-
1
-
-
79551584971
-
Regulation of intermediary metabolism by protein acetylation
-
Guan KL, Xiong Y. Regulation of intermediary metabolism by protein acetylation. Trends Biochem Sci 2011;36:108-116
-
(2011)
Trends Biochem Sci
, vol.36
, pp. 108-116
-
-
Guan, K.L.1
Xiong, Y.2
-
2
-
-
33746992118
-
Substrate and functional diversity of lysine acetylation revealed by a proteomics survey
-
Kim SC, Sprung R, Chen Y, et al. Substrate and functional diversity of lysine acetylation revealed by a proteomics survey. Mol Cell 2006;23:607-618
-
(2006)
Mol Cell
, vol.23
, pp. 607-618
-
-
Kim, S.C.1
Sprung, R.2
Chen, Y.3
-
3
-
-
68949212379
-
Lysine acetylation targets protein complexes and co-regulates major cellular functions
-
Choudhary C, Kumar C, Gnad F, et al. Lysine acetylation targets protein complexes and co-regulates major cellular functions. Science 2009;325: 834-840
-
(2009)
Science
, vol.325
, pp. 834-840
-
-
Choudhary, C.1
Kumar, C.2
Gnad, F.3
-
4
-
-
81055144760
-
Adipocyte NCoR knockout decreases PPARg phosphorylation and enhances PPARg activity and insulin sensitivity
-
Li P, Fan W, Xu J, et al. Adipocyte NCoR knockout decreases PPARg phosphorylation and enhances PPARg activity and insulin sensitivity. Cell 2011;147:815-826
-
(2011)
Cell
, vol.147
, pp. 815-826
-
-
Li, P.1
Fan, W.2
Xu, J.3
-
5
-
-
79952529158
-
A circadian rhythm orchestrated by histone deacetylase 3 controls hepatic lipid metabolism
-
Feng D, Liu T, Sun Z, et al. A circadian rhythm orchestrated by histone deacetylase 3 controls hepatic lipid metabolism. Science 2011;331:1315-1319
-
(2011)
Science
, vol.331
, pp. 1315-1319
-
-
Feng, D.1
Liu, T.2
Sun, Z.3
-
6
-
-
41949120723
-
Liver-specific deletion of histone deacetylase 3 disrupts metabolic transcriptional networks
-
Knutson SK, Chyla BJ, Amann JM, Bhaskara S, Huppert SS, Hiebert SW. Liver-specific deletion of histone deacetylase 3 disrupts metabolic transcriptional networks. EMBO J 2008;27:1017-1028
-
(2008)
EMBO J
, vol.27
, pp. 1017-1028
-
-
Knutson, S.K.1
Chyla, B.J.2
Amann, J.M.3
Bhaskara, S.4
Huppert, S.S.5
Hiebert, S.W.6
-
7
-
-
80052992257
-
Diet-induced lethality due to deletion of the Hdac3 gene in heart and skeletal muscle
-
Sun Z, Singh N, Mullican SE, et al. Diet-induced lethality due to deletion of the Hdac3 gene in heart and skeletal muscle. J Biol Chem 2011;286:33301-33309
-
(2011)
J Biol Chem
, vol.286
, pp. 33301-33309
-
-
Sun, Z.1
Singh, N.2
Mullican, S.E.3
-
8
-
-
67649238355
-
Butyrate improves insulin sensitivity and increases energy expenditure in mice
-
Gao Z, Yin J, Zhang J, et al. Butyrate improves insulin sensitivity and increases energy expenditure in mice. Diabetes 2009;58:1509-1517
-
(2009)
Diabetes
, vol.58
, pp. 1509-1517
-
-
Gao, Z.1
Yin, J.2
Zhang, J.3
-
9
-
-
79952410092
-
Sodium phenylbutyrate, a drug with known capacity to reduce endoplasmic reticulum stress, partially alleviates lipidinduced insulin resistance and beta-cell dysfunction in humans
-
Xiao C, Giacca A, Lewis GF. Sodium phenylbutyrate, a drug with known capacity to reduce endoplasmic reticulum stress, partially alleviates lipidinduced insulin resistance and beta-cell dysfunction in humans. Diabetes 2011;60:918-924
-
(2011)
Diabetes
, vol.60
, pp. 918-924
-
-
Xiao, C.1
Giacca, A.2
Lewis, G.F.3
-
10
-
-
78649509214
-
SIRT3 deacetylates mitochondrial 3-hydroxy-3-methylglutaryl CoA synthase 2 and regulates ketone body production
-
Shimazu T, Hirschey MD, Hua L, et al. SIRT3 deacetylates mitochondrial 3-hydroxy-3-methylglutaryl CoA synthase 2 and regulates ketone body production. Cell Metab 2010;12:654-661
-
(2010)
Cell Metab
, vol.12
, pp. 654-661
-
-
Shimazu, T.1
Hirschey, M.D.2
Hua, L.3
-
11
-
-
38649123072
-
Conserved metabolic regulatory functions of sirtuins
-
Schwer B, Verdin E. Conserved metabolic regulatory functions of sirtuins. Cell Metab 2008;7:104-112
-
(2008)
Cell Metab
, vol.7
, pp. 104-112
-
-
Schwer, B.1
Verdin, E.2
-
12
-
-
78651468707
-
Sirt3 promotes the urea cycle and fatty acid oxidation during dietary restriction
-
Hallows WC, Yu W, Smith BC, et al. Sirt3 promotes the urea cycle and fatty acid oxidation during dietary restriction. Mol Cell 2011;41:139-149
-
(2011)
Mol Cell
, vol.41
, pp. 139-149
-
-
Hallows, W.C.1
Yu, W.2
Smith, B.C.3
-
13
-
-
26444471700
-
A SUMOylation-dependent pathway mediates transrepression of inflammatory response genes by PPARgamma
-
Pascual G, Fong AL, Ogawa S, et al. A SUMOylation-dependent pathway mediates transrepression of inflammatory response genes by PPARgamma. Nature 2005;437:759-763
-
(2005)
Nature
, vol.437
, pp. 759-763
-
-
Pascual, G.1
Fong, A.L.2
Ogawa, S.3
-
14
-
-
20444417421
-
Coactivators and corepressors of NF-kappaB in IkappaB alpha gene promoter
-
Gao Z, Chiao P, Zhang X, et al. Coactivators and corepressors of NF-kappaB in IkappaB alpha gene promoter. J Biol Chem 2005;280:21091-21098
-
(2005)
J Biol Chem
, vol.280
, pp. 21091-21098
-
-
Gao, Z.1
Chiao, P.2
Zhang, X.3
-
15
-
-
33645225429
-
Regulation of nuclear translocation of HDAC3 by IkappaBalpha is required for tumor necrosis factor inhibition of peroxisome proliferator-activated receptor gamma function
-
Gao Z, He Q, Peng B, Chiao PJ, Ye J. Regulation of nuclear translocation of HDAC3 by IkappaBalpha is required for tumor necrosis factor inhibition of peroxisome proliferator-activated receptor gamma function. J Biol Chem 2006;281:4540-4547
-
(2006)
J Biol Chem
, vol.281
, pp. 4540-4547
-
-
Gao, Z.1
He, Q.2
Peng, B.3
Chiao, P.J.4
Ye, J.5
-
16
-
-
84859529243
-
Sodium butyrate stimulates expression of fibroblast growth factor 21 in liver by inhibition of histone deacetylase 3
-
Li H, Gao Z, Zhang J, et al. Sodium butyrate stimulates expression of fibroblast growth factor 21 in liver by inhibition of histone deacetylase 3. Diabetes 2012;61:797-806
-
(2012)
Diabetes
, vol.61
, pp. 797-806
-
-
Li, H.1
Gao, Z.2
Zhang, J.3
-
17
-
-
84863952154
-
Tributyrin attenuates obesity-associated inflammation and insulin resistance in high-fat-fed mice
-
Vinolo MA, Rodrigues HG, Festuccia WT, et al. Tributyrin attenuates obesity-associated inflammation and insulin resistance in high-fat-fed mice. Am J Physiol Endocrinol Metab 2012;303:E272-E282
-
(2012)
Am J Physiol Endocrinol Metab
, vol.303
-
-
Vinolo, M.A.1
Rodrigues, H.G.2
Festuccia, W.T.3
-
18
-
-
79955815135
-
Class IIa histone deacetylases are hormone-activated regulators of FOXO and mammalian glucose homeostasis
-
Mihaylova MM, Vasquez DS, Ravnskjaer K, et al. Class IIa histone deacetylases are hormone-activated regulators of FOXO and mammalian glucose homeostasis. Cell 2011;145:607-621
-
(2011)
Cell
, vol.145
, pp. 607-621
-
-
Mihaylova, M.M.1
Vasquez, D.S.2
Ravnskjaer, K.3
-
19
-
-
84869106554
-
Inhibition of class I histone deacetylases unveils a mitochondrial signature and enhances oxidative metabolism in skeletal muscle and adipose tissue
-
Galmozzi A, Mitro N, Ferrari A, et al. Inhibition of class I histone deacetylases unveils a mitochondrial signature and enhances oxidative metabolism in skeletal muscle and adipose tissue. Diabetes 2013;62:732-742
-
(2013)
Diabetes
, vol.62
, pp. 732-742
-
-
Galmozzi, A.1
Mitro, N.2
Ferrari, A.3
-
20
-
-
58149401189
-
Paradoxical effects of increased expression of PGC-1alpha on muscle mitochondrial function and insulinstimulated muscle glucose metabolism
-
Choi CS, Befroy DE, Codella R, et al. Paradoxical effects of increased expression of PGC-1alpha on muscle mitochondrial function and insulinstimulated muscle glucose metabolism. Proc Natl Acad Sci USA 2008;105: 19926-19931
-
(2008)
Proc Natl Acad Sci USA
, vol.105
, pp. 19926-19931
-
-
Choi, C.S.1
Befroy, D.E.2
Codella, R.3
-
21
-
-
65649148341
-
Whole body overexpression of PGC-1alpha has opposite effects on hepatic and muscle insulin sensitivity
-
Liang H, Balas B, Tantiwong P, et al. Whole body overexpression of PGC-1alpha has opposite effects on hepatic and muscle insulin sensitivity. Am J Physiol Endocrinol Metab 2009;296:E945-E954
-
(2009)
Am J Physiol Endocrinol Metab
, vol.296
-
-
Liang, H.1
Balas, B.2
Tantiwong, P.3
-
22
-
-
77149148756
-
Regulation of cellular metabolism by protein lysine acetylation
-
Zhao S, Xu W, Jiang W, et al. Regulation of cellular metabolism by protein lysine acetylation. Science 2010;327:1000-1004
-
(2010)
Science
, vol.327
, pp. 1000-1004
-
-
Zhao, S.1
Xu, W.2
Jiang, W.3
-
23
-
-
79959906869
-
Acetylation regulates gluconeogenesis by promoting PEPCK1 degradation via recruiting the UBR5 ubiquitin ligase
-
Jiang W, Wang S, Xiao M, et al. Acetylation regulates gluconeogenesis by promoting PEPCK1 degradation via recruiting the UBR5 ubiquitin ligase. Mol Cell 2011;43:33-44
-
(2011)
Mol Cell
, vol.43
, pp. 33-44
-
-
Jiang, W.1
Wang, S.2
Xiao, M.3
|