-
1
-
-
0347192053
-
Marketing models of consumer heterogeneity
-
G. M. Allenby and P. E. Rossi. Marketing models of consumer heterogeneity. Journal of Econometrics, 89(1- 2):57-78, 1998.
-
(1998)
Journal of Econometrics
, vol.89
, Issue.1-2
, pp. 57-78
-
-
Allenby, G.M.1
Rossi, P.E.2
-
2
-
-
27844439373
-
A framework for learning predictive structures from multiple tasks and unlabeled data
-
R. K. Ando and T. Zhang. A framework for learning predictive structures from multiple tasks and unlabeled data. Journal of Machine Learning Research, 6:1817-1853, 2005.
-
(2005)
Journal of Machine Learning Research
, vol.6
, pp. 1817-1853
-
-
Ando, R.K.1
Zhang., T.2
-
4
-
-
85162007328
-
A spectral regularization framework for multi-task structure learning
-
A. Argyriou, C. A. Micchelli, M. Pontil, and Y. Ying. A spectral regularization framework for multi-task structure learning. In Advances in Neural Information Processing Systems 20, pages 25-32. 2008.
-
(2008)
Advances in Neural Information Processing Systems
, vol.20
, pp. 25-32
-
-
Argyriou, A.1
Micchelli, C.A.2
Pontil, M.3
Ying, Y.4
-
5
-
-
0032220720
-
A hierarchical bayes model of primary and secondary demand
-
N. Arora, G. M. Allenby, and J. Ginter. A hierarchical bayes model of primary and secondary demand. Marketing Science, 17(1):29-44, 1998.
-
(1998)
Marketing Science
, vol.17
, Issue.1
, pp. 29-44
-
-
Arora, N.1
Allenby, G.M.2
Ginter, J.3
-
6
-
-
0346238931
-
Task clustering and gating for bayesian multitask learning
-
B. Bakker and T. Heskes. Task clustering and gating for bayesian multitask learning. Journal of Machine Learning Research, 4:83-89, 2003.
-
(2003)
Journal of Machine Learning Research
, vol.4
, pp. 83-89
-
-
Bakker, B.1
Heskes, T.2
-
7
-
-
33750729556
-
Manifold regularization: A geometric framework for learning from labeled and unlabeled examples
-
M. Belkin, P. Niyogi, and V. Sindhwani. Manifold regularization: A geometric framework for learning from labeled and unlabeled examples. Journal of Machine Learning Research, 7:2399-2434, 2006.
-
(2006)
Journal of Machine Learning Research
, vol.7
, pp. 2399-2434
-
-
Belkin, M.1
Niyogi, P.2
Sindhwani, V.3
-
8
-
-
33749252873
-
-
O. Chapelle, B. Schölkopf, and A. Zien, editors. MIT Press, Cambridge, MA
-
O. Chapelle, B. Schölkopf, and A. Zien, editors. Semi- Supervised Learning. MIT Press, Cambridge, MA, 2006.
-
(2006)
Semi- Supervised Learning
-
-
-
9
-
-
33846593467
-
Sigma: A system for integrative genomic microarray analysis of cancer genomes
-
R. Chari, W. W. Lockwood, B. P. Coe, A. Chu, D. Macey, A. Thomson, J. J. Davies, C. Macaulay, and W. L. Lam. Sigma: A system for integrative genomic microarray analysis of cancer genomes. BMC Genomics, 7:324, 2006.
-
(2006)
BMC Genomics
, vol.7
, pp. 324
-
-
Chari, R.1
Lockwood, W.W.2
Coe, B.P.3
Chu, A.4
Macey, D.5
Thomson, A.6
Davies, J.J.7
Macaulay, C.8
Lam, W.L.9
-
14
-
-
0030092417
-
Lapack-style algorithms and software for solving the generalized sylvester equation and estimating the separation between regular matrix pairs
-
B. Ka°gström and P. Poromaa. Lapack-style algorithms and software for solving the generalized sylvester equation and estimating the separation between regular matrix pairs. ACM Trans. Math. Software, 22:78-103, 1996.
-
(1996)
ACM Trans. Math. Software
, vol.22
, pp. 78-103
-
-
Kagström, B.1
Poromaa, P.2
-
15
-
-
85162043915
-
Multi-task learning via conic programming
-
T. Kato, H. Kashima, M. Sugiyama, and K. Asai. Multi-task learning via conic programming. In Advances in NIPS 20, pages 737-744, 2008.
-
(2008)
Advances in NIPS
, vol.20
, pp. 737-744
-
-
Kato, T.1
Kashima, H.2
Sugiyama, M.3
Asai, K.4
-
16
-
-
85162028220
-
Semi-supervised multitask learning
-
Q. Liu, X. Liao, and L. Carin. Semi-supervised multitask learning. In NIPS 20, pages 937-944. 2008.
-
(2008)
NIPS
, vol.20
, pp. 937-944
-
-
Liu, Q.1
Liao, X.2
Carin, L.3
-
17
-
-
0003408420
-
-
MIT Press, Cambridge, MA, USA
-
B. Schölkopf and A. J. Smola. Learning with Kernels: Support Vector Machines, Regularization, Optimization, and Beyond. MIT Press, Cambridge, MA, USA, 2001.
-
(2001)
Learning with Kernels: Support Vector Machines, Regularization, Optimization, and beyond
-
-
Schölkopf, B.1
Smola, A.J.2
-
19
-
-
5044224293
-
Sharing features: Efficient boosting procedures for multiclass object detection
-
A. Torralba, K. P. Murphy, and W. T. Freeman. Sharing features: efficient boosting procedures for multiclass object detection. In Proceedings of the 2004 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, volume 2, pages 762-769, 2004.
-
(2004)
Proceedings of the 2004 IEEE Computer Society Conference on Computer Vision and Pattern Recognition
, vol.2
, pp. 762-769
-
-
Torralba, A.1
Murphy, K.P.2
Freeman, W.T.3
-
21
-
-
33845581114
-
Semi-supervised classification using linear neighborhood propagation
-
F. Wang, J. Wang, C. Zhang, and H. Shen. Semi-supervised classification using linear neighborhood propagation. In Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR), pages 160-167, 2006.
-
(2006)
Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR)
, pp. 160-167
-
-
Wang, F.1
Wang, J.2
Zhang, C.3
Shen, H.4
|