-
1
-
-
0027595948
-
Tissue engineering
-
doi:10.1126/science. 8493529
-
Langer R, Vacanti JP. 1993 Tissue engineering. Science 260, 920-926. (doi:10.1126/science. 8493529).
-
(1993)
Science
, vol.260
, pp. 920-926
-
-
Langer, R.1
Vacanti, J.P.2
-
2
-
-
0033658970
-
Tissue engineering: Challenges and opportunities
-
doi:10.1002/1097-4636 (2000)53:6, 617::AID-JBM1.3.0.CO;2-C
-
Chapekar MS. 2000 Tissue engineering: challenges and opportunities. J. Biomed. Mater. Res. B Appl. Biomater. 53, 617-620. (doi:10.1002/1097-4636 (2000)53:6, 617::AID-JBM1.3.0.CO;2-C).
-
(2000)
J. Biomed. Mater. Res. B Appl. Biomater.
, vol.53
, pp. 617-620
-
-
Chapekar, M.S.1
-
3
-
-
33846424990
-
A critical review on polymer-based bioengineered materials for scaffold development
-
doi:10.1016/j.compositesb.2006.06.014
-
Cheung HY, Lau KT, Lu TP, Hui D. 2007 A critical review on polymer-based bioengineered materials for scaffold development. Compos. B Eng. 38, 291-300. (doi:10.1016/j.compositesb.2006.06.014).
-
(2007)
Compos. B Eng.
, vol.38
, pp. 291-300
-
-
Cheung, H.Y.1
Lau, K.T.2
Lu, T.P.3
Hui, D.4
-
5
-
-
73149091210
-
3D fiber deposition technique to make multifunctional and tailor-made scaffolds for tissue engineering applications
-
Gloria A, Russo T, De Santis R, Ambrosio L. 2009 3D fiber deposition technique to make multifunctional and tailor-made scaffolds for tissue engineering applications. J. Appl. Biomater. Biomech. 7, 141-152.
-
(2009)
J. Appl. Biomater. Biomech.
, vol.7
, pp. 141-152
-
-
Gloria, A.1
Russo, T.2
De Santis, R.3
Ambrosio, L.4
-
6
-
-
0034580476
-
Biomaterial developments for bone tissue engineering
-
doi:10.1016/S0142-9612(00)00102-2
-
Burg KJL, Porter S, Kellam JF. 2000 Biomaterial developments for bone tissue engineering. Biomaterials 21, 2347-2359. (doi:10.1016/S0142-9612(00) 00102-2).
-
(2000)
Biomaterials
, vol.21
, pp. 2347-2359
-
-
Burg, K.J.L.1
Porter, S.2
Kellam, J.F.3
-
7
-
-
0036166394
-
Properties of osteoconductive biomaterials: Calcium phosphates
-
doi:10.1097/00003086- 200202000-00009
-
LeGeros RZ. 2002 Properties of osteoconductive biomaterials: calcium phosphates. Clin. Orthop. Relat. Res. 395, 81-98. (doi:10.1097/00003086- 200202000-00009).
-
(2002)
Clin. Orthop. Relat. Res.
, vol.395
, pp. 81-98
-
-
Legeros, R.Z.1
-
8
-
-
0029898997
-
Threedimensional degradable porous polymer-ceramic matrices for use in bone repair
-
doi:10.1163/156856 296X00435
-
Devin JE, Attawia MA, Laurencin CT. 1996 Threedimensional degradable porous polymer-ceramic matrices for use in bone repair. J. Biomater. Sci. Polym. Ed. 7, 661-669. (doi:10.1163/156856 296X00435).
-
(1996)
J. Biomater. Sci. Polym. Ed.
, vol.7
, pp. 661-669
-
-
Devin, J.E.1
Attawia, M.A.2
Laurencin, C.T.3
-
9
-
-
26944471657
-
Architecture and properties of anisotropic polymer composite scaffolds for bone tissue engineering
-
doi:10.1016/j.biomaterials.2005. 07.015
-
Mathieu LM, Mueller TL, Bourban PE, Pioletti DP, Müller R, Manson JAE. 2006 Architecture and properties of anisotropic polymer composite scaffolds for bone tissue engineering. Biomaterials 27, 905-916. (doi:10.1016/j. biomaterials.2005. 07.015).
-
(2006)
Biomaterials
, vol.27
, pp. 905-916
-
-
Mathieu, L.M.1
Mueller, T.L.2
Bourban, P.E.3
Pioletti, D.P.4
Müller, R.5
Manson, J.A.E.6
-
10
-
-
79960999945
-
Technical features and criteria in designing fiber-reinforced composite materials: From the aerospace and aeronautical field to biomedical applications
-
doi:10. 5301/JABB.2011.8569
-
Gloria A, Ronca D, Russo T, D'Amora U, Chierchia M, De Santis R, Nicolais L, Ambrosio L. 2011 Technical features and criteria in designing fiber-reinforced composite materials: from the aerospace and aeronautical field to biomedical applications. J. Appl. Biomater. Biomech. 9, 151-163. (doi:10. 5301/JABB.2011.8569).
-
(2011)
J. Appl. Biomater. Biomech.
, vol.9
, pp. 151-163
-
-
Gloria, A.1
Ronca, D.2
Russo, T.3
D'Amora, U.4
Chierchia, M.5
De Santis, R.6
Nicolais, L.7
Ambrosio, L.8
-
11
-
-
78951470550
-
Poly(1-caprolactone) reinforced with sol-gel synthesized organic-inorganic hybrid fillers as composite substrates for tissue engineering
-
Russo T et al. 2010 Poly(1-caprolactone) reinforced with sol-gel synthesized organic-inorganic hybrid fillers as composite substrates for tissue engineering. J. Appl. Biomater. Biomech. 8, 146-152.
-
(2010)
J. Appl. Biomater. Biomech.
, vol.8
, pp. 146-152
-
-
Russo, T.1
-
12
-
-
52349113983
-
The role of nanocomposites in bone regeneration
-
doi:10.1039/B804692A
-
Rogel MR, Qiu H, Ameer GA. 2008 The role of nanocomposites in bone regeneration. J. Mater. Chem. 18, 4233-4241. (doi:10.1039/B804692A).
-
(2008)
J. Mater. Chem.
, vol.18
, pp. 4233-4241
-
-
Rogel, M.R.1
Qiu, H.2
Ameer, G.A.3
-
13
-
-
80052793845
-
Mimicking natural bio-mineralization processes: A new tool for osteochondral scaffold development
-
doi:10.1016/j. tibtech.2011.04.011
-
Tampieri A, Sprio S, Sandri M, Valentini F. 2011 Mimicking natural bio-mineralization processes: a new tool for osteochondral scaffold development. Trends Biotechnol. 29, 526-535. (doi:10.1016/j. tibtech.2011.04.011).
-
(2011)
Trends Biotechnol.
, vol.29
, pp. 526-535
-
-
Tampieri, A.1
Sprio, S.2
Sandri, M.3
Valentini, F.4
-
14
-
-
0035165289
-
Growth factor release from tissue engineering scaffolds
-
doi:10.1211/0022357011777963
-
Whitaker MJ, Quirk RA, Howdle SM, Shakesheff KM. 2001 Growth factor release from tissue engineering scaffolds. J. Pharm. Pharmacol. 53, 1427-1437. (doi:10.1211/0022357011777963).
-
(2001)
J. Pharm. Pharmacol.
, vol.53
, pp. 1427-1437
-
-
Whitaker, M.J.1
Quirk, R.A.2
Howdle, S.M.3
Shakesheff, K.M.4
-
15
-
-
0031792031
-
Angiogenesis in fracture repair
-
doi:10. 1097/00003086-199810001-00010
-
Glowacki J. 1998 Angiogenesis in fracture repair. Clin. Orthop. Relat. Res. 355, S82-S89. (doi:10. 1097/00003086-199810001-00010).
-
(1998)
Clin. Orthop. Relat. Res.
, vol.355
-
-
Glowacki, J.1
-
16
-
-
75149177046
-
A novel route in bone tissue engineering: Magnetic biomimetic scaffolds
-
doi:10.1016/j.actbio.2009.09.017
-
Bock N, Riminucci A, Dionigi C, Russo A, Tampieri A, Landi E, Goranov VA, Marcacci M, Dediu V. 2010 A novel route in bone tissue engineering: magnetic biomimetic scaffolds. Acta Biomater. 6, 786-796. (doi:10.1016/j.actbio.2009.09. 017).
-
(2010)
Acta Biomater.
, vol.6
, pp. 786-796
-
-
Bock, N.1
Riminucci, A.2
Dionigi, C.3
Russo, A.4
Tampieri, A.5
Landi, E.6
Goranov, V.A.7
Marcacci, M.8
Dediu, V.9
-
17
-
-
33750939285
-
Angiogenesis in tissue engineering: Breathing life into constructed tissue substitutes
-
doi:10.1089/ten.2006.12.2093
-
Laschke MW et al. 2006 Angiogenesis in tissue engineering: breathing life into constructed tissue substitutes. Tissue Eng. 12, 2093-2104. (doi:10.1089/ten.2006.12.2093).
-
(2006)
Tissue Eng.
, vol.12
, pp. 2093-2104
-
-
Laschke, M.W.1
-
18
-
-
33746395170
-
Biomaterials as scaffold for bone tissue engineering
-
doi:10. 1007/s00068-006-6047-8
-
Schieker M, Seitz H, Drosse I, Seitz S, Mutschler W. 2006 Biomaterials as scaffold for bone tissue engineering. Eur. J. Trauma 32, 114-124. (doi:10. 1007/s00068-006-6047-8).
-
(2006)
Eur. J. Trauma
, vol.32
, pp. 114-124
-
-
Schieker, M.1
Seitz, H.2
Drosse, I.3
Seitz, S.4
Mutschler, W.5
-
19
-
-
51449094036
-
Dual delivery of an angiogenic and osteogenic growth factor for bone regeneration enhances in a critical size defect model
-
doi:10.1016/j.bone.2008.06.019
-
Patel ZS, Young S, Tabata Y, Jansen JA, Wong ME, Mikos AG. 2008 Dual delivery of an angiogenic and osteogenic growth factor for bone regeneration enhances in a critical size defect model. Bone 43, 931-940. (doi:10.1016/j.bone. 2008.06.019).
-
(2008)
Bone
, vol.43
, pp. 931-940
-
-
Patel, Z.S.1
Young, S.2
Tabata, Y.3
Jansen, J.A.4
Wong, M.E.5
Mikos, A.G.6
-
20
-
-
0041846627
-
Applications of magnetic nanoparticles in biomedicine
-
doi:10.1088/0022-3727/36/13/201
-
Pankhurst QA, Connolly J, Jones SK, Dobson J. 2003 Applications of magnetic nanoparticles in biomedicine. J. Phys. D Appl. Phys. 36, R167-R181. (doi:10.1088/0022-3727/36/13/201).
-
(2003)
J. Phys. D Appl. Phys.
, vol.36
-
-
Pankhurst, Q.A.1
Connolly, J.2
Jones, S.K.3
Dobson, J.4
-
21
-
-
54449085588
-
Challenges in the development of magnetic particles for therapeutic applications
-
doi:10.1080/02656730802093679
-
Barry SE. 2008 Challenges in the development of magnetic particles for therapeutic applications. Int. J. Hyperthermia 24, 451-466. (doi:10.1080/ 02656730802093679).
-
(2008)
Int. J. Hyperthermia
, vol.24
, pp. 451-466
-
-
Barry, S.E.1
-
22
-
-
33646797001
-
Magnetic nanoparticles for drug delivery
-
doi:10.1002/ddr.20067
-
Dobson J. 2006 Magnetic nanoparticles for drug delivery. Drug Dev. Res. 67, 55-60. (doi:10.1002/ddr.20067).
-
(2006)
Drug Dev. Res.
, vol.67
, pp. 55-60
-
-
Dobson, J.1
-
23
-
-
27644542061
-
Medical application of functionalized magnetic nanoparticles
-
doi:10. 1263/jbb.100.1
-
Ito A, Shinkai M, Honda H, Kobayashi T. 2005 Medical application of functionalized magnetic nanoparticles. J. Biosci. Bioeng. 100, 1-11. (doi:10. 1263/jbb.100.1).
-
(2005)
J. Biosci. Bioeng.
, vol.100
, pp. 1-11
-
-
Ito, A.1
Shinkai, M.2
Honda, H.3
Kobayashi, T.4
-
24
-
-
44849094721
-
A novel magnetic approach to enhance the efficacy of cell-based gene therapies
-
doi:10.1038/gt.2008.57
-
Muthana M, Scott SD, Farrow N, Morrow F, Murdoch C, Grubb S, Brown N, Dobson J, Lewis CE. 2008 A novel magnetic approach to enhance the efficacy of cell-based gene therapies. Gene Ther. 15, 902-910. (doi:10.1038/gt.2008.57).
-
(2008)
Gene Ther.
, vol.15
, pp. 902-910
-
-
Muthana, M.1
Scott, S.D.2
Farrow, N.3
Morrow, F.4
Murdoch, C.5
Grubb, S.6
Brown, N.7
Dobson, J.8
Lewis, C.E.9
-
25
-
-
2342438153
-
Magneto-mechanical stimulation of bone growth in a bonded array of ferromagnetic fibres
-
doi:10.1016/j.biomaterials.2003.11.041
-
Markaki AE, Clyne TW. 2004 Magneto-mechanical stimulation of bone growth in a bonded array of ferromagnetic fibres. Biomaterials 25, 4805-4815. (doi:10.1016/j.biomaterials.2003.11.041).
-
(2004)
Biomaterials
, vol.25
, pp. 4805-4815
-
-
Markaki, A.E.1
Clyne, T.W.2
-
26
-
-
10444224740
-
Magneto-mechanical actuation of bonded ferromagnetic fibre arrays
-
doi:10.1016/j.actamat. 2004.10.037
-
Markaki AE, Clyne WT. 2005 Magneto-mechanical actuation of bonded ferromagnetic fibre arrays. Acta Mater. 53, 877-889. (doi:10.1016/j.actamat. 2004.10.037).
-
(2005)
Acta Mater.
, vol.53
, pp. 877-889
-
-
Markaki, A.E.1
Clyne, W.T.2
-
27
-
-
37849053939
-
Nanomagnetic actuation of receptor-mediated signal transduction
-
doi:10.1038/nnano.2007.418
-
Mannix RJ, Kumar S, Cassiola F, Montoya-Zavala M, Feinstein E, Prentiss M, Ingber DE. 2008 Nanomagnetic actuation of receptor-mediated signal transduction. Nat. Nanotechnol. 3, 36-40. (doi:10.1038/nnano.2007.418).
-
(2008)
Nat. Nanotechnol.
, vol.3
, pp. 36-40
-
-
Mannix, R.J.1
Kumar, S.2
Cassiola, F.3
Montoya-Zavala, M.4
Feinstein, E.5
Prentiss, M.6
Ingber, D.E.7
-
28
-
-
45849087983
-
Selective activation of mechanosensitive ion channels using magnetic particles
-
doi:10.1098/rsif.2007.1274
-
Hughes S, McBain S, Dobson J, El Haj AJ. 2008 Selective activation of mechanosensitive ion channels using magnetic particles. J. R. Soc. Interface 5, 855-863. (doi:10.1098/rsif.2007.1274).
-
(2008)
J. R. Soc. Interface
, vol.5
, pp. 855-863
-
-
Hughes, S.1
Mcbain, S.2
Dobson, J.3
El, H.A.J.4
-
29
-
-
77957687961
-
Controlled differentiation of human bone marrow stromal cells using magnetic nanoparticle technology
-
doi:10.1089/ten.tea.2009.0638
-
Kanczler JM, Sura HS, Magnay J, Attridge K, Green D, Oreffo ROC, Dobson JP, El Haj AJ. 2010 Controlled differentiation of human bone marrow stromal cells using magnetic nanoparticle technology. Tissue Eng. 16, 3241-3250. (doi:10.1089/ten.tea.2009.0638).
-
(2010)
Tissue Eng.
, vol.16
, pp. 3241-3250
-
-
Kanczler, J.M.1
Sura, H.S.2
Magnay, J.3
Attridge, K.4
Green, D.5
Oreffo, R.O.C.6
Dobson, J.P.7
El Haj, A.J.8
-
30
-
-
27744521654
-
Novel methodology for fabrication of tissue-engineered tubular constructs using magnetite nanoparticles and magnetic force
-
doi:10.1089/ten.2005.11.1553
-
Ito A, Ino K, Hayashida M, Kobayashi T, Matsunuma H, Kagami H, Ueda M, Honda H. 2005 Novel methodology for fabrication of tissue-engineered tubular constructs using magnetite nanoparticles and magnetic force. Tissue Eng. 11, 1553-1561. (doi:10.1089/ten.2005.11.1553).
-
(2005)
Tissue Eng.
, vol.11
, pp. 1553-1561
-
-
Ito, A.1
Ino, K.2
Hayashida, M.3
Kobayashi, T.4
Matsunuma, H.5
Kagami, H.6
Ueda, M.7
Honda, H.8
-
31
-
-
18244394020
-
Construction and delivery of tissue-engineered human retinal pigment epithelial cell sheets, using magnetite nanoparticles and magnetic force
-
doi:10.1089/ten.2005.11.489
-
Ito A, Hibino E, Kobayashi C, Terasaki H, Kagami H, Ueda M, Kobayashi T, Honda H. 2005 Construction and delivery of tissue-engineered human retinal pigment epithelial cell sheets, using magnetite nanoparticles and magnetic force. Tissue Eng. 11, 489-496. (doi:10.1089/ten.2005.11.489).
-
(2005)
Tissue Eng.
, vol.11
, pp. 489-496
-
-
Ito, A.1
Hibino, E.2
Kobayashi, C.3
Terasaki, H.4
Kagami, H.5
Ueda, M.6
Kobayashi, T.7
Honda, H.8
-
32
-
-
33747187002
-
Magnetic forces enable rapid endothelialization of synthetic vascular grafts
-
doi:10.1161/CIRCULATIONAHA.105.001446
-
Pislaru SV et al. 2006 Magnetic forces enable rapid endothelialization of synthetic vascular grafts. Circulation 114, 1314-1318. (doi:10.1161/ CIRCULATIONAHA.105.001446).
-
(2006)
Circulation
, vol.114
, pp. 1314-1318
-
-
Pislaru, S.V.1
-
33
-
-
33748620944
-
Principles and design of a novel magnetic force mechanical conditioning bioreactor for tissue engineering, stem cell conditioning, and dynamic in vitro screening
-
doi:10.1109/TNB.2006.880823
-
Dobson J, Cartmell SH, Keramane A, El Haj AJ. 2006 Principles and design of a novel magnetic force mechanical conditioning bioreactor for tissue engineering, stem cell conditioning, and dynamic in vitro screening. IEEE Trans. NanoBiosci. 5, 173-177. (doi:10.1109/TNB.2006.880823).
-
(2006)
IEEE Trans. NanoBiosci.
, vol.5
, pp. 173-177
-
-
Dobson, J.1
Cartmell, S.H.2
Keramane, A.3
El Haj, A.J.4
-
34
-
-
40449131527
-
Remote control of cellular behaviour with magnetic nanoparticles
-
doi:10.1038/nnano.2008.39
-
Dobson J. 2008 Remote control of cellular behaviour with magnetic nanoparticles. Nat. Nanotechnol. 3, 139-143. (doi:10.1038/nnano.2008.39).
-
(2008)
Nat. Nanotechnol.
, vol.3
, pp. 139-143
-
-
Dobson, J.1
-
35
-
-
70350699387
-
Achieving nutrient pumping and strain stimulus by magnetic actuation of tubular scaffolds
-
doi:10.1088/0964-1726/18/10/104025
-
Mack JJ, Cox BN, Sudre O, Corrin AA, dos Santos SL, Lucato CMa, Andrew JS. 2009 Achieving nutrient pumping and strain stimulus by magnetic actuation of tubular scaffolds. Smart Mater. Struct. 18, 104 025- 104 040. (doi:10.1088/0964-1726/18/10/104025).
-
(2009)
Smart Mater. Struct.
, vol.18
, pp. 104025-104040
-
-
Mack, J.J.1
Cox, B.N.2
Sudre, O.3
Corrin, A.A.4
Dos, S.S.L.5
Lucato, C.6
Andrew, J.S.7
-
36
-
-
33751101328
-
Direct magnetic tubular cell seeding: A novel approach for vascular tissue engineering
-
doi:10.1159/000095989
-
Perea H, Aigner J, Hopfner U, Wintermantel E. 2006 Direct magnetic tubular cell seeding: a novel approach for vascular tissue engineering. Cells Tissues Organs 183, 156-165. (doi:10.1159/000095989).
-
(2006)
Cells Tissues Organs
, vol.183
, pp. 156-165
-
-
Perea, H.1
Aigner, J.2
Hopfner, U.3
Wintermantel, E.4
-
37
-
-
34250879624
-
Effective cell-seeding technique using magnetite nanoparticles and magnetic force onto decellularized blood vessels for vascular tissue engineering
-
doi:10.1263/jbb.103.472
-
Shimizu K, Ito A, Arinobe M, Murase Y, Iwata Y, Narita Y, Kagami H, Ueda M, Honda H. 2007 Effective cell-seeding technique using magnetite nanoparticles and magnetic force onto decellularized blood vessels for vascular tissue engineering. J. Biosci. Bioeng. 103, 472-478. (doi:10.1263/jbb.103.472).
-
(2007)
J. Biosci. Bioeng.
, vol.103
, pp. 472-478
-
-
Shimizu, K.1
Ito, A.2
Arinobe, M.3
Murase, Y.4
Iwata, Y.5
Narita, Y.6
Kagami, H.7
Ueda, M.8
Honda, H.9
-
38
-
-
84855418621
-
Intrinsic magnetism and hyperthermia in bioactive Fe-doped hydroxyapatite
-
doi:10.1016/j.actbio. 2011.09.032
-
Tampieri A et al. 2012 Intrinsic magnetism and hyperthermia in bioactive Fe-doped hydroxyapatite. Acta Biomater. 8, 843-851. (doi:10.1016/j.actbio. 2011.09.032).
-
(2012)
Acta Biomater.
, vol.8
, pp. 843-851
-
-
Tampieri, A.1
-
39
-
-
81155162414
-
A basic approach toward the development of nanocomposite magnetic scaffolds for advanced bone tissue engineering
-
doi:10.1002/a34771
-
De Santis R et al. 2011 A basic approach toward the development of nanocomposite magnetic scaffolds for advanced bone tissue engineering. J. Appl. Polym. Sci. 122, 3599-3605. (doi:10.1002/app.34771).
-
(2011)
J. Appl. Polym. Sci.
, vol.122
, pp. 3599-3605
-
-
De Santis, R.1
-
40
-
-
38849111818
-
Cytotoxicity of nanoparticles
-
doi:10.1002/smll. 200700595
-
Lewinski N, Colvin V, Drezek R. 2008 Cytotoxicity of nanoparticles. Small 4, 26-49. (doi:10.1002/smll. 200700595).
-
(2008)
Small
, vol.4
, pp. 26-49
-
-
Lewinski, N.1
Colvin, V.2
Drezek, R.3
-
41
-
-
78649904711
-
Potential toxicity of superparamagnetic iron oxide nanoparticles (SPION)
-
doi:10. 3402/nano.v1i0.5358
-
Singh N, Jenkins GJS, Asadi R, Doak SH. 2010 Potential toxicity of superparamagnetic iron oxide nanoparticles (SPION). Nano Rev. 1, 53-58. (doi:10. 3402/nano.v1i0.5358).
-
(2010)
Nano Rev.
, vol.1
, pp. 53-58
-
-
Singh, N.1
Jenkins, G.J.S.2
Asadi, R.3
Doak, S.H.4
-
42
-
-
0037767617
-
Functionalisation of magnetic nanoparticles for applications in biomedicine
-
doi:10.1088/0022-3727/36/13/203
-
Berry CC, Curtis ASG. 2003 Functionalisation of magnetic nanoparticles for applications in biomedicine. J. Phys. D Appl. Phys. 36, 198-206. (doi:10.1088/0022-3727/36/13/203).
-
(2003)
J. Phys. D Appl. Phys.
, vol.36
, pp. 198-206
-
-
Berry, C.C.1
Curtis, A.S.G.2
-
43
-
-
0029058646
-
Effects of serum protein and colloid on the AlamarBlue assay in cell cultures
-
doi:10.1016/0887-2333(95)00004-R
-
Goegan P, Johnson G, Vincent R. 1995 Effects of serum protein and colloid on the AlamarBlue assay in cell cultures. Toxicol. In Vitro 9, 257-266. (doi:10.1016/0887-2333(95)00004-R).
-
(1995)
Toxicol. in Vitro
, vol.9
, pp. 257-266
-
-
Goegan, P.1
Johnson, G.2
Vincent, R.3
-
44
-
-
0031852098
-
A novel one-step, highly sensitive fluorometric assay to evaluate cell-mediated cytotoxicity
-
doi:10.1016/S0022-1759 (98)00028-3
-
Nociari MM, Shalev A, Benias P, Russo C. 1998 A novel one-step, highly sensitive fluorometric assay to evaluate cell-mediated cytotoxicity. J. Immunol. Methods 213, 157-167. (doi:10.1016/S0022-1759 (98)00028-3).
-
(1998)
J. Immunol. Methods
, vol.213
, pp. 157-167
-
-
Nociari, M.M.1
Shalev, A.2
Benias, P.3
Russo, C.4
-
45
-
-
84930412318
-
Validation of the small punch test as a technique for characterizing the mechanical properties of acrylic bone cement
-
doi:10.1243/095441105X68980
-
Dunne NJ, Leonard D, Daly C, Buchanan FJ, Orr JF. 2006 Validation of the small punch test as a technique for characterizing the mechanical properties of acrylic bone cement. Proc. Inst. Mech. Eng. H 220, 11-21. (doi:10.1243/ 095441105X68980).
-
(2006)
Proc. Inst. Mech. Eng. H
, vol.220
, pp. 11-21
-
-
Dunne, N.J.1
Leonard, D.2
Daly, C.3
Buchanan, F.J.4
Orr, J.F.5
-
46
-
-
0009185262
-
A method for determining the region of superparamagnetism
-
doi:10.1063/1.90705
-
Candela GA, Haines RA. 1979 A method for determining the region of superparamagnetism. Appl. Phys. Lett. 34, 868-870. (doi:10.1063/1.90705).
-
(1979)
Appl. Phys. Lett.
, vol.34
, pp. 868-870
-
-
Candela, G.A.1
Haines, R.A.2
-
47
-
-
36149026446
-
Thermal fluctuations of a singledomain particle
-
doi:10.1103/PhysRev.130.1677
-
Brown Jr WR. 1963 Thermal fluctuations of a singledomain particle. Phys. Rev. 130, 1677-1686. (doi:10.1103/PhysRev.130.1677).
-
(1963)
Phys. Rev.
, vol.130
, pp. 1677-1686
-
-
Brown, J.W.R.1
-
48
-
-
77951252776
-
Osteogenic activity of MG63 cells on bone-like hydroxyapatite/collagen nanocomposite sponges
-
doi:10.1007/s10856-009-3938-3
-
Yoshida T, Kikuchi M, Kyama Y, Takakuda K. 2010 Osteogenic activity of MG63 cells on bone-like hydroxyapatite/collagen nanocomposite sponges. J. Mater. Sci. Mater. Med. 4, 1263-1272. (doi:10.1007/s10856-009-3938-3).
-
(2010)
J. Mater. Sci. Mater. Med.
, vol.4
, pp. 1263-1272
-
-
Yoshida, T.1
Kikuchi, M.2
Kyama, Y.3
Takakuda, K.4
|