메뉴 건너뛰기




Volumn 8, Issue 1, 2004, Pages 25-51

Tree structures for mining association rules

Author keywords

Association rules; Set enumeration tree

Indexed keywords

ALGORITHMS; COMPUTATIONAL COMPLEXITY; DATA MINING; DATABASE SYSTEMS; PROBLEM SOLVING; SET THEORY; TREES (MATHEMATICS);

EID: 3543076364     PISSN: 13845810     EISSN: None     Source Type: Journal    
DOI: 10.1023/B:DAMI.0000005257.93780.3b     Document Type: Article
Times cited : (97)

References (14)
  • 1
    • 0027621699 scopus 로고
    • Mining association rules between sets of items in large databases
    • Agrawal, R., Imielinski, T., and Swami, A. 1993. Mining association rules between sets of items in large databases. In Proc. ACM SIGMOD-93, pp. 207-216.
    • (1993) Proc. ACM SIGMOD-93 , pp. 207-216
    • Agrawal, R.1    Imielinski, T.2    Swami, A.3
  • 2
    • 0001882616 scopus 로고
    • Fast algorithms for mining association rules
    • Santiago
    • Agrawal, R. and Srikant, R. 1994. Fast algorithms for mining association rules. In Proc. 20th VLDB Conference, Santiago, pp. 487-499.
    • (1994) Proc. 20th VLDB Conference , pp. 487-499
    • Agrawal, R.1    Srikant, R.2
  • 5
    • 0031162961 scopus 로고    scopus 로고
    • Dynamic itemset counting and implication rules for market basket data
    • Brin, S., Motwani, R., Ullman, J.D., and Tsur, S. 1997. Dynamic itemset counting and implication rules for market basket data. In Proc. ACM SIGMOD Conference, pp. 255-264.
    • (1997) Proc. ACM SIGMOD Conference , pp. 255-264
    • Brin, S.1    Motwani, R.2    Ullman, J.D.3    Tsur, S.4
  • 7
    • 0033704970 scopus 로고    scopus 로고
    • Algorithms for computing association rules using a partial-support tree
    • Goulbourne, G., Coenen, F., and Leng, P. 2000. Algorithms for computing association rules using a partial-support tree. J. Knowledge-Based Systems, 13:141-149.
    • (2000) J. Knowledge-based Systems , vol.13 , pp. 141-149
    • Goulbourne, G.1    Coenen, F.2    Leng, P.3
  • 8
    • 0039253846 scopus 로고    scopus 로고
    • Mining frequent patterns without candidate generation
    • Han, J., Pei, J., and Yin, Y. 2000. Mining frequent patterns without candidate generation. In Proc. ACM SIGMOD 2000 Conference, pp. 1-12.
    • (2000) Proc. ACM SIGMOD 2000 Conference , pp. 1-12
    • Han, J.1    Pei, J.2    Yin, Y.3
  • 9
    • 0003832201 scopus 로고
    • Set-oriented mining of association rules
    • IBM Almaden Research Centre, San Jose
    • Houtsma, M. and Swami, A. 1993. Set-oriented mining of association rules. Research Report RJ 9567, IBM Almaden Research Centre, San Jose.
    • (1993) Research Report , vol.RJ 9567
    • Houtsma, M.1    Swami, A.2
  • 12
    • 0002082857 scopus 로고
    • An efficient algorithm for mining association rules in large databases
    • Zurich
    • Savasere, A., Omiecinski, E., and Navathe, S. 1995. An efficient algorithm for mining association rules in large databases. In Proc. 21st VLDB Conference, Zurich, pp. 432-444.
    • (1995) Proc. 21st VLDB Conference , pp. 432-444
    • Savasere, A.1    Omiecinski, E.2    Navathe, S.3
  • 13
    • 0002663969 scopus 로고    scopus 로고
    • Sampling large databases for association rules
    • Bombay
    • Toivonen, H. 1996. Sampling large databases for association rules. In Proc. 22nd VLDB Conference, Bombay, pp. 134-145.
    • (1996) Proc. 22nd VLDB Conference , pp. 134-145
    • Toivonen, H.1
  • 14
    • 0008396348 scopus 로고    scopus 로고
    • New algorithms for fast discovery of association rules
    • University of Rochester, Computer Science Department, New York
    • Zaki, M.J., Parthasarathy, S., Ogihara, M., and Li, W. 1997. New algorithms for fast discovery of association rules. Technical report 651, University of Rochester, Computer Science Department, New York.
    • (1997) Technical Report , vol.651
    • Zaki, M.J.1    Parthasarathy, S.2    Ogihara, M.3    Li, W.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.