-
1
-
-
0016355478
-
A new look at the statistical model identification
-
H. Akaike A new look at the statistical model identification IEEE Trans. Auto. Control. 19 6 1974 716 723
-
(1974)
IEEE Trans. Auto. Control.
, vol.19
, Issue.6
, pp. 716-723
-
-
Akaike, H.1
-
2
-
-
25644459607
-
-
The MIT Press Cambridge, Massachusetts, London, England
-
E. Alpaydin Introduction to Machine Learning 2004 The MIT Press Cambridge, Massachusetts, London, England
-
(2004)
Introduction to Machine Learning
-
-
Alpaydin, E.1
-
3
-
-
55949095851
-
Calculation of the power peaking factor in a nuclear reactor using support vector regression models
-
I.H. Bae, M.G. Na, Y.J. Lee, and G.C. Park Calculation of the power peaking factor in a nuclear reactor using support vector regression models Ann. Nucl. Energy 35 2008 2200 2205
-
(2008)
Ann. Nucl. Energy
, vol.35
, pp. 2200-2205
-
-
Bae, I.H.1
Na, M.G.2
Lee, Y.J.3
Park, G.C.4
-
4
-
-
79958244277
-
Signal Grouping for Condition Monitoring of Nuclear Power Plant Components
-
Las Vegas, Nevada, USA, November
-
Baraldi, P.; Canesi, R.; Zio, E.; Seraoui, R.; Chevalier, R.; 2010. Signal Grouping for Condition Monitoring of Nuclear Power Plant Components. NPIC&HMIT 2010, Las Vegas, Nevada, USA, November.
-
(2010)
NPIC&HMIT 2010
-
-
Baraldi, P.1
Canesi, R.2
Zio, E.3
Seraoui, R.4
Chevalier, R.5
-
5
-
-
80051534832
-
Genetic algorithm-based wrapper approach for grouping condition monitoring signals of nuclear power plant components
-
P. Baraldi, R. Canesi, E. Zio, R. Seraoui, and R. Chevalier Genetic algorithm-based wrapper approach for grouping condition monitoring signals of nuclear power plant components Integr. Comput. Eng. 18 3 2011 221 234
-
(2011)
Integr. Comput. Eng.
, vol.18
, Issue.3
, pp. 221-234
-
-
Baraldi, P.1
Canesi, R.2
Zio, E.3
Seraoui, R.4
Chevalier, R.5
-
6
-
-
0026966646
-
A training algorithm for optimal margin classifiers
-
ACM Press, Pittsburgh, PA
-
Boser, B.E.; Guyon, I.M.; Vapnik, V.N.; 1992. A training algorithm for optimal margin classifiers. In: 5th Annual ACM Workshop on COLT, ACM Press, Pittsburgh, PA, pp. 144-152.
-
(1992)
5th Annual ACM Workshop on COLT
, pp. 144-152
-
-
Boser B., .E.1
Guyon I., .M.2
Vapnik V., .N.3
-
7
-
-
27144489164
-
A tutorial on support vector machines for pattern recognition
-
C.J.C. Burges A tutorial on support vector machines for pattern recognition Data Min. Knowl. Discovery 2 2 1998 121 167 (Pubitemid 128695475)
-
(1998)
Data Mining and Knowledge Discovery
, vol.2
, Issue.2
, pp. 121-167
-
-
Burges, C.J.C.1
-
8
-
-
84856483584
-
Applying support vector machine to predict the critical heat flux in concentric-tube open thermosiphon
-
J.J. Cai Applying support vector machine to predict the critical heat flux in concentric-tube open thermosiphon Ann. Nucl. Energy 43 2012 114 122
-
(2012)
Ann. Nucl. Energy
, vol.43
, pp. 114-122
-
-
Cai, J.J.1
-
9
-
-
77952077020
-
Assessment of statistical and classification models for monitoring EDF's assets
-
Knoxville, Tennessee, USA
-
Chevalier, R.; Provost, D.; Seraoui, R.; 2009. Assessment of statistical and classification models for monitoring EDF's assets. In: 6th American Nuclear Society International Topical Meeting on Nuclear Plant Instrumentation, Control, and Human-Machine Interface Technologies, Knoxville, Tennessee, USA.
-
(2009)
6th American Nuclear Society International Topical Meeting on Nuclear Plant Instrumentation, Control, and Human-Machine Interface Technologies
-
-
Chevalier, R.1
Provost, D.2
Seraoui, R.3
-
12
-
-
84899013173
-
Support vector regression machines
-
NIPS 1996, MIT Press
-
Drucker, H.; Burges, C.J.C.; Kaufman, L.; Smola, A.J.; Vapnik, V.N.; 1997. Support vector regression machines. In: Advances in Neural Information Processing Systems, vol. 9, NIPS 1996, MIT Press, pp. 155-161.
-
(1997)
Advances in Neural Information Processing Systems
, vol.9
, pp. 155-161
-
-
Drucker, H.1
Burges C. .J., .C.2
Kaufman, L.3
Smola A., .J.4
Vapnik V., .N.5
-
13
-
-
80155161847
-
Fault diagnosis of generation IV nuclear HTGR components-Part I: The error enthalpy-entropy graph approach
-
C.P. du Rand, and G. van Schoor Fault diagnosis of generation IV nuclear HTGR components-Part I: the error enthalpy-entropy graph approach Ann. Nucl. Energy 40 2012 14 24
-
(2012)
Ann. Nucl. Energy
, vol.40
, pp. 14-24
-
-
Du Rand, C.P.1
Van Schoor, G.2
-
14
-
-
83455211590
-
Fault diagnosis of generation IV nuclear HTGR components-Part II: The error enthalpy-entropy graph approach
-
C.P. du Rand, and G. van Schoor Fault diagnosis of generation IV nuclear HTGR components-Part II: the error enthalpy-entropy graph approach Ann. Nucl. Energy 41 2012 79 86
-
(2012)
Ann. Nucl. Energy
, vol.41
, pp. 79-86
-
-
Du Rand, C.P.1
Van Schoor, G.2
-
15
-
-
84859580338
-
Support vector machines for classification and locating faults on transmission lines
-
S. Ekici Support vector machines for classification and locating faults on transmission lines Appl. Soft Comput. 12 2012 1650 1658
-
(2012)
Appl. Soft Comput.
, vol.12
, pp. 1650-1658
-
-
Ekici, S.1
-
16
-
-
84864756811
-
ANN based sensor faults detection isolation and reading estimates-SFDIRE: Applied in a nuclear process
-
O. Elnokity, I.I. Mahmoud, M.K. Refai, and H.M. Farahat ANN based sensor faults detection isolation and reading estimates-SFDIRE: applied in a nuclear process Ann. Nucl. Energy 49 2012 131 142
-
(2012)
Ann. Nucl. Energy
, vol.49
, pp. 131-142
-
-
Elnokity, O.1
Mahmoud, I.I.2
Refai, M.K.3
Farahat, H.M.4
-
17
-
-
0036161010
-
A probabilistic framework for SVM regression and error bar estimation
-
DOI 10.1023/A:1012494009640
-
J.B. Gao, S.R. Gunn, C.J. Harriset, and M. Brown A probabilistic framework for SVM regression and error bar estimation Mach. Learn. 46 1-3 2002 71 89 (Pubitemid 34129964)
-
(2002)
Machine Learning
, vol.46
, Issue.1-3
, pp. 71-89
-
-
Gao, J.B.1
Gunn, S.R.2
Harris, C.J.3
Brown, M.4
-
18
-
-
0000249788
-
An Equivalence between Sparse Approximation and Support Vector Machines
-
F. Girosi An equivalence between sparse approximation and support vector machines Neural Comput. 10 6 1998 1455 1480 (Pubitemid 128464285)
-
(1998)
Neural Computation
, vol.10
, Issue.6
, pp. 1455-1480
-
-
Girosi, F.1
-
19
-
-
0035708917
-
Simple explanation of the No Free Lunch Theorem of Optimization
-
Ho, Y.-C.; Pepyne, D.L.; 2001. Simple explanation of the no free lunch theorem of optimization. In: Proceedings of the 40th IEEE Conference on Decision and Control, vol. 5, Orlando, Florida, IEEE, Piscataway, New Jersey, December 4-7, pp. 4409-4414. (Pubitemid 34144217)
-
(2001)
Proceedings of the IEEE Conference on Decision and Control
, vol.5
, pp. 4409-4414
-
-
Ho, Y.-C.1
Pepyne, D.L.2
-
21
-
-
84885844209
-
A review on machinery diagnostics and prognostics implementing condition-based maintenance
-
A.K.S. Jardine, D. Lin, and D. Banjevic A review on machinery diagnostics and prognostics implementing condition-based maintenance Int. J. Adv. Manuf. 28 9-10 2006 1012 1024
-
(2006)
Int. J. Adv. Manuf.
, vol.28
, Issue.910
, pp. 1012-1024
-
-
Jardine, A.K.S.1
Lin, D.2
Banjevic, D.3
-
22
-
-
84856954435
-
Hybrid modeling approach to improve the forecasting capability for the gaseous radionuclide in a nuclear site
-
H. Jeong, W. Hwang, E. Kim, and M. Han Hybrid modeling approach to improve the forecasting capability for the gaseous radionuclide in a nuclear site Ann. Nucl. Energy 42 2012 30 34
-
(2012)
Ann. Nucl. Energy
, vol.42
, pp. 30-34
-
-
Jeong, H.1
Hwang, W.2
Kim, E.3
Han, M.4
-
23
-
-
84864528081
-
Uncertainty analysis of data-based models for estimating collapse moments of wall-thinned pipe bends and elbows
-
D.S. Kim, J.H. Kim, M. Gyunna, and J.W. Kim Uncertainty analysis of data-based models for estimating collapse moments of wall-thinned pipe bends and elbows Nucl. Eng. Technol. 44 3 2012 323 330
-
(2012)
Nucl. Eng. Technol.
, vol.44
, Issue.3
, pp. 323-330
-
-
Kim, D.S.1
Kim, J.H.2
Gyunna, M.3
Kim, J.W.4
-
24
-
-
64849110039
-
Gas turbine performance prognostic for condition-based maintenance
-
Y.G. Li, and P. Nilkitsaranont Gas turbine performance prognostic for condition-based maintenance Appl. Energy 86 10 2009 2152 2161
-
(2009)
Appl. Energy
, vol.86
, Issue.10
, pp. 2152-2161
-
-
Li, Y.G.1
Nilkitsaranont, P.2
-
25
-
-
84859897165
-
Fault diagnosis of helical coil steam generator systems of an integral pressurized water reactor using optimal sensor selection
-
F. Li, B.R. Upadhyaya, and S.R.P. Perillo Fault diagnosis of helical coil steam generator systems of an integral pressurized water reactor using optimal sensor selection IEEE Trans. Nucl. Sci. 59 2 2012 403 410
-
(2012)
IEEE Trans. Nucl. Sci.
, vol.59
, Issue.2
, pp. 403-410
-
-
Li, F.1
Upadhyaya, B.R.2
Perillo, S.R.P.3
-
27
-
-
17644382295
-
Monitoring and fault diagnosis of the steam generator system of a nuclear power plant using data-driven modeling and residual space analysis
-
DOI 10.1016/j.anucene.2005.02.003, PII S0306454905000575
-
B. Lu, and B.R. Upadhyaya Monitoring and fault diagnosis of the steam generator system of a nuclear power plant using data-driven modeling and residual space analysis Ann. Nucl. Energy 32 2005 897 912 (Pubitemid 40556394)
-
(2005)
Annals of Nuclear Energy
, vol.32
, Issue.9
, pp. 897-912
-
-
Lu, B.1
Upadhyaya, B.R.2
-
28
-
-
79751524232
-
Applications of fault detection and diagnosis methods in nuclear power plants: A review
-
J.P. Ma, and J. Jiang Applications of fault detection and diagnosis methods in nuclear power plants: a review Prog. Nucl. Energy 53 2011 255 266
-
(2011)
Prog. Nucl. Energy
, vol.53
, pp. 255-266
-
-
Ma, J.P.1
Jiang, J.2
-
30
-
-
0037905968
-
Gaussian processes, a replacement for neural networks
-
Cambridge University
-
MacKay, D.J.; 1997. Gaussian processes, a replacement for neural networks. NIPS Tutorial 1997, Cambridge University.
-
(1997)
NIPS Tutorial 1997
-
-
MacKay, D.J.1
-
31
-
-
0003142774
-
Local linear regression estimation for time series with long-range dependence
-
PII S0304414999000150
-
E. Masry, and J. Mielniczuk Local linear regression estimation for time series with long-range dependence Stoch. Process. Appl. 82 2 1999 173 193 (Pubitemid 129570216)
-
(1999)
Stochastic Processes and their Applications
, vol.82
, Issue.2
, pp. 173-193
-
-
Masry, E.1
Mielniczuk, J.2
-
32
-
-
84861900936
-
A comparative study of Naïve Bayes classifier and Bayes net classifier for fault diagnosis of monoblock centrifugal pump using wavelet analysis
-
V. Muralidharan, and V. Sugumaran A comparative study of Naïve Bayes classifier and Bayes net classifier for fault diagnosis of monoblock centrifugal pump using wavelet analysis Appl. Soft Comput. 12 2012 2023 2029
-
(2012)
Appl. Soft Comput.
, vol.12
, pp. 2023-2029
-
-
Muralidharan, V.1
Sugumaran, V.2
-
33
-
-
0028544395
-
Network information criterion-determining the number of hidden units for artificial neural network models
-
N. Murata, S. Yoshizawa, and S. Amari Network information criterion-determining the number of hidden units for artificial neural network models IEEE Trans. Network 5 1994 865 872
-
(1994)
IEEE Trans. Network
, vol.5
, pp. 865-872
-
-
Murata, N.1
Yoshizawa, S.2
Amari, S.3
-
34
-
-
33646528468
-
Estimation of collapse moment for the wall-thinned pipe bends using fuzzy model identification
-
M.G. Na, J.W. Kim, and D.N. Moreton Estimation of collapse moment for the wall-thinned pipe bends using fuzzy model identification Nucl. Eng. Des. 236 2006 1335 1343
-
(2006)
Nucl. Eng. Des.
, vol.236
, pp. 1335-1343
-
-
Na, M.G.1
Kim, J.W.2
Moreton, D.N.3
-
36
-
-
77957852490
-
Intelligent condition monitoring and prognostics system based on data-fusion strategy
-
G. Niu, and B.S. Yang Intelligent condition monitoring and prognostics system based on data-fusion strategy Expert Syst. Appl. 37 12 2010 8831 8840
-
(2010)
Expert Syst. Appl.
, vol.37
, Issue.12
, pp. 8831-8840
-
-
Niu, G.1
Yang, B.S.2
-
37
-
-
0000473139
-
A Sparse Representation for Function Approximation
-
T. Poggio, and F. Girosi A sparse representation for function approximation Neural Comput. 10 1998 1445 1454 (Pubitemid 128464284)
-
(1998)
Neural Computation
, vol.10
, Issue.6
, pp. 1445-1454
-
-
Poggio, T.1
Girosi, F.2
-
38
-
-
84952503562
-
Thirteen ways to look at the correlation coefficient
-
J.L. Rodgers, and W.A. Nicewander Thirteen ways to look at the correlation coefficient Am. Stat. 42 1 1988 59 66
-
(1988)
Am. Stat.
, vol.42
, Issue.1
, pp. 59-66
-
-
Rodgers, J.L.1
Nicewander, W.A.2
-
39
-
-
57649214105
-
Diagnostic system for identification of accident scenarios in nuclear power plants using artificial neural networks
-
T.V. Santosh, A. Srivastava, V.V.S. SanyasiRao, A.K. Ghosh, and H.S. Kushwaha Diagnostic system for identification of accident scenarios in nuclear power plants using artificial neural networks Reliab. Eng. Syst. Saf. 94 2009 759 762
-
(2009)
Reliab. Eng. Syst. Saf.
, vol.94
, pp. 759-762
-
-
Santosh, T.V.1
Srivastava, A.2
Sanyasirao, V.V.S.3
Ghosh, A.K.4
Kushwaha, H.S.5
-
40
-
-
4043137356
-
A tutorial on support vector regression
-
DOI 10.1023/B:STCO.0000035301.49549.88
-
A.J. Smola, and B. Schölkopf A tutorial on support vector regression Stat. Comput. 14 3 2004 199 222 (Pubitemid 39063488)
-
(2004)
Statistics and Computing
, vol.14
, Issue.3
, pp. 199-222
-
-
Smola, A.J.1
Scholkopf, B.2
-
41
-
-
0008160160
-
Probabilistic interpretations and Bayesian methods for support vector machines
-
King's College London, London, UK.
-
Sollich, P.; 1999. Probabilistic interpretations and Bayesian methods for support vector machines. Technical Report. King's College London, London, UK.
-
(1999)
Technical Report
-
-
Sollich, P.1
-
43
-
-
35548982127
-
Support vector regression model for the estimation of γ-ray buildup factors for multi-layer shields
-
DOI 10.1016/j.anucene.2007.05.001, PII S0306454907001223
-
K. Trontl, T. Smuc, and D. Pevec Support vector regression model for the estimation of c-ray buildup factors for multi-layer shields Ann. Nucl. Energy 34 2007 939 952 (Pubitemid 350001349)
-
(2007)
Annals of Nuclear Energy
, vol.34
, Issue.12
, pp. 939-952
-
-
Trontl, K.1
Smuc, T.2
Pevec, D.3
-
45
-
-
84887252594
-
Support vector method for function approximation, regression estimation, and signal processing
-
Vapnik,V.N.; Golowich, S.E.; Smola, A.; 1996. Support vector method for function approximation, regression estimation, and signal processing. In: Proceedings of the 10th Neural Information Processing Systems (NIPS) Conference, Denver, Colorado, 1996.
-
(1996)
Proceedings of the 10th Neural Information Processing Systems (NIPS) Conference, Denver, Colorado
-
-
Vapnik V., .N.1
Golowich S., .E.2
Smola, A.3
-
46
-
-
18244389434
-
Prognostic and diagnostic monitoring of complex systems for product lifecycle management: Challenges and opportunities
-
V. Venkatasubramanian Prognostic and diagnostic monitoring of complex systems for product lifecycle management: challenges and opportunities Comput. Chem. Eng. 29 6 2005 1253 1263
-
(2005)
Comput. Chem. Eng.
, vol.29
, Issue.6
, pp. 1253-1263
-
-
Venkatasubramanian, V.1
-
47
-
-
0003890671
-
-
John Wiley Camp; Sons, Inc. New York, N.Y.; USA
-
C. Vladimir, and F. Mulier Learning from Data: Concepts, Theory, and Methods 1998 John Wiley Camp; Sons, Inc. New York, N.Y.; USA
-
(1998)
Learning from Data: Concepts, Theory, and Methods
-
-
Vladimir, C.1
Mulier, F.2
-
48
-
-
2442503629
-
Prognosis of machine health condition using neuro-fuzzy systems
-
W.Q. Wang, M.F. Golnaraghi, and F. Ismail Prognosis of machine health condition using neuro-fuzzy systems Mech. Syst. Signal Process. 18 4 2004 813 831
-
(2004)
Mech. Syst. Signal Process.
, vol.18
, Issue.4
, pp. 813-831
-
-
Wang, W.Q.1
Golnaraghi, M.F.2
Ismail, F.3
-
49
-
-
84898974226
-
Computing with infinite networks
-
Mozer, M.C.; Jordan, M.I.; Petsche, T. (Eds.) MIT Press
-
Williams, C.K.; 1997. Computing with infinite networks. In: Mozer, M.C.; Jordan, M.I.; Petsche, T. (Eds.). Info. Process. Syst. vol. 9, MIT Press, pp. 295-301.
-
(1997)
Info. Process. Syst.
, vol.9
, pp. 295-301
-
-
Williams, C.K.1
-
50
-
-
84859896324
-
On-line fault recognition system for the analogic channels of VVER 1000/400 nuclear reactors
-
M. Yazikov, G. Gola, O. Berg, J. Porsmyr, H. Valseth, D. Roverso, and M. Hoffmann On-line fault recognition system for the analogic channels of VVER 1000/400 nuclear reactors IEEE Trans. Nucl. Sci. 59 2 2012 411 418
-
(2012)
IEEE Trans. Nucl. Sci.
, vol.59
, Issue.2
, pp. 411-418
-
-
Yazikov, M.1
Gola, G.2
Berg, O.3
Porsmyr, J.4
Valseth, H.5
Roverso, D.6
Hoffmann, M.7
-
52
-
-
70349470960
-
A data-driven fuzzy approach for predicting the remaining useful life in dynamic failure scenarios of a nuclear system
-
E. Zio, and F. Di Maio A data-driven fuzzy approach for predicting the remaining useful life in dynamic failure scenarios of a nuclear system Reliab. Eng. Syst. Saf. 95 2010 45 57
-
(2010)
Reliab. Eng. Syst. Saf.
, vol.95
, pp. 45-57
-
-
Zio, E.1
Di Maio, F.2
-
53
-
-
33644599577
-
Neuro-fuzzy pattern classification for fault diagnosis in nuclear components
-
E. Zio, and G. Gola Neuro-fuzzy pattern classification for fault diagnosis in nuclear components Ann. Nucl. Energy 33 2006 415 426
-
(2006)
Ann. Nucl. Energy
, vol.33
, pp. 415-426
-
-
Zio, E.1
Gola, G.2
-
54
-
-
67651146368
-
A fuzzy decision tree method for fault classification in the steam generator of a pressurized water reactor
-
E. Zio, P. Baraldi, and I.C. Popescu A fuzzy decision tree method for fault classification in the steam generator of a pressurized water reactor Ann. Nucl. Energy 36 2009 1159 1169
-
(2009)
Ann. Nucl. Energy
, vol.36
, pp. 1159-1169
-
-
Zio, E.1
Baraldi, P.2
Popescu, I.C.3
-
55
-
-
77649192707
-
A data-driven approach for predicting failure scenarios in nuclear systems
-
E. Zio, F. Di Maio, and M. Stasi A data-driven approach for predicting failure scenarios in nuclear systems Ann. Nucl. Energy 37 4 2010 482 491
-
(2010)
Ann. Nucl. Energy
, vol.37
, Issue.4
, pp. 482-491
-
-
Zio, E.1
Di Maio, F.2
Stasi, M.3
|