메뉴 건너뛰기




Volumn , Issue , 2012, Pages 275-284

A semi-supervised approach to modeling web search satisfaction

Author keywords

search engine evaluation; semi supervised learning; user behavior models

Indexed keywords

INTERACTIVE PROCESS; LABELED AND UNLABELED DATA; LABELED DATA; RESEARCH EFFORTS; SEARCH BEHAVIOR; SEARCH LOGS; SEMI-SUPERVISED; SEMI-SUPERVISED LEARNING; UNLABELED DATA; USER BEHAVIORS; WEB SEARCHES;

EID: 84866625880     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1145/2348283.2348323     Document Type: Conference Paper
Times cited : (47)

References (31)
  • 3
  • 10
    • 48249112672 scopus 로고
    • Learning to recognize patterns without a teacher
    • jan
    • S. Fralick. Learning to recognize patterns without a teacher. Information Theory, IEEE Transactions on, 13(1):57-64, jan 1967.
    • (1967) Information Theory, IEEE Transactions on , vol.13 , Issue.1 , pp. 57-64
    • Fralick, S.1
  • 16
    • 0033881650 scopus 로고    scopus 로고
    • Real life, real users, and real needs: A study and analysis of user queries on the web
    • January
    • B. J. Jansen, A. Spink, and T. Saracevic. Real life, real users, and real needs: a study and analysis of user queries on the web. Inf. Process. Manage., 36:207-227, January 2000.
    • (2000) Inf. Process. Manage. , vol.36 , pp. 207-227
    • Jansen, B.J.1    Spink, A.2    Saracevic, T.3
  • 18
    • 1842637192 scopus 로고    scopus 로고
    • Cumulated gain-based evaluation of ir techniques
    • K. Järvelin and J. Kekäläinen. Cumulated gain-based evaluation of ir techniques. ACM Trans. Inf. Syst., 20(4):422-446, 2002.
    • (2002) ACM Trans. Inf. Syst. , vol.20 , Issue.4 , pp. 422-446
    • Järvelin, K.1    Kekäläinen, J.2
  • 22
    • 0004255908 scopus 로고    scopus 로고
    • McGraw-Hill, Inc., New York, NY, USA, 1 edition
    • T. M. Mitchell. Machine Learning. McGraw-Hill, Inc., New York, NY, USA, 1 edition, 1997.
    • (1997) Machine Learning
    • Mitchell, T.M.1
  • 26
    • 67650085898 scopus 로고    scopus 로고
    • How does clickthrough data reflect retrieval quality?
    • J. G. Shanahan, S. Amer-Yahia, I. Manolescu, Y. Zhang, D. A. Evans, A. Kolcz, K.-S. Choi, and A. Chowdhury, editors, ACM
    • F. Radlinski, M. Kurup, and T. Joachims. How does clickthrough data reflect retrieval quality? In J. G. Shanahan, S. Amer-Yahia, I. Manolescu, Y. Zhang, D. A. Evans, A. Kolcz, K.-S. Choi, and A. Chowdhury, editors, CIKM, pages 43-52. ACM, 2008.
    • (2008) CIKM , pp. 43-52
    • Radlinski, F.1    Kurup, M.2    Joachims, T.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.