메뉴 건너뛰기




Volumn 34, Issue 12, 2007, Pages 939-952

Support vector regression model for the estimation of γ-ray buildup factors for multi-layer shields

Author keywords

[No Author keywords available]

Indexed keywords

COMPUTATIONAL EFFICIENCY; EMBEDDED SYSTEMS; MATHEMATICAL MODELS; REGRESSION ANALYSIS; SUPPORT VECTOR MACHINES;

EID: 35548982127     PISSN: 03064549     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.anucene.2007.05.001     Document Type: Article
Times cited : (47)

References (40)
  • 2
    • 35548958546 scopus 로고    scopus 로고
    • Avery, A.F., Locke, H.F., 1992. NEACRP Comparison of Codes for the Radiation Protection Assessment of Transportation Packages, Solutions to Problems 1 -4. AEA Technology, Winfrith, UK, NEACCRP-L-331.
  • 3
    • 0011807489 scopus 로고
    • Calculated and measured dose buildup factors for gamma rays penetrating multilayered shields
    • Burke G.d.P., and Beck H.L. Calculated and measured dose buildup factors for gamma rays penetrating multilayered shields. Nucl. Sci. Eng. 53 (1974) 109
    • (1974) Nucl. Sci. Eng. , vol.53 , pp. 109
    • Burke, G.d.P.1    Beck, H.L.2
  • 4
    • 35548941687 scopus 로고    scopus 로고
    • Chang, C.-C., Lin, C.-J., 2001. LIBSVM: a library for support vector machines, Manual. Software available at .
  • 5
    • 1842760611 scopus 로고    scopus 로고
    • Clarke, S.M., Griebsch, J.H., Simpson, T.W., 2003. Analysis of support vector regression for approximation of complex engineering analyses. In: Proceedings of DETC'03 ASME 2003 Design Engineering Technical Conferences and Computers and Information in Engineering Conference.
  • 6
    • 0000913324 scopus 로고    scopus 로고
    • SVMTorch: support vector machines for large-scale regression problems
    • Collobert R., and Bengio S. SVMTorch: support vector machines for large-scale regression problems. J. Mach. Learn. Res. 1 (2001) 143-160
    • (2001) J. Mach. Learn. Res. , vol.1 , pp. 143-160
    • Collobert, R.1    Bengio, S.2
  • 10
    • 31744437377 scopus 로고    scopus 로고
    • Using support vector regression for the prediction of the band gap and melting point of binary and ternary compound semiconductors
    • Gu T., Lu W., Bao T., and Chen N. Using support vector regression for the prediction of the band gap and melting point of binary and ternary compound semiconductors. Sol. Stat. Sci. 8 2 (2006) 129-136
    • (2006) Sol. Stat. Sci. , vol.8 , Issue.2 , pp. 129-136
    • Gu, T.1    Lu, W.2    Bao, T.3    Chen, N.4
  • 11
    • 0034259404 scopus 로고    scopus 로고
    • Formulas giving buildup factor for double-layered shields
    • Guvendik M., and Tsoulfanidis N. Formulas giving buildup factor for double-layered shields. Nucl. Technol. 131 (1999) 332-336
    • (1999) Nucl. Technol. , vol.131 , pp. 332-336
    • Guvendik, M.1    Tsoulfanidis, N.2
  • 12
    • 0020826177 scopus 로고
    • An approximation of gamma-ray buildup factors for two-layer shields
    • Harima Y. An approximation of gamma-ray buildup factors for two-layer shields. Nucl. Sci. Eng. 85 (1983) 45
    • (1983) Nucl. Sci. Eng. , vol.85 , pp. 45
    • Harima, Y.1
  • 13
    • 0032206850 scopus 로고    scopus 로고
    • Application of the EGS4 Monte Carlo code to a study of multilayer gamma-ray exposure buildup factors of up to 40 mfp
    • Hirayama H., and Shin K. Application of the EGS4 Monte Carlo code to a study of multilayer gamma-ray exposure buildup factors of up to 40 mfp. J. Nucl. Sci. Technol. 35 11 (1998) 816-829
    • (1998) J. Nucl. Sci. Technol. , vol.35 , Issue.11 , pp. 816-829
    • Hirayama, H.1    Shin, K.2
  • 14
    • 0032268317 scopus 로고    scopus 로고
    • Description of multilayered gamma-ray exposure buildup factors up to 40 mfp by the approximating model
    • Hirayama H., and Shin K. Description of multilayered gamma-ray exposure buildup factors up to 40 mfp by the approximating model. J.Nucl. Sci. Technol. 35 12 (1998) 865-873
    • (1998) J.Nucl. Sci. Technol. , vol.35 , Issue.12 , pp. 865-873
    • Hirayama, H.1    Shin, K.2
  • 16
    • 0026820607 scopus 로고
    • Gamma ray buildup factor calculations for iron by the discrete ordinates code XSDRNPM-S
    • Kloosterman J.L. Gamma ray buildup factor calculations for iron by the discrete ordinates code XSDRNPM-S. Ann. Nucl. Energy 19 2 (1992) 105-114
    • (1992) Ann. Nucl. Energy , vol.19 , Issue.2 , pp. 105-114
    • Kloosterman, J.L.1
  • 17
    • 35548957642 scopus 로고    scopus 로고
    • Overfitting, cross validation, MDL, structural risk minimization, using unlabeled data
    • Mitchell T.M. Overfitting, cross validation, MDL, structural risk minimization, using unlabeled data. Lect. Notes Mach. Learn. (2003) 10-701
    • (2003) Lect. Notes Mach. Learn. , pp. 10-701
    • Mitchell, T.M.1
  • 18
    • 0030272467 scopus 로고    scopus 로고
    • A dedicated empirical formula for γ-ray buildup factors for a point isotropic source in stratified shields
    • Lin U.T., and Jiang S.H. A dedicated empirical formula for γ-ray buildup factors for a point isotropic source in stratified shields. Radiat. Phys. Chem. 48 4 (1996) 389-401
    • (1996) Radiat. Phys. Chem. , vol.48 , Issue.4 , pp. 389-401
    • Lin, U.T.1    Jiang, S.H.2
  • 19
    • 4644258117 scopus 로고    scopus 로고
    • Support vector regression applied to the determination of the developmental age of a Drosophila embryo from its segmentation gene expression patterns
    • Myasnikova E., Samsonova A., Samsonova M., and Reinitz J. Support vector regression applied to the determination of the developmental age of a Drosophila embryo from its segmentation gene expression patterns. Bioinformatics 18 1 (2002) S87-S95
    • (2002) Bioinformatics , vol.18 , Issue.1
    • Myasnikova, E.1    Samsonova, A.2    Samsonova, M.3    Reinitz, J.4
  • 20
    • 0442312364 scopus 로고    scopus 로고
    • Hybrid process modeling and optimization strategies integrating neural networks/support vector regression and genetic algorithms: study of benzene isopropylation on Hbeta catalyst
    • Nandi S., Badhe Y., Lonari J., Sridevi U., Rao B.S., Tambe S.S., and Kulkarni B.D. Hybrid process modeling and optimization strategies integrating neural networks/support vector regression and genetic algorithms: study of benzene isopropylation on Hbeta catalyst. Chem. Eng. J. 97 (2004) 115-129
    • (2004) Chem. Eng. J. , vol.97 , pp. 115-129
    • Nandi, S.1    Badhe, Y.2    Lonari, J.3    Sridevi, U.4    Rao, B.S.5    Tambe, S.S.6    Kulkarni, B.D.7
  • 21
    • 0030673582 scopus 로고    scopus 로고
    • Osuna, E., Freund, R., Girosi, F., 1997. Training support vector machines: an application to face detection. In: Proceedings of CVPR'97.
  • 24
    • 35548993506 scopus 로고    scopus 로고
    • Schölkopf, B., 1997. Support vector learning. PhD Thesis, R. Oldenbourg Verlag, München.
  • 25
    • 18644378617 scopus 로고    scopus 로고
    • Radiation shielding technology
    • Shultis J.K., and Faw R.E. Radiation shielding technology. Health Phys. 88 6 (2005) 587-612
    • (2005) Health Phys. , vol.88 , Issue.6 , pp. 587-612
    • Shultis, J.K.1    Faw, R.E.2
  • 26
    • 35549002485 scopus 로고    scopus 로고
    • Smola, A.J., 1998. Learning with Kernels. PhD Thesis, Technische Universität, Berlin.
  • 27
    • 4043137356 scopus 로고    scopus 로고
    • A tutorial on support vector regression
    • Smola A.J., and Schölkopf B. A tutorial on support vector regression. Stat. Comput. 14 (2004) 199-222
    • (2004) Stat. Comput. , vol.14 , pp. 199-222
    • Smola, A.J.1    Schölkopf, B.2
  • 28
    • 35548998598 scopus 로고    scopus 로고
    • Šmuc, T., 2002a. Sensitivity of differential evolution algorithm to values of control parameters. In: Proceedings of the International Conference on Artificial Intelligence, pp. 1087-1093.
  • 29
    • 35548957164 scopus 로고    scopus 로고
    • Šmuc, T., 2002b. Improving convergence properties of the differential evolution algorithm. In: Proceedings of the MENDEL 2002 - 8th International Conference on Soft Computing., pp. 80-86.
  • 30
    • 35548978867 scopus 로고    scopus 로고
    • Šmuc, T., Ječmenica R., Trontl, K., 2006. Validation of QAD-CGGP for shielding analyses of intermediate and low level waste drums. In: Proceedings of the 6th International Conference on Nuclear Option in Countries with Small and Medium Electricity Grids, S8.96.1-S8.96.10.
  • 32
    • 35549010915 scopus 로고    scopus 로고
    • Storn, R., Price, K., 1995. Differential evolution - a simple and efficient adaptive scheme for global optimization over continuous spaces. Technical Report TR-95-012, ICSI.
  • 33
    • 0348046424 scopus 로고    scopus 로고
    • Parameter detection of thin films from their X-ray reflectivity by support vector regression
    • Strauß D.J., Steidl G., and Welzel U. Parameter detection of thin films from their X-ray reflectivity by support vector regression. Appl. Numer. Math. 48 (2004) 223-236
    • (2004) Appl. Numer. Math. , vol.48 , pp. 223-236
    • Strauß, D.J.1    Steidl, G.2    Welzel, U.3
  • 34
    • 2442432477 scopus 로고    scopus 로고
    • Improvement of MERCURE-6's general formalism for calculating gamma-ray buildup factors in multilayer shields
    • Suteau C., Chiron M., and Arnaud G. Improvement of MERCURE-6's general formalism for calculating gamma-ray buildup factors in multilayer shields. Nucl. Sci. Eng. 147 1 (2004) 43-55
    • (2004) Nucl. Sci. Eng. , vol.147 , Issue.1 , pp. 43-55
    • Suteau, C.1    Chiron, M.2    Arnaud, G.3
  • 35
    • 35548942989 scopus 로고    scopus 로고
    • Trontl, K., Šmuc, T., Pevec, D., 2005. Application of support vector regression in estimation of buildup factors for double-layer shields. In: Proceedings of the European Nuclear Conference ENC 2005, pp. 49.1-49.9.
  • 36
    • 35549011755 scopus 로고    scopus 로고
    • Trontl, K., Pevec, D., Šmuc, T., 2006. Improved SVR model for multi-layer buildup factor calculation. In: Proceedings of the 6th International Conference on Nuclear Option in Countries with Small and Medium Electricity Grids, pp. S8.96.1-S8.96.10.
  • 37
    • 35548999028 scopus 로고    scopus 로고
    • Tuan, T.K., Kim, S.Y., Shin, C., Park, J.S., Kim, J.K., 2005. A new approach for effective atomic number calculation using the ratio of total to incoherent scattering mass attenuation coefficients. In: Book of Abstracts of The Third International Symposium on Radiation Safety and Detection Technology, Taiynan, China.
  • 39
    • 0242351908 scopus 로고    scopus 로고
    • Support vector regression as a signal discriminator in high energy physics
    • Whiteson D.O., and Naumann N.A. Support vector regression as a signal discriminator in high energy physics. Neurocomputing 55 (2003) 251-264
    • (2003) Neurocomputing , vol.55 , pp. 251-264
    • Whiteson, D.O.1    Naumann, N.A.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.