-
1
-
-
80052112523
-
Find it if you can: A game for modeling different types of web search success using interaction data
-
Ageev, M., Guo, Q., Lagun, D., and Agichtein, E. (2011). Find it if you can: a game for modeling different types of web search success using interaction data. SIGIR, 345-354.
-
(2011)
SIGIR
, pp. 345-354
-
-
Ageev, M.1
Guo, Q.2
Lagun, D.3
Agichtein, E.4
-
2
-
-
0027621699
-
Mining association rules between sets of items in large databases
-
Agrawal, R., Imielinski, T., and Swami, A. (1993). Mining association rules between sets of items in large databases. SIGMOD, 207-216.
-
(1993)
SIGMOD
, pp. 207-216
-
-
Agrawal, R.1
Imielinski, T.2
Swami, A.3
-
3
-
-
0002221136
-
Fast algorithms for mining association rules in large databases
-
Agrawal, R. and Srikant, R. (1994). Fast algorithms for mining association rules in large databases. VLDB, 487-499.
-
(1994)
VLDB
, pp. 487-499
-
-
Agrawal, R.1
Srikant, R.2
-
4
-
-
36448971554
-
The relationship between IR effectiveness measures and user satisfaction
-
Al-Maskari, A., Sanderson, M, and Clough, P. (2007). The relationship between IR effectiveness measures and user satisfaction. SIGIR, 773-774.
-
(2007)
SIGIR
, pp. 773-774
-
-
Al-Maskari, A.1
Sanderson, M.2
Clough, P.3
-
6
-
-
77954011910
-
How does search behavior change as search becomes more difficult?
-
Aula, A., Khan, R.M., and Guan, Z. (2010). How does search behavior change as search becomes more difficult? CHI, 35-44.
-
(2010)
CHI
, pp. 35-44
-
-
Aula, A.1
Khan, R.M.2
Guan, Z.3
-
7
-
-
77954582369
-
Classification-enhanced ranking
-
Bennett, P.N., Svore, K., and Dumais, S.T. (2010). Classification- enhanced ranking. WWW, 111-120.
-
(2010)
WWW
, pp. 111-120
-
-
Bennett, P.N.1
Svore, K.2
Dumais, S.T.3
-
8
-
-
33750378208
-
What makes a query difficult?
-
Carmel, D., Yom-Tov, E., Darlow, A., and Pelleg, D. (2006). What makes a query difficult? SIGIR, 390-397.
-
(2006)
SIGIR
, pp. 390-397
-
-
Carmel, D.1
Yom-Tov, E.2
Darlow, A.3
Pelleg, D.4
-
9
-
-
84899745418
-
Evaluating search engines by modeling the relationship between relevance and clicks
-
Carterette, B. and Jones, R. (2007). Evaluating search engines by modeling the relationship between relevance and clicks. NIPS, 217-224.
-
(2007)
NIPS
, pp. 217-224
-
-
Carterette, B.1
Jones, R.2
-
10
-
-
0036989577
-
Predicting query performance
-
Cronen-Townsend, S., Zhou, Y., and Croft, W.B. (2002). Predicting query performance. SIGIR, 299-306.
-
(2002)
SIGIR
, pp. 299-306
-
-
Cronen-Townsend, S.1
Zhou, Y.2
Croft, W.B.3
-
11
-
-
3543076364
-
Tree structures for mining association rules
-
DOI 10.1023/B:DAMI.0000005257.93780.3b
-
Coenen, F., Goulbourne, G., and Leng, P. (2004). Tree structures for mining association rules. Data Mining and Knowledge Discovery, 8(1): 25-51. (Pubitemid 39019970)
-
(2004)
Data Mining and Knowledge Discovery
, vol.8
, Issue.1
, pp. 25-51
-
-
Coenen, F.1
Goulbourne, G.2
Leng, P.3
-
12
-
-
78651425042
-
Models of searching and browsing: Languages, studies, and applications
-
Downey, D., Dumais, S.T., and Horvitz, E. (2007). Models of searching and browsing: languages, studies, and applications. IJCAI, 2740-2747.
-
(2007)
IJCAI
, pp. 2740-2747
-
-
Downey, D.1
Dumais, S.T.2
Horvitz, E.3
-
13
-
-
77956041878
-
Predicting searcher frustration
-
Feild, H., Allan, J., and Jones, R. (2010). Predicting searcher frustration. SIGIR, 34-41.
-
(2010)
SIGIR
, pp. 34-41
-
-
Feild, H.1
Allan, J.2
Jones, R.3
-
15
-
-
84859918687
-
Incorporating non-local information into information extraction systems by Gibbs sampling
-
Finkel, J., Grenager, T., and Manning, C. (2005). Incorporating non-local information into information extraction systems by Gibbs sampling. ACL, 363-370.
-
(2005)
ACL
, pp. 363-370
-
-
Finkel, J.1
Grenager, T.2
Manning, C.3
-
16
-
-
20344382508
-
Evaluating implicit measures to improve Web search
-
DOI 10.1145/1059981.1059982
-
Fox, S. Karnawat, K., Mydland, M., Dumais, S., and White, T. (2005). Evaluating implicit measures to improve web search. ACM TOIS, 23(2): 147-168. (Pubitemid 40786322)
-
(2005)
ACM Transactions on Information Systems
, vol.23
, Issue.2
, pp. 147-168
-
-
Fox, S.1
Karnawat, K.2
Mydland, M.3
Dumais, S.4
White, T.5
-
17
-
-
84866602673
-
Predicting query performance using query, result, and user interaction features
-
Guo, Q., White, R.W., Dumais, S.T., Wang, J., and Anderson, B. (2010). Predicting query performance using query, result, and user interaction features. RIAO, 198-201.
-
(2010)
RIAO
, pp. 198-201
-
-
Guo, Q.1
White, R.W.2
Dumais, S.T.3
Wang, J.4
Anderson, B.5
-
18
-
-
80052121059
-
Why searchers switch: Understanding and predicting engine switching rationales
-
Guo, Q., White, R.W., Zhang, Y., Anderson, B., and Dumais, S.T. (2011). Why searchers switch: understanding and predicting engine switching rationales. SIGIR, 335-344.
-
(2011)
SIGIR
, pp. 335-344
-
-
Guo, Q.1
White, R.W.2
Zhang, Y.3
Anderson, B.4
Dumais, S.T.5
-
19
-
-
76749092270
-
The WEKA data mining software: An update
-
Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann, P., and Witten, I.H. (2009). The WEKA data mining software: an update. SIGKDD Explorations, 11(1): 10-18.
-
(2009)
SIGKDD Explorations
, vol.11
, Issue.1
, pp. 10-18
-
-
Hall, M.1
Frank, E.2
Holmes, G.3
Pfahringer, B.4
Reutemann, P.5
Witten, I.H.6
-
20
-
-
0039253846
-
Mining frequent patterns without candidate generation
-
Han, J., Pei, J., and Yin, Y. (2000). Mining frequent patterns without candidate generation. SIGMOD, 1-12.
-
(2000)
SIGMOD
, pp. 1-12
-
-
Han, J.1
Pei, J.2
Yin, Y.3
-
21
-
-
84866625880
-
A semi-supervised approach to modeling web search satisfaction
-
Hassan, A. (2012). A semi-supervised approach to modeling web search satisfaction. SIGIR, 275-284.
-
(2012)
SIGIR
, pp. 275-284
-
-
Hassan, A.1
-
22
-
-
77950930266
-
Beyond DCG: User behavior as a predictor of a successful search
-
Hassan, A., Jones, R., and Klinkner, K.L. (2010). Beyond DCG: user behavior as a predictor of a successful search. WSDM, 221-230.
-
(2010)
WSDM
, pp. 221-230
-
-
Hassan, A.1
Jones, R.2
Klinkner, K.L.3
-
23
-
-
83055187787
-
A task level user satisfaction model and its application on improving relevance estimation
-
Hassan, A., Song, Y., and He, L. (2011). A task level user satisfaction model and its application on improving relevance estimation. CIKM, 125-134.
-
(2011)
CIKM
, pp. 125-134
-
-
Hassan, A.1
Song, Y.2
He, L.3
-
24
-
-
84871039639
-
Inferring query performance using pre-retrieval predictors
-
He, B. and Ounis, I. (2004). Inferring query performance using pre-retrieval predictors. SPIRE, 43-54.
-
(2004)
SPIRE
, pp. 43-54
-
-
He, B.1
Ounis, I.2
-
25
-
-
33747187264
-
Query performance prediction
-
DOI 10.1016/j.is.2005.11.003, PII S0306437905000955
-
He, B. and Ounis, I. (2006). Query performance prediction. Information System, Vol. 31(7), 585-594. (Pubitemid 44233987)
-
(2006)
Information Systems
, vol.31
, Issue.7
, pp. 585-594
-
-
He, B.1
Ounis, I.2
-
26
-
-
36448951157
-
How well does result relevance predict session satisfaction?
-
Huffman, S. and Hochster, M. (2007). How well does result relevance predict session satisfaction? SIGIR, 567-574.
-
(2007)
SIGIR
, pp. 567-574
-
-
Huffman, S.1
Hochster, M.2
-
27
-
-
67650044839
-
Beyond the session timeout: Automatic hierarchical segmenting of search topics in query logs
-
Jones, R. and Klinkner, K. (2008). Beyond the session timeout: automatic hierarchical segmenting of search topics in query logs. CIKM, 699-708.
-
(2008)
CIKM
, pp. 699-708
-
-
Jones, R.1
Klinkner, K.2
-
28
-
-
35348861901
-
Web projections: Learning from contextual sub graphs of the web
-
Leskovec, J., Dumais, S., and Horvitz, E. (2007). Web projections: learning from contextual sub graphs of the web. WWW, 471-480.
-
(2007)
WWW
, pp. 471-480
-
-
Leskovec, J.1
Dumais, S.2
Horvitz, E.3
-
29
-
-
34547964973
-
Pegasos: Primal estimated sub-gradient solver for SVM
-
Shalev-Shwartz, S., Singer, Y., and Srebro, N. (2007). Pegasos: primal estimated sub-gradient solver for SVM. ICML, 807-814.
-
(2007)
ICML
, pp. 807-814
-
-
Shalev-Shwartz, S.1
Singer, Y.2
Srebro, N.3
-
30
-
-
84877970630
-
Simple and knowledge-intensive generative model for named entity recognition
-
Wang, C., Hsu, B., Chang, M., and Kiciman, E. (2012). Simple and knowledge-intensive generative model for named entity recognition. Microsoft Research Technical Report.
-
(2012)
Microsoft Research Technical Report
-
-
Wang, C.1
Hsu, B.2
Chang, M.3
Kiciman, E.4
-
31
-
-
85119418931
-
An overview of Microsoft web n-gram corpus and applications
-
Wang, K., Thrasher, C., Viegas, E., Li, X. and Hsu, P. (2010). An overview of Microsoft web n-gram corpus and applications. NAACL HLT Demo Session, 45-48.
-
(2010)
NAACL HLT Demo Session
, pp. 45-48
-
-
Wang, K.1
Thrasher, C.2
Viegas, E.3
Li, X.4
Hsu, P.5
-
32
-
-
84858779327
-
Spectral hashing
-
Weiss, Y., Torralba, A., and Fergus, R. (2008). Spectral hashing. NIPS, 1753-1760.
-
(2008)
NIPS
, pp. 1753-1760
-
-
Weiss, Y.1
Torralba, A.2
Fergus, R.3
-
33
-
-
41849138271
-
Effective preretrieval query performance prediction using similarity and variability evidence
-
Zhao, Y., Scholer, F., and Tsegay, Y. (2008). Effective preretrieval query performance prediction using similarity and variability evidence. ECIR, 52-64.
-
(2008)
ECIR
, pp. 52-64
-
-
Zhao, Y.1
Scholer, F.2
Tsegay, Y.3
-
34
-
-
34547636493
-
Ranking robustness: A novel framework to predict query performance
-
Zhou, Y., and Croft, W.B. (2006). Ranking robustness: a novel framework to predict query performance. CIKM, 567-574.
-
(2006)
CIKM
, pp. 567-574
-
-
Zhou, Y.1
Croft, W.B.2
-
35
-
-
36448977901
-
Query performance prediction in web search environments
-
Zhou, Y. and Croft, W.B. (2007). Query performance prediction in web search environments. SIGIR, 543-550.
-
(2007)
SIGIR
, pp. 543-550
-
-
Zhou, Y.1
Croft, W.B.2
|