메뉴 건너뛰기




Volumn 17, Issue 4, 2007, Pages 253-263

Recurrent neural networks are universal approximators

Author keywords

Dynamical systems; Recurrent neural networks; System identification; Universal approximation

Indexed keywords

APPROXIMATION THEORY; DYNAMICAL SYSTEMS; ERROR CORRECTION; IDENTIFICATION (CONTROL SYSTEMS); SPECTRUM ANALYSIS;

EID: 34547898032     PISSN: 01290657     EISSN: None     Source Type: Journal    
DOI: 10.1142/S0129065707001111     Document Type: Conference Paper
Times cited : (155)

References (23)
  • 1
    • 33749841590 scopus 로고    scopus 로고
    • Identification and forecasting of large dynamical systems by dynamical consistent neural networks
    • S. Haykin, J. Principe, T. Sejnowski and J. McWhirter eds, MIT Press
    • H. G. Zimmermann, R. Grothmann, A. M. Schaefer and Ch. Tietz, Identification and forecasting of large dynamical systems by dynamical consistent neural networks, in S. Haykin, J. Principe, T. Sejnowski and J. McWhirter (eds.), New Directions in Statistical Signal Processing: From Systems to Brain, MIT Press (2006), pp. 203-242.
    • (2006) New Directions in Statistical Signal Processing: From Systems to Brain , pp. 203-242
    • Zimmermann, H.G.1    Grothmann, R.2    Schaefer, A.M.3    Tietz, C.4
  • 5
    • 0004069064 scopus 로고    scopus 로고
    • Recurrent neural networks: Design and application
    • CRC Press international
    • L. R. Medsker and L. C. Jain, Recurrent neural networks: Design and application, Vol. 1, Comp. Intelligence (CRC Press international, 1999).
    • (1999) Comp. Intelligence , vol.1
    • Medsker, L.R.1    Jain, L.C.2
  • 7
    • 2942684766 scopus 로고    scopus 로고
    • Neural network architectures for the modeling of dynamical systems
    • J. F. Kolen and St. Kremer eds, IEEE Press
    • H. G. Zimmermann and R. Neuneier, Neural network architectures for the modeling of dynamical systems, in J. F. Kolen and St. Kremer (eds.), A Field Guide to Dynamical Recurrent Networks, IEEE Press (2001), pp. 311-350.
    • (2001) A Field Guide to Dynamical Recurrent Networks , pp. 311-350
    • Zimmermann, H.G.1    Neuneier, R.2
  • 11
    • 0024880831 scopus 로고
    • Multilayer feedforward networks are universal approximators
    • K. Hornik, M. Stinchcombe and H. White, Multilayer feedforward networks are universal approximators, Neural Networks 2 (1989) 359-366.
    • (1989) Neural Networks , vol.2 , pp. 359-366
    • Hornik, K.1    Stinchcombe, M.2    White, H.3
  • 12
    • 0024861871 scopus 로고
    • Approximation by superpositions of a sigmoidal function
    • Springer, New York
    • G. Cybenko, Approximation by superpositions of a sigmoidal function, in Mathematics of Control, Signals and Systems, Springer, New York (1989), pp. 303-314.
    • (1989) Mathematics of Control, Signals and Systems , pp. 303-314
    • Cybenko, G.1
  • 13
    • 0024866495 scopus 로고
    • On the approximate realization of continuous mappings by neural networks
    • K. I. Funahashi, On the approximate realization of continuous mappings by neural networks, Neural Networks 2 (1989) 183-192.
    • (1989) Neural Networks , vol.2 , pp. 183-192
    • Funahashi, K.I.1
  • 15
    • 0029343809 scopus 로고
    • Universal approximation to nonlinear operators by neural networks with arbitrary activation functions and applications to dynamical systems
    • T. Chen and H. Chen, Universal approximation to nonlinear operators by neural networks with arbitrary activation functions and applications to dynamical systems, IEEE Transactions on Neural Networks 6(4) (1995) 911-917.
    • (1995) IEEE Transactions on Neural Networks , vol.6 , Issue.4 , pp. 911-917
    • Chen, T.1    Chen, H.2
  • 16
    • 0036834482 scopus 로고    scopus 로고
    • Universal approximation of multiple nonlinear operators by neural networks
    • A. D. Back and T. Chen, Universal approximation of multiple nonlinear operators by neural networks, Neural Computation 14(11) (2002) 2561-2566.
    • (2002) Neural Computation , vol.14 , Issue.11 , pp. 2561-2566
    • Back, A.D.1    Chen, T.2
  • 17
    • 0001713459 scopus 로고    scopus 로고
    • The dynamic universality of sigmoidal neural networks
    • J. Kilian and H. T. Siegelmann, The dynamic universality of sigmoidal neural networks, Information and Computation 128(1) (1996) 48-56.
    • (1996) Information and Computation , vol.128 , Issue.1 , pp. 48-56
    • Kilian, J.1    Siegelmann, H.T.2
  • 18
    • 0036834701 scopus 로고    scopus 로고
    • Real-time computing without stable states: A new framework for neural computation based on perturbations
    • W. Maass, T. Natschlger and H. Markram, Real-time computing without stable states: A new framework for neural computation based on perturbations, Neural Computation 14(11) (2002) 2531-2560.
    • (2002) Neural Computation , vol.14 , Issue.11 , pp. 2531-2560
    • Maass, W.1    Natschlger, T.2    Markram, H.3
  • 21
    • 0009589301 scopus 로고    scopus 로고
    • How to train neural networks
    • G. B. Orr and K. R. Mueller eds, Springer Verlag, Berlin
    • R. Neuneier and H. G. Zimmermann, How to train neural networks, in G. B. Orr and K. R. Mueller (eds.), Neural Networks: Tricks of the Trade, Springer Verlag, Berlin (1998), pp. 373-423.
    • (1998) Neural Networks: Tricks of the Trade , pp. 373-423
    • Neuneier, R.1    Zimmermann, H.G.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.