메뉴 건너뛰기




Volumn , Issue , 2012, Pages 290-298

Hierarchical multi-task learning with application to wafer quality prediction

Author keywords

Hierarchical multi task learning; Task relatedness; Wafer quality

Indexed keywords

BLOCK COORDINATE DESCENTS; COEFFICIENT VECTOR; DOCUMENT CLASSIFICATION; INPUT FEATURES; MULTIPLE-GROUP; MULTITASK LEARNING; OPTIMIZATION FRAMEWORK; PREDICTION MODEL; REAL PROBLEMS; SEMICONDUCTOR MANUFACTURING; SYNTHETIC AND REAL DATA; TASK CLUSTERING; TASK RELATEDNESS; WAFER QUALITY;

EID: 84874061480     PISSN: 15504786     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/ICDM.2012.63     Document Type: Conference Paper
Times cited : (14)

References (31)
  • 1
    • 27844439373 scopus 로고    scopus 로고
    • A framework for learning predictive structures from multiple tasks and unlabeled data
    • R. K. Ando and T. Zhang. A framework for learning predictive structures from multiple tasks and unlabeled data. Journal of Machine Learning Research, 6:1817-1853, 2005.
    • (2005) Journal of Machine Learning Research , vol.6 , pp. 1817-1853
    • Ando, R.K.1    Zhang, T.2
  • 2
    • 55149088329 scopus 로고    scopus 로고
    • Convex multi-task feature learning
    • A. Argyriou, T. Evgeniou, and M. Pontil. Convex multi-task feature learning. Machine Learning, 73(3):243-272, 2008.
    • (2008) Machine Learning , vol.73 , Issue.3 , pp. 243-272
    • Argyriou, A.1    Evgeniou, T.2    Pontil, M.3
  • 4
    • 0346238931 scopus 로고    scopus 로고
    • Task clustering and gating for Bayesian multitask learning
    • B. Bakker and T. Heskes. Task clustering and gating for bayesian multitask learning. Journal of Machine Learning Research, 4:83-99, 2003.
    • (2003) Journal of Machine Learning Research , vol.4 , pp. 83-99
    • Bakker, B.1    Heskes, T.2
  • 5
    • 70049106295 scopus 로고    scopus 로고
    • A convex formulation for learning shared structures from multiple tasks
    • J. Chen, L. Tang, J. Liu, and J. Ye. A convex formulation for learning shared structures from multiple tasks. In ICML, page 18, 2009.
    • (2009) ICML , pp. 18
    • Chen, J.1    Tang, L.2    Liu, J.3    Ye, J.4
  • 6
    • 80052677096 scopus 로고    scopus 로고
    • Integrating low-rank and group-sparse structures for robust multi-task learning
    • J. Chen, J. Zhou, and J. Ye. Integrating low-rank and group-sparse structures for robust multi-task learning. In KDD, pages 42-50, 2011.
    • (2011) KDD , pp. 42-50
    • Chen, J.1    Zhou, J.2    Ye, J.3
  • 7
    • 80052677096 scopus 로고    scopus 로고
    • Integrating low-rank and group-sparse structures for robust multi-task learning
    • J. Chen, J. Zhou, and J. Ye. Integrating low-rank and group-sparse structures for robust multi-task learning. In KDD, pages 42-50, 2011.
    • (2011) KDD , pp. 42-50
    • Chen, J.1    Zhou, J.2    Ye, J.3
  • 8
    • 34547972773 scopus 로고    scopus 로고
    • Boosting for transfer learning
    • W. Dai, Q. Yang, G.-R. Xue, and Y. Yu. Boosting for transfer learning. In ICML, pages 193-200, 2007.
    • (2007) ICML , pp. 193-200
    • Dai, W.1    Yang, Q.2    Xue, G.-R.3    Yu, Y.4
  • 9
    • 84857149823 scopus 로고    scopus 로고
    • Structured feature selection and task relationship inference for multi-task learning
    • H. Fei and J. Huan. Structured feature selection and task relationship inference for multi-task learning. In ICDM, 2011.
    • (2011) ICDM
    • Fei, H.1    Huan, J.2
  • 10
    • 65449181688 scopus 로고    scopus 로고
    • Knowledge transfer via multiple model local structure mapping
    • J. Gao, W. Fan, J. Jiang, and J. Han. Knowledge transfer via multiple model local structure mapping. In KDD, pages 283-291, 2008.
    • (2008) KDD , pp. 283-291
    • Gao, J.1    Fan, W.2    Jiang, J.3    Han, J.4
  • 11
    • 67049161208 scopus 로고    scopus 로고
    • Graph-based rare category detection
    • J. He, Y. Liu, and R. D. Lawrence. Graph-based rare category detection. In ICDM, pages 833-838, 2008.
    • (2008) ICDM , pp. 833-838
    • He, J.1    Liu, Y.2    Lawrence, R.D.3
  • 13
    • 84858783652 scopus 로고    scopus 로고
    • Clustered multi-task learning: A convex formulation
    • L. Jacob, F. Bach, and J.-P. Vert. Clustered multi-task learning: A convex formulation. In NIPS, pages 745-752, 2008.
    • (2008) NIPS , pp. 745-752
    • Jacob, L.1    Bach, F.2    Vert, J.-P.3
  • 14
    • 78049530300 scopus 로고    scopus 로고
    • Virtual metrology for run-to-run control in semiconductor manufacturing
    • P. Kang, D. Kim, H.-J. Lee, S. Doh, and S. Cho. Virtual metrology for run-to-run control in semiconductor manufacturing. Expert Systems with Applications, 38:2508-2522, 2011.
    • (2011) Expert Systems with Applications , vol.38 , pp. 2508-2522
    • Kang, P.1    Kim, D.2    Lee, H.-J.3    Doh, S.4    Cho, S.5
  • 16
    • 77956548668 scopus 로고    scopus 로고
    • Tree-guided group lasso for multi-task regression with structured sparsity
    • S. Kim and E. P. Xing. Tree-guided group lasso for multi-task regression with structured sparsity. In ICML, pages 543-550, 2010.
    • (2010) ICML , pp. 543-550
    • Kim, S.1    Xing, E.P.2
  • 17
    • 14344249890 scopus 로고    scopus 로고
    • Learning to learn with the informative vector machine
    • N. D. Lawrence and J. C. Platt. Learning to learn with the informative vector machine. In ICML, 2004.
    • (2004) ICML
    • Lawrence, N.D.1    Platt, J.C.2
  • 18
    • 84856659866 scopus 로고    scopus 로고
    • Blockwise coordinate descent procedures for the multi-task lasso, with applications to neural semantic basis discovery
    • H. Liu, M. Palatucci, and J. Zhang. Blockwise coordinate descent procedures for the multi-task lasso, with applications to neural semantic basis discovery. In ICML, page 82, 2009.
    • (2009) ICML , pp. 82
    • Liu, H.1    Palatucci, M.2    Zhang, J.3
  • 19
    • 85042563162 scopus 로고    scopus 로고
    • Semi-supervised multitask learning
    • Q. Liu, X. Liao, and L. Carin. Semi-supervised multitask learning. In NIPS, 2007.
    • (2007) NIPS
    • Liu, Q.1    Liao, X.2    Carin, L.3
  • 22
    • 50649094803 scopus 로고    scopus 로고
    • Mapping and revising Markov logic networks for transfer learning
    • L. Mihalkova, T. N. Huynh, and R. J. Mooney. Mapping and revising markov logic networks for transfer learning. In AAAI, 2007.
    • (2007) AAAI
    • Mihalkova, L.1    Huynh, T.N.2    Mooney, R.J.3
  • 23
    • 78751691438 scopus 로고    scopus 로고
    • Transfer learning from minimal target data by mapping across relational domains
    • L. Mihalkova and R. J. Mooney. Transfer learning from minimal target data by mapping across relational domains. In IJCAI, pages 1163-1168, 2009.
    • (2009) IJCAI , pp. 1163-1168
    • Mihalkova, L.1    Mooney, R.J.2
  • 24
    • 77956031473 scopus 로고    scopus 로고
    • A survey on transfer learning
    • S. J. Pan and Q. Yang. A survey on transfer learning. IEEE Trans. Knowl. Data Eng., 22(10):1345-1359, 2010.
    • (2010) IEEE Trans. Knowl. Data Eng. , vol.22 , Issue.10 , pp. 1345-1359
    • Pan, S.J.1    Yang, Q.2
  • 25
    • 77951153521 scopus 로고    scopus 로고
    • Semi-supervised multi-task learning with task regularizations
    • F. Wang, X. Wang, and T. Li. Semi-supervised multi-task learning with task regularizations. In ICDM, pages 562-568, 2009.
    • (2009) ICDM , pp. 562-568
    • Wang, F.1    Wang, X.2    Li, T.3
  • 27
    • 84863338429 scopus 로고    scopus 로고
    • Heterogeneous multitask learning with joint sparsity constraints
    • X. Yang, S. Kim, and E. P. Xing. Heterogeneous multitask learning with joint sparsity constraints. In NIPS, pages 2151-2159, 2009.
    • (2009) NIPS , pp. 2151-2159
    • Yang, X.1    Kim, S.2    Xing, E.P.3
  • 28
    • 80052660541 scopus 로고    scopus 로고
    • Multiview transfer learning with a large margin approach
    • D. Zhang, J. He, Y. Liu, L. Si, and R. D. Lawrence. Multiview transfer learning with a large margin approach. In KDD, pages 1208-1216, 2011.
    • (2011) KDD , pp. 1208-1216
    • Zhang, D.1    He, J.2    Liu, Y.3    Si, L.4    Lawrence, R.D.5
  • 29
    • 85161985386 scopus 로고    scopus 로고
    • Learning multiple tasks with a sparse matrix-normal penalty
    • Y. Zhang and J. G. Schneider. Learning multiple tasks with a sparse matrix-normal penalty. In NIPS, pages 2550-2558, 2010.
    • (2010) NIPS , pp. 2550-2558
    • Zhang, Y.1    Schneider, J.G.2
  • 30
    • 80053162594 scopus 로고    scopus 로고
    • A convex formulation for learning task relationships in multi-task learning
    • Y. Zhang and D. Y. Yeung. A convex formulation for learning task relationships in multi-task learning. In UAI, pages 733-742, 2010.
    • (2010) UAI , pp. 733-742
    • Zhang, Y.1    Yeung, D.Y.2
  • 31
    • 85162027638 scopus 로고    scopus 로고
    • Probabilistic multi-task feature selection
    • Y. Zhang, D. Y. Yeung, and Q. Xu. Probabilistic multi-task feature selection. In NIPS, pages 2559-2567, 2010.
    • (2010) NIPS , pp. 2559-2567
    • Zhang, Y.1    Yeung, D.Y.2    Xu, Q.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.