메뉴 건너뛰기




Volumn , Issue , 2013, Pages 133-142

Playing by the rules: Mining query associations to predict search performance

Author keywords

underperforming query analysis; user dissatisfaction

Indexed keywords

ENGINE PERFORMANCE; FP-GROWTH ALGORITHM; IDENTIFICATION RULES; INTERACTION BEHAVIOR; PERFORMANCE GAIN; QUERY ANALYSIS; QUERY ASSOCIATION; QUERY CLASSIFICATION; QUERY PERFORMANCE PREDICTION; SEARCH BEHAVIOR; SEARCH PERFORMANCE; USER DISSATISFACTION;

EID: 84874247426     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1145/2433396.2433414     Document Type: Conference Paper
Times cited : (19)

References (35)
  • 1
    • 80052112523 scopus 로고    scopus 로고
    • Find it if you can: A game for modeling different types of web search success using interaction data
    • Ageev, M., Guo, Q., Lagun, D., and Agichtein, E. (2011). Find it if you can: a game for modeling different types of web search success using interaction data. SIGIR, 345-354.
    • (2011) SIGIR , pp. 345-354
    • Ageev, M.1    Guo, Q.2    Lagun, D.3    Agichtein, E.4
  • 2
    • 0027621699 scopus 로고
    • Mining association rules between sets of items in large databases
    • Agrawal, R., Imielinski, T., and Swami, A. (1993). Mining association rules between sets of items in large databases. SIGMOD, 207-216.
    • (1993) SIGMOD , pp. 207-216
    • Agrawal, R.1    Imielinski, T.2    Swami, A.3
  • 3
    • 0002221136 scopus 로고
    • Fast algorithms for mining association rules in large databases
    • Agrawal, R. and Srikant, R. (1994). Fast algorithms for mining association rules in large databases. VLDB, 487-499.
    • (1994) VLDB , pp. 487-499
    • Agrawal, R.1    Srikant, R.2
  • 4
    • 36448971554 scopus 로고    scopus 로고
    • The relationship between IR effectiveness measures and user satisfaction
    • Al-Maskari, A., Sanderson, M, and Clough, P. (2007). The relationship between IR effectiveness measures and user satisfaction. SIGIR, 773-774.
    • (2007) SIGIR , pp. 773-774
    • Al-Maskari, A.1    Sanderson, M.2    Clough, P.3
  • 5
    • 34547984768 scopus 로고    scopus 로고
    • 1-regularized log-linear models
    • 1-regularized log-linear models. ICML, 33-40.
    • (2007) ICML , pp. 33-40
    • Andrew, G.1    Jianfeng, G.2
  • 6
    • 77954011910 scopus 로고    scopus 로고
    • How does search behavior change as search becomes more difficult?
    • Aula, A., Khan, R.M., and Guan, Z. (2010). How does search behavior change as search becomes more difficult? CHI, 35-44.
    • (2010) CHI , pp. 35-44
    • Aula, A.1    Khan, R.M.2    Guan, Z.3
  • 7
    • 77954582369 scopus 로고    scopus 로고
    • Classification-enhanced ranking
    • Bennett, P.N., Svore, K., and Dumais, S.T. (2010). Classification- enhanced ranking. WWW, 111-120.
    • (2010) WWW , pp. 111-120
    • Bennett, P.N.1    Svore, K.2    Dumais, S.T.3
  • 9
    • 84899745418 scopus 로고    scopus 로고
    • Evaluating search engines by modeling the relationship between relevance and clicks
    • Carterette, B. and Jones, R. (2007). Evaluating search engines by modeling the relationship between relevance and clicks. NIPS, 217-224.
    • (2007) NIPS , pp. 217-224
    • Carterette, B.1    Jones, R.2
  • 11
    • 3543076364 scopus 로고    scopus 로고
    • Tree structures for mining association rules
    • DOI 10.1023/B:DAMI.0000005257.93780.3b
    • Coenen, F., Goulbourne, G., and Leng, P. (2004). Tree structures for mining association rules. Data Mining and Knowledge Discovery, 8(1): 25-51. (Pubitemid 39019970)
    • (2004) Data Mining and Knowledge Discovery , vol.8 , Issue.1 , pp. 25-51
    • Coenen, F.1    Goulbourne, G.2    Leng, P.3
  • 12
    • 78651425042 scopus 로고    scopus 로고
    • Models of searching and browsing: Languages, studies, and applications
    • Downey, D., Dumais, S.T., and Horvitz, E. (2007). Models of searching and browsing: languages, studies, and applications. IJCAI, 2740-2747.
    • (2007) IJCAI , pp. 2740-2747
    • Downey, D.1    Dumais, S.T.2    Horvitz, E.3
  • 13
    • 77956041878 scopus 로고    scopus 로고
    • Predicting searcher frustration
    • Feild, H., Allan, J., and Jones, R. (2010). Predicting searcher frustration. SIGIR, 34-41.
    • (2010) SIGIR , pp. 34-41
    • Feild, H.1    Allan, J.2    Jones, R.3
  • 15
    • 84859918687 scopus 로고    scopus 로고
    • Incorporating non-local information into information extraction systems by Gibbs sampling
    • Finkel, J., Grenager, T., and Manning, C. (2005). Incorporating non-local information into information extraction systems by Gibbs sampling. ACL, 363-370.
    • (2005) ACL , pp. 363-370
    • Finkel, J.1    Grenager, T.2    Manning, C.3
  • 17
    • 84866602673 scopus 로고    scopus 로고
    • Predicting query performance using query, result, and user interaction features
    • Guo, Q., White, R.W., Dumais, S.T., Wang, J., and Anderson, B. (2010). Predicting query performance using query, result, and user interaction features. RIAO, 198-201.
    • (2010) RIAO , pp. 198-201
    • Guo, Q.1    White, R.W.2    Dumais, S.T.3    Wang, J.4    Anderson, B.5
  • 18
    • 80052121059 scopus 로고    scopus 로고
    • Why searchers switch: Understanding and predicting engine switching rationales
    • Guo, Q., White, R.W., Zhang, Y., Anderson, B., and Dumais, S.T. (2011). Why searchers switch: understanding and predicting engine switching rationales. SIGIR, 335-344.
    • (2011) SIGIR , pp. 335-344
    • Guo, Q.1    White, R.W.2    Zhang, Y.3    Anderson, B.4    Dumais, S.T.5
  • 20
    • 0039253846 scopus 로고    scopus 로고
    • Mining frequent patterns without candidate generation
    • Han, J., Pei, J., and Yin, Y. (2000). Mining frequent patterns without candidate generation. SIGMOD, 1-12.
    • (2000) SIGMOD , pp. 1-12
    • Han, J.1    Pei, J.2    Yin, Y.3
  • 21
    • 84866625880 scopus 로고    scopus 로고
    • A semi-supervised approach to modeling web search satisfaction
    • Hassan, A. (2012). A semi-supervised approach to modeling web search satisfaction. SIGIR, 275-284.
    • (2012) SIGIR , pp. 275-284
    • Hassan, A.1
  • 22
    • 77950930266 scopus 로고    scopus 로고
    • Beyond DCG: User behavior as a predictor of a successful search
    • Hassan, A., Jones, R., and Klinkner, K.L. (2010). Beyond DCG: user behavior as a predictor of a successful search. WSDM, 221-230.
    • (2010) WSDM , pp. 221-230
    • Hassan, A.1    Jones, R.2    Klinkner, K.L.3
  • 23
    • 83055187787 scopus 로고    scopus 로고
    • A task level user satisfaction model and its application on improving relevance estimation
    • Hassan, A., Song, Y., and He, L. (2011). A task level user satisfaction model and its application on improving relevance estimation. CIKM, 125-134.
    • (2011) CIKM , pp. 125-134
    • Hassan, A.1    Song, Y.2    He, L.3
  • 24
    • 84871039639 scopus 로고    scopus 로고
    • Inferring query performance using pre-retrieval predictors
    • He, B. and Ounis, I. (2004). Inferring query performance using pre-retrieval predictors. SPIRE, 43-54.
    • (2004) SPIRE , pp. 43-54
    • He, B.1    Ounis, I.2
  • 25
    • 33747187264 scopus 로고    scopus 로고
    • Query performance prediction
    • DOI 10.1016/j.is.2005.11.003, PII S0306437905000955
    • He, B. and Ounis, I. (2006). Query performance prediction. Information System, Vol. 31(7), 585-594. (Pubitemid 44233987)
    • (2006) Information Systems , vol.31 , Issue.7 , pp. 585-594
    • He, B.1    Ounis, I.2
  • 26
    • 36448951157 scopus 로고    scopus 로고
    • How well does result relevance predict session satisfaction?
    • Huffman, S. and Hochster, M. (2007). How well does result relevance predict session satisfaction? SIGIR, 567-574.
    • (2007) SIGIR , pp. 567-574
    • Huffman, S.1    Hochster, M.2
  • 27
    • 67650044839 scopus 로고    scopus 로고
    • Beyond the session timeout: Automatic hierarchical segmenting of search topics in query logs
    • Jones, R. and Klinkner, K. (2008). Beyond the session timeout: automatic hierarchical segmenting of search topics in query logs. CIKM, 699-708.
    • (2008) CIKM , pp. 699-708
    • Jones, R.1    Klinkner, K.2
  • 28
    • 35348861901 scopus 로고    scopus 로고
    • Web projections: Learning from contextual sub graphs of the web
    • Leskovec, J., Dumais, S., and Horvitz, E. (2007). Web projections: learning from contextual sub graphs of the web. WWW, 471-480.
    • (2007) WWW , pp. 471-480
    • Leskovec, J.1    Dumais, S.2    Horvitz, E.3
  • 29
    • 34547964973 scopus 로고    scopus 로고
    • Pegasos: Primal estimated sub-gradient solver for SVM
    • Shalev-Shwartz, S., Singer, Y., and Srebro, N. (2007). Pegasos: primal estimated sub-gradient solver for SVM. ICML, 807-814.
    • (2007) ICML , pp. 807-814
    • Shalev-Shwartz, S.1    Singer, Y.2    Srebro, N.3
  • 33
    • 41849138271 scopus 로고    scopus 로고
    • Effective preretrieval query performance prediction using similarity and variability evidence
    • Zhao, Y., Scholer, F., and Tsegay, Y. (2008). Effective preretrieval query performance prediction using similarity and variability evidence. ECIR, 52-64.
    • (2008) ECIR , pp. 52-64
    • Zhao, Y.1    Scholer, F.2    Tsegay, Y.3
  • 34
    • 34547636493 scopus 로고    scopus 로고
    • Ranking robustness: A novel framework to predict query performance
    • Zhou, Y., and Croft, W.B. (2006). Ranking robustness: a novel framework to predict query performance. CIKM, 567-574.
    • (2006) CIKM , pp. 567-574
    • Zhou, Y.1    Croft, W.B.2
  • 35
    • 36448977901 scopus 로고    scopus 로고
    • Query performance prediction in web search environments
    • Zhou, Y. and Croft, W.B. (2007). Query performance prediction in web search environments. SIGIR, 543-550.
    • (2007) SIGIR , pp. 543-550
    • Zhou, Y.1    Croft, W.B.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.