메뉴 건너뛰기




Volumn 56, Issue , 2013, Pages 23-33

Nuclear power plant components condition monitoring by probabilistic support vector machine

Author keywords

Condition monitoring; Nuclear power plant; Point prediction; Probabilistic support vector machine

Indexed keywords

BAYESIAN; GAUSSIAN PRIORS; MODEL IDENTIFICATION; NPP COMPONENTS; POWER PLANT COMPONENTS; PROCESS PARAMETERS; REAL CASE; SUPPORT VECTOR REGRESSION (SVR);

EID: 84873648199     PISSN: 03064549     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.anucene.2013.01.005     Document Type: Article
Times cited : (77)

References (55)
  • 1
    • 0016355478 scopus 로고
    • A new look at the statistical model identification
    • H. Akaike A new look at the statistical model identification IEEE Trans. Auto. Control. 19 6 1974 716 723
    • (1974) IEEE Trans. Auto. Control. , vol.19 , Issue.6 , pp. 716-723
    • Akaike, H.1
  • 2
    • 25644459607 scopus 로고    scopus 로고
    • The MIT Press Cambridge, Massachusetts, London, England
    • E. Alpaydin Introduction to Machine Learning 2004 The MIT Press Cambridge, Massachusetts, London, England
    • (2004) Introduction to Machine Learning
    • Alpaydin, E.1
  • 3
    • 55949095851 scopus 로고    scopus 로고
    • Calculation of the power peaking factor in a nuclear reactor using support vector regression models
    • I.H. Bae, M.G. Na, Y.J. Lee, and G.C. Park Calculation of the power peaking factor in a nuclear reactor using support vector regression models Ann. Nucl. Energy 35 2008 2200 2205
    • (2008) Ann. Nucl. Energy , vol.35 , pp. 2200-2205
    • Bae, I.H.1    Na, M.G.2    Lee, Y.J.3    Park, G.C.4
  • 4
    • 79958244277 scopus 로고    scopus 로고
    • Signal Grouping for Condition Monitoring of Nuclear Power Plant Components
    • Las Vegas, Nevada, USA, November
    • Baraldi, P.; Canesi, R.; Zio, E.; Seraoui, R.; Chevalier, R.; 2010. Signal Grouping for Condition Monitoring of Nuclear Power Plant Components. NPIC&HMIT 2010, Las Vegas, Nevada, USA, November.
    • (2010) NPIC&HMIT 2010
    • Baraldi, P.1    Canesi, R.2    Zio, E.3    Seraoui, R.4    Chevalier, R.5
  • 5
    • 80051534832 scopus 로고    scopus 로고
    • Genetic algorithm-based wrapper approach for grouping condition monitoring signals of nuclear power plant components
    • P. Baraldi, R. Canesi, E. Zio, R. Seraoui, and R. Chevalier Genetic algorithm-based wrapper approach for grouping condition monitoring signals of nuclear power plant components Integr. Comput. Eng. 18 3 2011 221 234
    • (2011) Integr. Comput. Eng. , vol.18 , Issue.3 , pp. 221-234
    • Baraldi, P.1    Canesi, R.2    Zio, E.3    Seraoui, R.4    Chevalier, R.5
  • 6
    • 0026966646 scopus 로고
    • A training algorithm for optimal margin classifiers
    • ACM Press, Pittsburgh, PA
    • Boser, B.E.; Guyon, I.M.; Vapnik, V.N.; 1992. A training algorithm for optimal margin classifiers. In: 5th Annual ACM Workshop on COLT, ACM Press, Pittsburgh, PA, pp. 144-152.
    • (1992) 5th Annual ACM Workshop on COLT , pp. 144-152
    • Boser B., .E.1    Guyon I., .M.2    Vapnik V., .N.3
  • 7
    • 27144489164 scopus 로고    scopus 로고
    • A tutorial on support vector machines for pattern recognition
    • C.J.C. Burges A tutorial on support vector machines for pattern recognition Data Min. Knowl. Discovery 2 2 1998 121 167 (Pubitemid 128695475)
    • (1998) Data Mining and Knowledge Discovery , vol.2 , Issue.2 , pp. 121-167
    • Burges, C.J.C.1
  • 8
    • 84856483584 scopus 로고    scopus 로고
    • Applying support vector machine to predict the critical heat flux in concentric-tube open thermosiphon
    • J.J. Cai Applying support vector machine to predict the critical heat flux in concentric-tube open thermosiphon Ann. Nucl. Energy 43 2012 114 122
    • (2012) Ann. Nucl. Energy , vol.43 , pp. 114-122
    • Cai, J.J.1
  • 13
    • 80155161847 scopus 로고    scopus 로고
    • Fault diagnosis of generation IV nuclear HTGR components-Part I: The error enthalpy-entropy graph approach
    • C.P. du Rand, and G. van Schoor Fault diagnosis of generation IV nuclear HTGR components-Part I: the error enthalpy-entropy graph approach Ann. Nucl. Energy 40 2012 14 24
    • (2012) Ann. Nucl. Energy , vol.40 , pp. 14-24
    • Du Rand, C.P.1    Van Schoor, G.2
  • 14
    • 83455211590 scopus 로고    scopus 로고
    • Fault diagnosis of generation IV nuclear HTGR components-Part II: The error enthalpy-entropy graph approach
    • C.P. du Rand, and G. van Schoor Fault diagnosis of generation IV nuclear HTGR components-Part II: the error enthalpy-entropy graph approach Ann. Nucl. Energy 41 2012 79 86
    • (2012) Ann. Nucl. Energy , vol.41 , pp. 79-86
    • Du Rand, C.P.1    Van Schoor, G.2
  • 15
    • 84859580338 scopus 로고    scopus 로고
    • Support vector machines for classification and locating faults on transmission lines
    • S. Ekici Support vector machines for classification and locating faults on transmission lines Appl. Soft Comput. 12 2012 1650 1658
    • (2012) Appl. Soft Comput. , vol.12 , pp. 1650-1658
    • Ekici, S.1
  • 16
    • 84864756811 scopus 로고    scopus 로고
    • ANN based sensor faults detection isolation and reading estimates-SFDIRE: Applied in a nuclear process
    • O. Elnokity, I.I. Mahmoud, M.K. Refai, and H.M. Farahat ANN based sensor faults detection isolation and reading estimates-SFDIRE: applied in a nuclear process Ann. Nucl. Energy 49 2012 131 142
    • (2012) Ann. Nucl. Energy , vol.49 , pp. 131-142
    • Elnokity, O.1    Mahmoud, I.I.2    Refai, M.K.3    Farahat, H.M.4
  • 17
    • 0036161010 scopus 로고    scopus 로고
    • A probabilistic framework for SVM regression and error bar estimation
    • DOI 10.1023/A:1012494009640
    • J.B. Gao, S.R. Gunn, C.J. Harriset, and M. Brown A probabilistic framework for SVM regression and error bar estimation Mach. Learn. 46 1-3 2002 71 89 (Pubitemid 34129964)
    • (2002) Machine Learning , vol.46 , Issue.1-3 , pp. 71-89
    • Gao, J.B.1    Gunn, S.R.2    Harris, C.J.3    Brown, M.4
  • 18
    • 0000249788 scopus 로고    scopus 로고
    • An Equivalence between Sparse Approximation and Support Vector Machines
    • F. Girosi An equivalence between sparse approximation and support vector machines Neural Comput. 10 6 1998 1455 1480 (Pubitemid 128464285)
    • (1998) Neural Computation , vol.10 , Issue.6 , pp. 1455-1480
    • Girosi, F.1
  • 19
    • 0035708917 scopus 로고    scopus 로고
    • Simple explanation of the No Free Lunch Theorem of Optimization
    • Ho, Y.-C.; Pepyne, D.L.; 2001. Simple explanation of the no free lunch theorem of optimization. In: Proceedings of the 40th IEEE Conference on Decision and Control, vol. 5, Orlando, Florida, IEEE, Piscataway, New Jersey, December 4-7, pp. 4409-4414. (Pubitemid 34144217)
    • (2001) Proceedings of the IEEE Conference on Decision and Control , vol.5 , pp. 4409-4414
    • Ho, Y.-C.1    Pepyne, D.L.2
  • 21
    • 84885844209 scopus 로고    scopus 로고
    • A review on machinery diagnostics and prognostics implementing condition-based maintenance
    • A.K.S. Jardine, D. Lin, and D. Banjevic A review on machinery diagnostics and prognostics implementing condition-based maintenance Int. J. Adv. Manuf. 28 9-10 2006 1012 1024
    • (2006) Int. J. Adv. Manuf. , vol.28 , Issue.910 , pp. 1012-1024
    • Jardine, A.K.S.1    Lin, D.2    Banjevic, D.3
  • 22
    • 84856954435 scopus 로고    scopus 로고
    • Hybrid modeling approach to improve the forecasting capability for the gaseous radionuclide in a nuclear site
    • H. Jeong, W. Hwang, E. Kim, and M. Han Hybrid modeling approach to improve the forecasting capability for the gaseous radionuclide in a nuclear site Ann. Nucl. Energy 42 2012 30 34
    • (2012) Ann. Nucl. Energy , vol.42 , pp. 30-34
    • Jeong, H.1    Hwang, W.2    Kim, E.3    Han, M.4
  • 23
    • 84864528081 scopus 로고    scopus 로고
    • Uncertainty analysis of data-based models for estimating collapse moments of wall-thinned pipe bends and elbows
    • D.S. Kim, J.H. Kim, M. Gyunna, and J.W. Kim Uncertainty analysis of data-based models for estimating collapse moments of wall-thinned pipe bends and elbows Nucl. Eng. Technol. 44 3 2012 323 330
    • (2012) Nucl. Eng. Technol. , vol.44 , Issue.3 , pp. 323-330
    • Kim, D.S.1    Kim, J.H.2    Gyunna, M.3    Kim, J.W.4
  • 24
    • 64849110039 scopus 로고    scopus 로고
    • Gas turbine performance prognostic for condition-based maintenance
    • Y.G. Li, and P. Nilkitsaranont Gas turbine performance prognostic for condition-based maintenance Appl. Energy 86 10 2009 2152 2161
    • (2009) Appl. Energy , vol.86 , Issue.10 , pp. 2152-2161
    • Li, Y.G.1    Nilkitsaranont, P.2
  • 25
    • 84859897165 scopus 로고    scopus 로고
    • Fault diagnosis of helical coil steam generator systems of an integral pressurized water reactor using optimal sensor selection
    • F. Li, B.R. Upadhyaya, and S.R.P. Perillo Fault diagnosis of helical coil steam generator systems of an integral pressurized water reactor using optimal sensor selection IEEE Trans. Nucl. Sci. 59 2 2012 403 410
    • (2012) IEEE Trans. Nucl. Sci. , vol.59 , Issue.2 , pp. 403-410
    • Li, F.1    Upadhyaya, B.R.2    Perillo, S.R.P.3
  • 27
    • 17644382295 scopus 로고    scopus 로고
    • Monitoring and fault diagnosis of the steam generator system of a nuclear power plant using data-driven modeling and residual space analysis
    • DOI 10.1016/j.anucene.2005.02.003, PII S0306454905000575
    • B. Lu, and B.R. Upadhyaya Monitoring and fault diagnosis of the steam generator system of a nuclear power plant using data-driven modeling and residual space analysis Ann. Nucl. Energy 32 2005 897 912 (Pubitemid 40556394)
    • (2005) Annals of Nuclear Energy , vol.32 , Issue.9 , pp. 897-912
    • Lu, B.1    Upadhyaya, B.R.2
  • 28
    • 79751524232 scopus 로고    scopus 로고
    • Applications of fault detection and diagnosis methods in nuclear power plants: A review
    • J.P. Ma, and J. Jiang Applications of fault detection and diagnosis methods in nuclear power plants: a review Prog. Nucl. Energy 53 2011 255 266
    • (2011) Prog. Nucl. Energy , vol.53 , pp. 255-266
    • Ma, J.P.1    Jiang, J.2
  • 30
    • 0037905968 scopus 로고    scopus 로고
    • Gaussian processes, a replacement for neural networks
    • Cambridge University
    • MacKay, D.J.; 1997. Gaussian processes, a replacement for neural networks. NIPS Tutorial 1997, Cambridge University.
    • (1997) NIPS Tutorial 1997
    • MacKay, D.J.1
  • 31
    • 0003142774 scopus 로고    scopus 로고
    • Local linear regression estimation for time series with long-range dependence
    • PII S0304414999000150
    • E. Masry, and J. Mielniczuk Local linear regression estimation for time series with long-range dependence Stoch. Process. Appl. 82 2 1999 173 193 (Pubitemid 129570216)
    • (1999) Stochastic Processes and their Applications , vol.82 , Issue.2 , pp. 173-193
    • Masry, E.1    Mielniczuk, J.2
  • 32
    • 84861900936 scopus 로고    scopus 로고
    • A comparative study of Naïve Bayes classifier and Bayes net classifier for fault diagnosis of monoblock centrifugal pump using wavelet analysis
    • V. Muralidharan, and V. Sugumaran A comparative study of Naïve Bayes classifier and Bayes net classifier for fault diagnosis of monoblock centrifugal pump using wavelet analysis Appl. Soft Comput. 12 2012 2023 2029
    • (2012) Appl. Soft Comput. , vol.12 , pp. 2023-2029
    • Muralidharan, V.1    Sugumaran, V.2
  • 33
    • 0028544395 scopus 로고
    • Network information criterion-determining the number of hidden units for artificial neural network models
    • N. Murata, S. Yoshizawa, and S. Amari Network information criterion-determining the number of hidden units for artificial neural network models IEEE Trans. Network 5 1994 865 872
    • (1994) IEEE Trans. Network , vol.5 , pp. 865-872
    • Murata, N.1    Yoshizawa, S.2    Amari, S.3
  • 34
    • 33646528468 scopus 로고    scopus 로고
    • Estimation of collapse moment for the wall-thinned pipe bends using fuzzy model identification
    • M.G. Na, J.W. Kim, and D.N. Moreton Estimation of collapse moment for the wall-thinned pipe bends using fuzzy model identification Nucl. Eng. Des. 236 2006 1335 1343
    • (2006) Nucl. Eng. Des. , vol.236 , pp. 1335-1343
    • Na, M.G.1    Kim, J.W.2    Moreton, D.N.3
  • 36
    • 77957852490 scopus 로고    scopus 로고
    • Intelligent condition monitoring and prognostics system based on data-fusion strategy
    • G. Niu, and B.S. Yang Intelligent condition monitoring and prognostics system based on data-fusion strategy Expert Syst. Appl. 37 12 2010 8831 8840
    • (2010) Expert Syst. Appl. , vol.37 , Issue.12 , pp. 8831-8840
    • Niu, G.1    Yang, B.S.2
  • 37
    • 0000473139 scopus 로고    scopus 로고
    • A Sparse Representation for Function Approximation
    • T. Poggio, and F. Girosi A sparse representation for function approximation Neural Comput. 10 1998 1445 1454 (Pubitemid 128464284)
    • (1998) Neural Computation , vol.10 , Issue.6 , pp. 1445-1454
    • Poggio, T.1    Girosi, F.2
  • 38
    • 84952503562 scopus 로고
    • Thirteen ways to look at the correlation coefficient
    • J.L. Rodgers, and W.A. Nicewander Thirteen ways to look at the correlation coefficient Am. Stat. 42 1 1988 59 66
    • (1988) Am. Stat. , vol.42 , Issue.1 , pp. 59-66
    • Rodgers, J.L.1    Nicewander, W.A.2
  • 39
    • 57649214105 scopus 로고    scopus 로고
    • Diagnostic system for identification of accident scenarios in nuclear power plants using artificial neural networks
    • T.V. Santosh, A. Srivastava, V.V.S. SanyasiRao, A.K. Ghosh, and H.S. Kushwaha Diagnostic system for identification of accident scenarios in nuclear power plants using artificial neural networks Reliab. Eng. Syst. Saf. 94 2009 759 762
    • (2009) Reliab. Eng. Syst. Saf. , vol.94 , pp. 759-762
    • Santosh, T.V.1    Srivastava, A.2    Sanyasirao, V.V.S.3    Ghosh, A.K.4    Kushwaha, H.S.5
  • 40
    • 4043137356 scopus 로고    scopus 로고
    • A tutorial on support vector regression
    • DOI 10.1023/B:STCO.0000035301.49549.88
    • A.J. Smola, and B. Schölkopf A tutorial on support vector regression Stat. Comput. 14 3 2004 199 222 (Pubitemid 39063488)
    • (2004) Statistics and Computing , vol.14 , Issue.3 , pp. 199-222
    • Smola, A.J.1    Scholkopf, B.2
  • 41
    • 0008160160 scopus 로고    scopus 로고
    • Probabilistic interpretations and Bayesian methods for support vector machines
    • King's College London, London, UK.
    • Sollich, P.; 1999. Probabilistic interpretations and Bayesian methods for support vector machines. Technical Report. King's College London, London, UK.
    • (1999) Technical Report
    • Sollich, P.1
  • 43
    • 35548982127 scopus 로고    scopus 로고
    • Support vector regression model for the estimation of γ-ray buildup factors for multi-layer shields
    • DOI 10.1016/j.anucene.2007.05.001, PII S0306454907001223
    • K. Trontl, T. Smuc, and D. Pevec Support vector regression model for the estimation of c-ray buildup factors for multi-layer shields Ann. Nucl. Energy 34 2007 939 952 (Pubitemid 350001349)
    • (2007) Annals of Nuclear Energy , vol.34 , Issue.12 , pp. 939-952
    • Trontl, K.1    Smuc, T.2    Pevec, D.3
  • 46
    • 18244389434 scopus 로고    scopus 로고
    • Prognostic and diagnostic monitoring of complex systems for product lifecycle management: Challenges and opportunities
    • V. Venkatasubramanian Prognostic and diagnostic monitoring of complex systems for product lifecycle management: challenges and opportunities Comput. Chem. Eng. 29 6 2005 1253 1263
    • (2005) Comput. Chem. Eng. , vol.29 , Issue.6 , pp. 1253-1263
    • Venkatasubramanian, V.1
  • 48
    • 2442503629 scopus 로고    scopus 로고
    • Prognosis of machine health condition using neuro-fuzzy systems
    • W.Q. Wang, M.F. Golnaraghi, and F. Ismail Prognosis of machine health condition using neuro-fuzzy systems Mech. Syst. Signal Process. 18 4 2004 813 831
    • (2004) Mech. Syst. Signal Process. , vol.18 , Issue.4 , pp. 813-831
    • Wang, W.Q.1    Golnaraghi, M.F.2    Ismail, F.3
  • 49
    • 84898974226 scopus 로고    scopus 로고
    • Computing with infinite networks
    • Mozer, M.C.; Jordan, M.I.; Petsche, T. (Eds.) MIT Press
    • Williams, C.K.; 1997. Computing with infinite networks. In: Mozer, M.C.; Jordan, M.I.; Petsche, T. (Eds.). Info. Process. Syst. vol. 9, MIT Press, pp. 295-301.
    • (1997) Info. Process. Syst. , vol.9 , pp. 295-301
    • Williams, C.K.1
  • 52
    • 70349470960 scopus 로고    scopus 로고
    • A data-driven fuzzy approach for predicting the remaining useful life in dynamic failure scenarios of a nuclear system
    • E. Zio, and F. Di Maio A data-driven fuzzy approach for predicting the remaining useful life in dynamic failure scenarios of a nuclear system Reliab. Eng. Syst. Saf. 95 2010 45 57
    • (2010) Reliab. Eng. Syst. Saf. , vol.95 , pp. 45-57
    • Zio, E.1    Di Maio, F.2
  • 53
    • 33644599577 scopus 로고    scopus 로고
    • Neuro-fuzzy pattern classification for fault diagnosis in nuclear components
    • E. Zio, and G. Gola Neuro-fuzzy pattern classification for fault diagnosis in nuclear components Ann. Nucl. Energy 33 2006 415 426
    • (2006) Ann. Nucl. Energy , vol.33 , pp. 415-426
    • Zio, E.1    Gola, G.2
  • 54
    • 67651146368 scopus 로고    scopus 로고
    • A fuzzy decision tree method for fault classification in the steam generator of a pressurized water reactor
    • E. Zio, P. Baraldi, and I.C. Popescu A fuzzy decision tree method for fault classification in the steam generator of a pressurized water reactor Ann. Nucl. Energy 36 2009 1159 1169
    • (2009) Ann. Nucl. Energy , vol.36 , pp. 1159-1169
    • Zio, E.1    Baraldi, P.2    Popescu, I.C.3
  • 55
    • 77649192707 scopus 로고    scopus 로고
    • A data-driven approach for predicting failure scenarios in nuclear systems
    • E. Zio, F. Di Maio, and M. Stasi A data-driven approach for predicting failure scenarios in nuclear systems Ann. Nucl. Energy 37 4 2010 482 491
    • (2010) Ann. Nucl. Energy , vol.37 , Issue.4 , pp. 482-491
    • Zio, E.1    Di Maio, F.2    Stasi, M.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.