메뉴 건너뛰기




Volumn 10, Issue 6, 2002, Pages 790-802

Self-adaptive neuro-fuzzy inference systems for classification applications

Author keywords

Clustering; Levenberg Marquardt algorithm; Mapping constrained agglomerative algorithm; Neuro fuzzy systems

Indexed keywords

ALGORITHMS; COMPUTER SIMULATION; KNOWLEDGE BASED SYSTEMS; LEAST SQUARES APPROXIMATIONS; NEURAL NETWORKS;

EID: 0036902547     PISSN: 10636706     EISSN: None     Source Type: Journal    
DOI: 10.1109/TFUZZ.2002.805880     Document Type: Article
Times cited : (249)

References (32)
  • 1
    • 0001024110 scopus 로고
    • First-and second-order methods for learning: Between steepest descent and Newton's method
    • R. Battiti, "First-and second-order methods for learning: Between steepest descent and Newton's method," Neural Comput., vol. 4, pp. 141-166, 1992.
    • (1992) Neural Comput. , vol.4 , pp. 141-166
    • Battiti, R.1
  • 2
    • 0026923465 scopus 로고
    • Learning and tuning fuzzy logic controllers through reinforcements
    • Oct.
    • H.R. Berenji and P. Khedkar, "Learning and tuning fuzzy logic controllers through reinforcements," IEEE Trans. Neural Networks, vol. 3, pp. 724-740, Oct. 1992.
    • (1992) IEEE Trans. Neural Networks , vol.3 , pp. 724-740
    • Berenji, H.R.1    Khedkar, P.2
  • 4
    • 0028582717 scopus 로고
    • Using real-valued genetic algorithms to evolve rule sets for classification
    • Orlando, FL, June
    • A.L. Corcoran and S. Sen, "Using real-valued genetic algorithms to evolve rule sets for classification," in Proc. 1st IEEE Conf Evolutionary Computation, Orlando, FL, June 1994, pp. 120-124.
    • (1994) Proc. 1st IEEE Conf Evolutionary Computation , pp. 120-124
    • Corcoran, A.L.1    Sen, S.2
  • 8
    • 0028543366 scopus 로고
    • Training feedforward networks with the Marquardt algorithm
    • Dec.
    • M.T. Hagan and M.B. Menhaj, "Training feedforward networks with the Marquardt algorithm," IEEE Trans. Neural Networks, vol. 5, pp. 989-993, Dec. 1994.
    • (1994) IEEE Trans. Neural Networks , vol.5 , pp. 989-993
    • Hagan, M.T.1    Menhaj, M.B.2
  • 9
    • 0032597810 scopus 로고    scopus 로고
    • Performance evaluation of fuzzy classifier systems for multidimensional pattern classification problems
    • Oct.
    • H. Ishibuchi, T. Nakashima, and T. Murata, "Performance evaluation of fuzzy classifier systems for multidimensional pattern classification problems," IEEE Trans. Syst., Man, Cybern., pt. B, vol. 29, pp. 601-618, Oct. 1999.
    • (1999) IEEE Trans. Syst., Man, Cybern., Pt. B , vol.29 , pp. 601-618
    • Ishibuchi, H.1    Nakashima, T.2    Murata, T.3
  • 10
    • 0035426682 scopus 로고    scopus 로고
    • Three-objective genetics-based machine learning for linguistic rule extraction
    • Aug.
    • _, "Three-objective genetics-based machine learning for linguistic rule extraction," Inform. Sci., vol. 136, no. 1-4, pp. 109-133, Aug. 2001.
    • (2001) Inform. Sci. , vol.136 , Issue.1-4 , pp. 109-133
  • 11
    • 0027601884 scopus 로고
    • ANFIS: Adaptive-network-based fuzzy inference system
    • June
    • J.S.R. Jang, "ANFIS: Adaptive-network-based fuzzy inference system," IEEE Trans. Syst., Man, Cybern., vol. 23, pp. 665-685, June 1993.
    • (1993) IEEE Trans. Syst., Man, Cybern. , vol.23 , pp. 665-685
    • Jang, J.S.R.1
  • 12
    • 0031999146 scopus 로고    scopus 로고
    • An on-line self-constructing neural fuzzy inference network and its applications
    • C.F. Juang and C.T. Lin, "An on-line self-constructing neural fuzzy inference network and its applications," IEEE Trans. Fuzzy Syst., vol. 6, no. 1, pp. 12-32, 1998.
    • (1998) IEEE Trans. Fuzzy Syst. , vol.6 , Issue.1 , pp. 12-32
    • Juang, C.F.1    Lin, C.T.2
  • 13
    • 0024715766 scopus 로고
    • An adaptive least squares algorithm for efficient training of artificial neural networks
    • Aug.
    • S. Kollias and D. Anastassiou, "An adaptive least squares algorithm for efficient training of artificial neural networks," IEEE Trans. Circuits Syst., vol. 36, pp. 1092-1101, Aug. 1989.
    • (1989) IEEE Trans. Circuits Syst. , vol.36 , pp. 1092-1101
    • Kollias, S.1    Anastassiou, D.2
  • 14
    • 0035359279 scopus 로고    scopus 로고
    • An efficient fuzzy classifier with feature selection based on fuzzy entropy
    • June
    • H.M. Lee, C.M. Chen, J.M. Chen, and Y.L. Jou, "An efficient fuzzy classifier with feature selection based on fuzzy entropy," IEEE Trans. Syst., Man, Cybern. B, vol. 31, pp. 426-432, June 2001.
    • (2001) IEEE Trans. Syst., Man, Cybern. B , vol.31 , pp. 426-432
    • Lee, H.M.1    Chen, C.M.2    Chen, J.M.3    Jou, Y.L.4
  • 15
    • 0032144971 scopus 로고    scopus 로고
    • A neural network classifier with disjunctive fuzzy information
    • H.M. Lee, "A neural network classifier with disjunctive fuzzy information," Neural Networks, vol. 11, no. 6, pp. 1113-1125, 1998.
    • (1998) Neural Networks , vol.11 , Issue.6 , pp. 1113-1125
    • Lee, H.M.1
  • 16
    • 0026366218 scopus 로고
    • Neural-network-based fuzzy logic control and decision system
    • Dec.
    • C.T. Lin and C.S.G. Lee, "Neural-network-based fuzzy logic control and decision system," IEEE Trans. Comput., vol. 40, pp. 1320-1336, Dec. 1991.
    • (1991) IEEE Trans. Comput. , vol.40 , pp. 1320-1336
    • Lin, C.T.1    Lee, C.S.G.2
  • 21
    • 0034187785 scopus 로고    scopus 로고
    • Neuro-fuzzy rule generation: Survey in soft computing framework
    • June
    • S. Mitra and Y. Hayashi, "Neuro-fuzzy rule generation: Survey in soft computing framework," IEEE Trans. Neural Networks, vol. 11, pp. 748-768, June 2000.
    • (2000) IEEE Trans. Neural Networks , vol.11 , pp. 748-768
    • Mitra, S.1    Hayashi, Y.2
  • 22
    • 0001703957 scopus 로고    scopus 로고
    • A neuro-fuzzy method to learn fuzzy classification rules from data
    • D. Nauck and R. Kruse, "A neuro-fuzzy method to learn fuzzy classification rules from data," Fuzzy Sets Syst., vol. 89, no. 3, pp. 277-288, 1997.
    • (1997) Fuzzy Sets Syst. , vol.89 , Issue.3 , pp. 277-288
    • Nauck, D.1    Kruse, R.2
  • 23
    • 0030477946 scopus 로고    scopus 로고
    • Fast second order learning algorithm for feedforward multilayer neural networks and its applications
    • S. Osowski, P. Bojarczak, and M. Stodolski, "Fast second order learning algorithm for feedforward multilayer neural networks and its applications," Neural Networks, vol. 9, no. 9, pp. 1583-1596, 1996.
    • (1996) Neural Networks , vol.9 , Issue.9 , pp. 1583-1596
    • Osowski, S.1    Bojarczak, P.2    Stodolski, M.3
  • 24
    • 0031140388 scopus 로고    scopus 로고
    • Neural-network feature selector
    • June
    • R. Setiono and H. Liu, "Neural-network feature selector," IEEE Trans. Neural Networks, vol. 8, pp. 654-662, June 1997.
    • (1997) IEEE Trans. Neural Networks , vol.8 , pp. 654-662
    • Setiono, R.1    Liu, H.2
  • 25
    • 0034294243 scopus 로고    scopus 로고
    • GA-fuzzy modeling and classification: Complexity and performance
    • Oct.
    • M. Setnes and H. Roubos, "GA-fuzzy modeling and classification: Complexity and performance," IEEE Trans. Fuzzy Syst., vol. 8, pp. 509-522, Oct. 2000.
    • (2000) IEEE Trans. Fuzzy Syst. , vol.8 , pp. 509-522
    • Setnes, M.1    Roubos, H.2
  • 26
    • 0026927202 scopus 로고
    • Fuzzy min-max neural networks - Part I: Classification
    • Sept.
    • P.K. Simpson, "Fuzzy min-max neural networks-Part I: Classification," IEEE Trans. Neural Networks, vol. 3, pp. 776-786, Sept. 1992.
    • (1992) IEEE Trans. Neural Networks , vol.3 , pp. 776-786
    • Simpson, P.K.1
  • 28
    • 0033115248 scopus 로고    scopus 로고
    • On stability of fuzzy systems expressed by fuzzy rules with singleton consequents
    • Apr.
    • M. Sugeno, "On stability of fuzzy systems expressed by fuzzy rules with singleton consequents," IEEE Trans. Fuzzy Syst., vol 7, pp. 201-224, Apr. 1999.
    • (1999) IEEE Trans. Fuzzy Syst. , vol.7 , pp. 201-224
    • Sugeno, M.1
  • 29
    • 0029358133 scopus 로고
    • Modeling and control of carbon monoxide concentration using a neuro-fuzzy technique
    • June
    • K. Tanaka, M. Sano, and H. Watanabe, "Modeling and control of carbon monoxide concentration using a neuro-fuzzy technique," IEEE Trans. Fuzzy Syst., vol. 3, pp. 271-279, June 1995.
    • (1995) IEEE Trans. Fuzzy Syst. , vol.3 , pp. 271-279
    • Tanaka, K.1    Sano, M.2    Watanabe, H.3
  • 30
    • 0033324747 scopus 로고    scopus 로고
    • Self-adaptive neuro-fuzzy control with fuzzy basis function network for autonomous underwater vehicles
    • Kjongju, Korea, Oct. 18-21
    • J.S. Wang, C.S.G. Lee, and J. Yuh, "Self-adaptive neuro-fuzzy control with fuzzy basis function network for autonomous underwater vehicles," in Proc. 1999 IEEE/RSJ Int. Conf. Intelligent Robots Systems, Kjongju, Korea, Oct. 18-21, 1999, pp. 130-135.
    • (1999) Proc. 1999 IEEE/RSJ Int. Conf. Intelligent Robots Systems , pp. 130-135
    • Wang, J.S.1    Lee, C.S.G.2    Yuh, J.3
  • 31
    • 0026928374 scopus 로고
    • Fuzzy basis functions, universal approximation, and orthogonal least-squares learning
    • Oct.
    • L.X. Wang and J.M. Mendel, "Fuzzy basis functions, universal approximation, and orthogonal least-squares learning," IEEE Trans. Neural Networks, vol. 3, pp. 807-814, Oct. 1992.
    • (1992) IEEE Trans. Neural Networks , vol.3 , pp. 807-814
    • Wang, L.X.1    Mendel, J.M.2
  • 32
    • 0033078158 scopus 로고    scopus 로고
    • A new method for constructing membership functions and fuzzy rules from training examples
    • Feb.
    • T.P. Wu and S.M. Chen, "A new method for constructing membership functions and fuzzy rules from training examples," IEEE Trans. Syst. Man, Cybern., pt. B, vol. 29, pp. 25-40, Feb. 1999.
    • (1999) IEEE Trans. Syst. Man, Cybern., Pt. B , vol.29 , pp. 25-40
    • Wu, T.P.1    Chen, S.M.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.