-
1
-
-
33749841590
-
Identification and forecasting of large dynamical systems by dynamical consistent neural networks
-
S. Haykin, J. Principe, T. Sejnowski and J. McWhirter eds, MIT Press
-
H. G. Zimmermann, R. Grothmann, A. M. Schaefer and Ch. Tietz, Identification and forecasting of large dynamical systems by dynamical consistent neural networks, in S. Haykin, J. Principe, T. Sejnowski and J. McWhirter (eds.), New Directions in Statistical Signal Processing: From Systems to Brain, MIT Press (2006), pp. 203-242.
-
(2006)
New Directions in Statistical Signal Processing: From Systems to Brain
, pp. 203-242
-
-
Zimmermann, H.G.1
Grothmann, R.2
Schaefer, A.M.3
Tietz, C.4
-
3
-
-
34547900017
-
-
MIT Press, Cambridge, MA
-
S. Haykin, J. Principe, T. Sejnowski and J. McWhirter, New Directions in Statistical Signal Processing: From Systems to Brain (MIT Press, Cambridge, MA, 2006).
-
(2006)
New Directions in Statistical Signal Processing: From Systems to Brain
-
-
Haykin, S.1
Principe, J.2
Sejnowski, T.3
McWhirter, J.4
-
5
-
-
0004069064
-
Recurrent neural networks: Design and application
-
CRC Press international
-
L. R. Medsker and L. C. Jain, Recurrent neural networks: Design and application, Vol. 1, Comp. Intelligence (CRC Press international, 1999).
-
(1999)
Comp. Intelligence
, vol.1
-
-
Medsker, L.R.1
Jain, L.C.2
-
7
-
-
2942684766
-
Neural network architectures for the modeling of dynamical systems
-
J. F. Kolen and St. Kremer eds, IEEE Press
-
H. G. Zimmermann and R. Neuneier, Neural network architectures for the modeling of dynamical systems, in J. F. Kolen and St. Kremer (eds.), A Field Guide to Dynamical Recurrent Networks, IEEE Press (2001), pp. 311-350.
-
(2001)
A Field Guide to Dynamical Recurrent Networks
, pp. 311-350
-
-
Zimmermann, H.G.1
Neuneier, R.2
-
8
-
-
0000646059
-
Learning internal representations by error propagation
-
D. E. Rumelhart and J. L. McClelland et al, eds, MIT Press, Cambridge, MA
-
D. E. Rumelhart, G. E. Hinton and R. J. Williams, Learning internal representations by error propagation, in D. E. Rumelhart and J. L. McClelland et al. (eds.), Parallel Distributed Processing: Explorations in the Microstructure of Cognition, Vol. 1, MIT Press, Cambridge, MA (1986), pp. 318-362.
-
(1986)
Parallel Distributed Processing: Explorations in the Microstructure of Cognition
, vol.1
, pp. 318-362
-
-
Rumelhart, D.E.1
Hinton, G.E.2
Williams, R.J.3
-
10
-
-
1542731426
-
Modeling of dynamical systems by error correction neural networks
-
A. Soofi and L. Cao eds, Kluwer Academic Publishers
-
H. G. Zimmermann, R. Neuneier and R. Grothmann, Modeling of dynamical systems by error correction neural networks, in A. Soofi and L. Cao (eds.), Modeling and Forecasting Financial Data, Techniques of Nonlinear Dynamics, Kluwer Academic Publishers (2002), pp. 237-263.
-
(2002)
Modeling and Forecasting Financial Data, Techniques of Nonlinear Dynamics
, pp. 237-263
-
-
Zimmermann, H.G.1
Neuneier, R.2
Grothmann, R.3
-
11
-
-
0024880831
-
Multilayer feedforward networks are universal approximators
-
K. Hornik, M. Stinchcombe and H. White, Multilayer feedforward networks are universal approximators, Neural Networks 2 (1989) 359-366.
-
(1989)
Neural Networks
, vol.2
, pp. 359-366
-
-
Hornik, K.1
Stinchcombe, M.2
White, H.3
-
12
-
-
0024861871
-
Approximation by superpositions of a sigmoidal function
-
Springer, New York
-
G. Cybenko, Approximation by superpositions of a sigmoidal function, in Mathematics of Control, Signals and Systems, Springer, New York (1989), pp. 303-314.
-
(1989)
Mathematics of Control, Signals and Systems
, pp. 303-314
-
-
Cybenko, G.1
-
13
-
-
0024866495
-
On the approximate realization of continuous mappings by neural networks
-
K. I. Funahashi, On the approximate realization of continuous mappings by neural networks, Neural Networks 2 (1989) 183-192.
-
(1989)
Neural Networks
, vol.2
, pp. 183-192
-
-
Funahashi, K.I.1
-
15
-
-
0029343809
-
Universal approximation to nonlinear operators by neural networks with arbitrary activation functions and applications to dynamical systems
-
T. Chen and H. Chen, Universal approximation to nonlinear operators by neural networks with arbitrary activation functions and applications to dynamical systems, IEEE Transactions on Neural Networks 6(4) (1995) 911-917.
-
(1995)
IEEE Transactions on Neural Networks
, vol.6
, Issue.4
, pp. 911-917
-
-
Chen, T.1
Chen, H.2
-
16
-
-
0036834482
-
Universal approximation of multiple nonlinear operators by neural networks
-
A. D. Back and T. Chen, Universal approximation of multiple nonlinear operators by neural networks, Neural Computation 14(11) (2002) 2561-2566.
-
(2002)
Neural Computation
, vol.14
, Issue.11
, pp. 2561-2566
-
-
Back, A.D.1
Chen, T.2
-
17
-
-
0001713459
-
The dynamic universality of sigmoidal neural networks
-
J. Kilian and H. T. Siegelmann, The dynamic universality of sigmoidal neural networks, Information and Computation 128(1) (1996) 48-56.
-
(1996)
Information and Computation
, vol.128
, Issue.1
, pp. 48-56
-
-
Kilian, J.1
Siegelmann, H.T.2
-
18
-
-
0036834701
-
Real-time computing without stable states: A new framework for neural computation based on perturbations
-
W. Maass, T. Natschlger and H. Markram, Real-time computing without stable states: A new framework for neural computation based on perturbations, Neural Computation 14(11) (2002) 2531-2560.
-
(2002)
Neural Computation
, vol.14
, Issue.11
, pp. 2531-2560
-
-
Maass, W.1
Natschlger, T.2
Markram, H.3
-
20
-
-
0003619045
-
Recurrent neural networks for prediction: Learning algorithms, architectures and stability
-
S. Haykin ed, John Wiley & Sons, Chichester
-
D. P. Mandic and J. A. Chambers, Recurrent neural networks for prediction: Learning algorithms, architectures and stability, in S. Haykin (ed.), Adaptive and Learning Systems for Signal Processing, Communications and Control, John Wiley & Sons, Chichester (2001).
-
(2001)
Adaptive and Learning Systems for Signal Processing, Communications and Control
-
-
Mandic, D.P.1
Chambers, J.A.2
-
21
-
-
0009589301
-
How to train neural networks
-
G. B. Orr and K. R. Mueller eds, Springer Verlag, Berlin
-
R. Neuneier and H. G. Zimmermann, How to train neural networks, in G. B. Orr and K. R. Mueller (eds.), Neural Networks: Tricks of the Trade, Springer Verlag, Berlin (1998), pp. 373-423.
-
(1998)
Neural Networks: Tricks of the Trade
, pp. 373-423
-
-
Neuneier, R.1
Zimmermann, H.G.2
-
23
-
-
34547859344
-
A technical trading indicator based on dynamical consistent neural networks
-
Athens
-
H. G. Zimmermann, L. Bertolini, R. Grothmann, A. M. Schaefer and Ch. Tietz, A technical trading indicator based on dynamical consistent neural networks, in Proceedings of the International Conference on Artificial Neural Networks (ICANN-06), Athens (2006).
-
(2006)
Proceedings of the International Conference on Artificial Neural Networks (ICANN-06)
-
-
Zimmermann, H.G.1
Bertolini, L.2
Grothmann, R.3
Schaefer, A.M.4
Tietz, C.5
|