.1
  • 30
    • 14644436209 scopus 로고    scopus 로고
    • Extracting active pathways from gene expression data
    • DOI 10.1093/bioinformatics/btg1084
    • Vert, J. P. and Kanehisa, M. (2003) Extracting active pathways from gene expression data. Bioinformatics, 19 (Suppl. 2), ii238-ii244. (Pubitemid 41296661)
    • (2003) Bioinformatics , vol.19 , Issue.SUPPL. 2
    • Vert, J.P.1    Kanehisa, M.2
  • 31
    • 84863677563 scopus 로고    scopus 로고
    • Google goes cancer: Improving outcome prediction for cancer patients by network-based ranking of marker genes
    • Winter, C. et al. (2012) Google goes cancer: improving outcome prediction for cancer patients by network-based ranking of marker genes. PLoS Comput. Biol., 8, e1002511.
    • (2012) PLoS Comput. Biol. , vol.8
    • Winter, C.1
  • 33
    • 84899006908 scopus 로고    scopus 로고
    • Learning with local and global consistency
    • Zhou, D. et al. (2004) Learning with local and global consistency. Adv. Neural Inf. Process. Syst., 16, 321-328.
    • (2004) Adv. Neural Inf. Process. Syst. , vol.16 , pp. 321-328
    • Zhou, D.1
  • 34
    • 1942484430 scopus 로고    scopus 로고
    • Semi-supervised learning using Gaussian fields and harmonic functions
    • August 21-24 Washington, DC
    • Zhu, X. et al. (2003) Semi-supervised learning using Gaussian fields and harmonic functions. In: The Twentieth International Conference on Machine Learning, August 21-24, 2003. Washington, DC, pp. 912-919.
    • (2003) The Twentieth International Conference on Machine Learning , vol.2003 , pp. 912-919
    • Zhu, X.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.