메뉴 건너뛰기




Volumn 29, Issue 10, 2011, Pages 526-535

Mimicking natural bio-mineralization processes: A new tool for osteochondral scaffold development

Author keywords

[No Author keywords available]

Indexed keywords

INVERTEBRATE ORGANISMS; LOADBEARING STRUCTURE; OSTEOCHONDRAL; REGENERATIVE CAPACITY; REGENERATIVE MEDICINE;

EID: 80052793845     PISSN: 01677799     EISSN: 18793096     Source Type: Journal    
DOI: 10.1016/j.tibtech.2011.04.011     Document Type: Review
Times cited : (116)

References (76)
  • 1
    • 80052819095 scopus 로고    scopus 로고
    • Committee on Synthetic Hierarchical Structures, Commission on Engineering and Technical Systems, National Research Council, National Academy of Sciences (1994) Hierarchical Structures in Biology as a Guide for New Materials Technology. National Academy Press
    • Committee on Synthetic Hierarchical Structures, Commission on Engineering and Technical Systems, National Research Council, National Academy of Sciences (1994) Hierarchical Structures in Biology as a Guide for New Materials Technology. National Academy Press.
  • 2
    • 35548930317 scopus 로고    scopus 로고
    • Biological materials: structure and mechanical properties
    • Meyers M.A., et al. Biological materials: structure and mechanical properties. Progr. Mater. Sci. 2008, 53:1-206.
    • (2008) Progr. Mater. Sci. , vol.53 , pp. 1-206
    • Meyers, M.A.1
  • 3
    • 34548501731 scopus 로고    scopus 로고
    • Nature's hierarchical materials
    • Fratzl P., Weinkamer R. Nature's hierarchical materials. Progr. Mater. Sci. 2007, 52:1263-1334.
    • (2007) Progr. Mater. Sci. , vol.52 , pp. 1263-1334
    • Fratzl, P.1    Weinkamer, R.2
  • 4
    • 0038544489 scopus 로고    scopus 로고
    • Functionalizing inorganic solids: towards organic-inorganic nanostructured materials for intelligent and bioinspired systems
    • Ruiz-Hitzky E. Functionalizing inorganic solids: towards organic-inorganic nanostructured materials for intelligent and bioinspired systems. Chem. Rec. 2003, 3:88-100.
    • (2003) Chem. Rec. , vol.3 , pp. 88-100
    • Ruiz-Hitzky, E.1
  • 5
    • 33746395170 scopus 로고    scopus 로고
    • Biomaterials as scaffold for bone tissue engineering
    • Schieker M., et al. Biomaterials as scaffold for bone tissue engineering. Eur. J. Trauma 2006, 2:114-124.
    • (2006) Eur. J. Trauma , vol.2 , pp. 114-124
    • Schieker, M.1
  • 7
    • 35748971482 scopus 로고    scopus 로고
    • Bone structure and formation: A new perspective
    • Olszta M.J., et al. Bone structure and formation: A new perspective. Mater. Sci. Eng. 2007, 58:77-116.
    • (2007) Mater. Sci. Eng. , vol.58 , pp. 77-116
    • Olszta, M.J.1
  • 8
    • 0012702004 scopus 로고
    • Role of collagen fibrils in calcification
    • CRC Press, E. Bonucci (Ed.)
    • Bonucci E. Role of collagen fibrils in calcification. Calcification of Biological Systems 1992, 19-39. CRC Press. E. Bonucci (Ed.).
    • (1992) Calcification of Biological Systems , pp. 19-39
    • Bonucci, E.1
  • 9
    • 0027277009 scopus 로고
    • Mineral and organic matrix interaction in normally calcifying tendon visualized in 3 dimensions by high-voltage electron-microscopic tomography and graphic image-reconstruction
    • Landis W.J., et al. Mineral and organic matrix interaction in normally calcifying tendon visualized in 3 dimensions by high-voltage electron-microscopic tomography and graphic image-reconstruction. J. Struct. Biol. 1993, 110:39-54.
    • (1993) J. Struct. Biol. , vol.110 , pp. 39-54
    • Landis, W.J.1
  • 10
    • 0030199347 scopus 로고    scopus 로고
    • Mineralization of collagen may occur on fibril surfaces: evidence from conventional and high-voltage electron microscopy and three-dimensional imaging
    • Landis W.J., et al. Mineralization of collagen may occur on fibril surfaces: evidence from conventional and high-voltage electron microscopy and three-dimensional imaging. J. Struct. Biol. 1996, 117:24-35.
    • (1996) J. Struct. Biol. , vol.117 , pp. 24-35
    • Landis, W.J.1
  • 11
    • 0037009080 scopus 로고    scopus 로고
    • Biological and medical significance of calcium phosphates
    • Dorozhkin S.V., Epple M. Biological and medical significance of calcium phosphates. Angew. Chem. Int. Ed. 2002, 41:3130-3146.
    • (2002) Angew. Chem. Int. Ed. , vol.41 , pp. 3130-3146
    • Dorozhkin, S.V.1    Epple, M.2
  • 13
    • 0141757379 scopus 로고    scopus 로고
    • Dissolution and mineralization behaviors of HA coatings
    • Zhanga Q., et al. Dissolution and mineralization behaviors of HA coatings. Biomaterials 2003, 24:4741-4748.
    • (2003) Biomaterials , vol.24 , pp. 4741-4748
    • Zhanga, Q.1
  • 14
    • 33744523079 scopus 로고    scopus 로고
    • ASTM International, C.T. Laurencin (Ed.)
    • Bone Graft Substitutes 2003, 315. ASTM International. C.T. Laurencin (Ed.).
    • (2003) Bone Graft Substitutes , pp. 315
  • 15
    • 77951234753 scopus 로고    scopus 로고
    • Mineralization, structure and function of bone
    • Academic Press, M.J. Seibel (Ed.)
    • Boskey A.L. Mineralization, structure and function of bone. Dynamics of Bone and Cartilage Metabolism 2006, 201-212. Academic Press. M.J. Seibel (Ed.).
    • (2006) Dynamics of Bone and Cartilage Metabolism , pp. 201-212
    • Boskey, A.L.1
  • 16
    • 0026750311 scopus 로고
    • The role of magnesium on the structure of biological apatite
    • Bigi A., et al. The role of magnesium on the structure of biological apatite. Calcif. Tissue Int. 1992, 50:439-444.
    • (1992) Calcif. Tissue Int. , vol.50 , pp. 439-444
    • Bigi, A.1
  • 17
    • 79952440924 scopus 로고    scopus 로고
    • Silicon: the key element in early stages of biocalcification
    • Matsko N.B., et al. Silicon: the key element in early stages of biocalcification. J. Struct. Biol. 2011, 174:180-186.
    • (2011) J. Struct. Biol. , vol.174 , pp. 180-186
    • Matsko, N.B.1
  • 18
    • 34447257190 scopus 로고    scopus 로고
    • Silicon substitution in the calcium phosphate bioceramics
    • Pietak A.M., et al. Silicon substitution in the calcium phosphate bioceramics. Biomaterials 2007, 28:4023-4032.
    • (2007) Biomaterials , vol.28 , pp. 4023-4032
    • Pietak, A.M.1
  • 19
    • 0012767618 scopus 로고
    • A bound form of Si in glycosaminoglycans and polyuronides
    • Schwarz K. A bound form of Si in glycosaminoglycans and polyuronides. Proc. Natl. Acad. Sci. U.S.A. 1973, 70:1608-1612.
    • (1973) Proc. Natl. Acad. Sci. U.S.A. , vol.70 , pp. 1608-1612
    • Schwarz, K.1
  • 21
    • 0035216739 scopus 로고    scopus 로고
    • Shape and size of isolated bone mineralites measured using atomic force microscopy
    • Eppell S.J., et al. Shape and size of isolated bone mineralites measured using atomic force microscopy. J. Orthop. Res. 2001, 19:1027-1034.
    • (2001) J. Orthop. Res. , vol.19 , pp. 1027-1034
    • Eppell, S.J.1
  • 22
    • 0023027892 scopus 로고
    • Disaggregation of bone into crystals
    • Weiner S., Price P.A. Disaggregation of bone into crystals. Calcif. Tissue Int. 1986, 39:365-375.
    • (1986) Calcif. Tissue Int. , vol.39 , pp. 365-375
    • Weiner, S.1    Price, P.A.2
  • 23
    • 0024805126 scopus 로고
    • Three-dimensional ordered distribution of crystals in turkey tendon collagen fibers
    • Traub W., et al. Three-dimensional ordered distribution of crystals in turkey tendon collagen fibers. Proc. Natl. Acad. Sci. 1989, 86:9822-9826.
    • (1989) Proc. Natl. Acad. Sci. , vol.86 , pp. 9822-9826
    • Traub, W.1
  • 24
    • 0000970334 scopus 로고
    • Collagen-crystal relationships in bone as seen in the electron microscope
    • Robinson R.A., Watson M.L. Collagen-crystal relationships in bone as seen in the electron microscope. Anat. Rec. 1952, 114:383-409.
    • (1952) Anat. Rec. , vol.114 , pp. 383-409
    • Robinson, R.A.1    Watson, M.L.2
  • 25
    • 0018138865 scopus 로고
    • The morphology of bone-mineral crystals
    • Jackson S.A., et al. The morphology of bone-mineral crystals. Calcif. Tissue Res. 1978, 25:217-222.
    • (1978) Calcif. Tissue Res. , vol.25 , pp. 217-222
    • Jackson, S.A.1
  • 26
    • 33644805084 scopus 로고    scopus 로고
    • HA/alginate hybrid composites prepared through bio-inspired nucleation
    • Tampieri A., et al. HA/alginate hybrid composites prepared through bio-inspired nucleation. Acta Biomater. 2005, 1:343-351.
    • (2005) Acta Biomater. , vol.1 , pp. 343-351
    • Tampieri, A.1
  • 27
    • 0031812646 scopus 로고    scopus 로고
    • Will biomimetics provide new answers for old problems of calcified tissues?
    • Boskey A.L. Will biomimetics provide new answers for old problems of calcified tissues?. Calcif. Tissue Int. 1998, 63:179-182.
    • (1998) Calcif. Tissue Int. , vol.63 , pp. 179-182
    • Boskey, A.L.1
  • 28
    • 38349039417 scopus 로고    scopus 로고
    • Mineralised collagen-an artificial, extracellular bone matrix-improves osteogenic differentiation of bone marrow stromal cells
    • Bernhardt A., et al. Mineralised collagen-an artificial, extracellular bone matrix-improves osteogenic differentiation of bone marrow stromal cells. J. Mater. Sci. Mater. Med. 2007, 19:269-275.
    • (2007) J. Mater. Sci. Mater. Med. , vol.19 , pp. 269-275
    • Bernhardt, A.1
  • 29
    • 33646553866 scopus 로고    scopus 로고
    • In vitro ossification and remodeling of mineralized collagen I scaffolds
    • Domaschke H., et al. In vitro ossification and remodeling of mineralized collagen I scaffolds. Tissue Eng. 2006, 12:949-958.
    • (2006) Tissue Eng. , vol.12 , pp. 949-958
    • Domaschke, H.1
  • 30
    • 38949205220 scopus 로고    scopus 로고
    • Porous three-dimensional scaffolds made of mineralized collagen: preparation and properties of a biomimetic nanocomposite material for tissue engineering of bone
    • Gelinsky M., et al. Porous three-dimensional scaffolds made of mineralized collagen: preparation and properties of a biomimetic nanocomposite material for tissue engineering of bone. Chem. Eng. J. 2007, 137:84-96.
    • (2007) Chem. Eng. J. , vol.137 , pp. 84-96
    • Gelinsky, M.1
  • 31
    • 33847042303 scopus 로고    scopus 로고
    • Osteochondral tissue engineering
    • Martin I., et al. Osteochondral tissue engineering. J. Biomech. 2007, 40:750-765.
    • (2007) J. Biomech. , vol.40 , pp. 750-765
    • Martin, I.1
  • 32
    • 27744448022 scopus 로고    scopus 로고
    • Biomimetic porous scaffolds with high elasticity made from mineralized collagen-an animal study
    • Yokoyama A., et al. Biomimetic porous scaffolds with high elasticity made from mineralized collagen-an animal study. J. Biomed. Mater. Res. Part B: Appl. Biomater. 2005, 75B:464-472.
    • (2005) J. Biomed. Mater. Res. Part B: Appl. Biomater. , vol.75 B , pp. 464-472
    • Yokoyama, A.1
  • 33
    • 0031920494 scopus 로고    scopus 로고
    • Articular cartilage repair
    • Newman A.P. Articular cartilage repair. Am. J. Sports Med. 1998, 26:309-324.
    • (1998) Am. J. Sports Med. , vol.26 , pp. 309-324
    • Newman, A.P.1
  • 34
    • 0346123082 scopus 로고    scopus 로고
    • Biologically inspired synthesis of one like composite: self assembled collagen fibres/hydroxyapatite nanocrystals
    • Tampieri A., et al. Biologically inspired synthesis of one like composite: self assembled collagen fibres/hydroxyapatite nanocrystals. J. Biomed. Mater. Res. 2003, 67A:618-625.
    • (2003) J. Biomed. Mater. Res. , vol.67 A , pp. 618-625
    • Tampieri, A.1
  • 35
    • 0034321908 scopus 로고    scopus 로고
    • Nucleation of hydroxyapatite crystal through chemical interaction with collagen
    • Rhee S.H., et al. Nucleation of hydroxyapatite crystal through chemical interaction with collagen. J. Am. Ceram. Soc. 2000, 83:2890-2892.
    • (2000) J. Am. Ceram. Soc. , vol.83 , pp. 2890-2892
    • Rhee, S.H.1
  • 36
    • 57649185066 scopus 로고    scopus 로고
    • Synthetic bio-mineralization yielding HA/collagen hybrid composite
    • Tampieri A., et al. Synthetic bio-mineralization yielding HA/collagen hybrid composite. Adv. Appl. Cer. 2008, 107:298-302.
    • (2008) Adv. Appl. Cer. , vol.107 , pp. 298-302
    • Tampieri, A.1
  • 37
    • 0034985631 scopus 로고    scopus 로고
    • Self-organization mechanism in a bone-like hydroxyapatite/collagen nanocomposite synthesized in vitro and its biological reaction in vivo
    • Kikuchi M., et al. Self-organization mechanism in a bone-like hydroxyapatite/collagen nanocomposite synthesized in vitro and its biological reaction in vivo. Biomaterials 2001, 22:1705-1711.
    • (2001) Biomaterials , vol.22 , pp. 1705-1711
    • Kikuchi, M.1
  • 38
    • 0038741891 scopus 로고    scopus 로고
    • Biomimetic mineralization of charged collagen matrices: in vitro and in vivo study
    • Goissis G., et al. Biomimetic mineralization of charged collagen matrices: in vitro and in vivo study. Artif. Organs 2003, 27:437-443.
    • (2003) Artif. Organs , vol.27 , pp. 437-443
    • Goissis, G.1
  • 39
    • 0000524396 scopus 로고    scopus 로고
    • Biomimetic mineralization of collagen by combined fibril assembly and calcium phosphate formation
    • Bradt J.H., et al. Biomimetic mineralization of collagen by combined fibril assembly and calcium phosphate formation. Chem. Mater. 1999, 11:2694-2701.
    • (1999) Chem. Mater. , vol.11 , pp. 2694-2701
    • Bradt, J.H.1
  • 40
    • 12344281510 scopus 로고    scopus 로고
    • In vitro mineralization of collagen in demineralized fish bone
    • Chen J., et al. In vitro mineralization of collagen in demineralized fish bone. Macromol. Chem. Phys. 2005, 206:43-51.
    • (2005) Macromol. Chem. Phys. , vol.206 , pp. 43-51
    • Chen, J.1
  • 41
    • 0033520116 scopus 로고    scopus 로고
    • Imaging real-time proteolysis of single collagen I molecules with an atomic force microscope
    • Lin H., et al. Imaging real-time proteolysis of single collagen I molecules with an atomic force microscope. Biochem. 1999, 38:9956-9963.
    • (1999) Biochem. , vol.38 , pp. 9956-9963
    • Lin, H.1
  • 42
    • 0004289209 scopus 로고
    • CRC Press, M.E. Nimni (Ed.)
    • Collagen 1988, CRC Press. M.E. Nimni (Ed.).
    • (1988) Collagen
  • 43
    • 0033135635 scopus 로고    scopus 로고
    • Osteoclast adhesion and synthetic hydroxyapatite, carbonated hydroxyapatite, and natural calcium carbonate: Relationship to surface energies
    • Rendey S.A., et al. Osteoclast adhesion and synthetic hydroxyapatite, carbonated hydroxyapatite, and natural calcium carbonate: Relationship to surface energies. J. Biomed. Mater. Res. 1999, 45:140-147.
    • (1999) J. Biomed. Mater. Res. , vol.45 , pp. 140-147
    • Rendey, S.A.1
  • 44
    • 37349038947 scopus 로고    scopus 로고
    • Physico-chemical properties and solubility behaviour of multi-substituted hydroxyapatite powders containing silicon
    • Sprio S., et al. Physico-chemical properties and solubility behaviour of multi-substituted hydroxyapatite powders containing silicon. Mater. Sci. Eng. C. 2008, 28:179-187.
    • (2008) Mater. Sci. Eng. C. , vol.28 , pp. 179-187
    • Sprio, S.1
  • 45
    • 78649390387 scopus 로고    scopus 로고
    • The role of collagen in bone apatite formation in the presence of hydroxyapatite nucleation inhibitors
    • Nudelman F., et al. The role of collagen in bone apatite formation in the presence of hydroxyapatite nucleation inhibitors. Nat. Mater. 2010, 9:1004-1009.
    • (2010) Nat. Mater. , vol.9 , pp. 1004-1009
    • Nudelman, F.1
  • 46
    • 46149086320 scopus 로고    scopus 로고
    • Design of graded biomimetic osteochondral composite scaffolds
    • Tampieri A., et al. Design of graded biomimetic osteochondral composite scaffolds. Biomaterials 2008, 29:3539-3546.
    • (2008) Biomaterials , vol.29 , pp. 3539-3546
    • Tampieri, A.1
  • 47
    • 15244356309 scopus 로고    scopus 로고
    • From biomimetic apatites to biologically inspired composites
    • Tampieri A., et al. From biomimetic apatites to biologically inspired composites. Anal. Bioanal. Chem. 2005, 381:568-576.
    • (2005) Anal. Bioanal. Chem. , vol.381 , pp. 568-576
    • Tampieri, A.1
  • 48
    • 9344256687 scopus 로고    scopus 로고
    • Engineered osteochondral grafts using biphasic composite solid free-form fabricated scaffolds
    • Scheck R.M., et al. Engineered osteochondral grafts using biphasic composite solid free-form fabricated scaffolds. Tissue Eng. 2004, 10:1376-1385.
    • (2004) Tissue Eng. , vol.10 , pp. 1376-1385
    • Scheck, R.M.1
  • 49
    • 0036888666 scopus 로고    scopus 로고
    • A three-dimensional osteochondral composite scaffold for articular cartilage repair
    • Sherwood J.K., et al. A three-dimensional osteochondral composite scaffold for articular cartilage repair. Biomaterials 2002, 23:4739-4751.
    • (2002) Biomaterials , vol.23 , pp. 4739-4751
    • Sherwood, J.K.1
  • 50
    • 34548656497 scopus 로고    scopus 로고
    • Biphasic, but monolithic scaffolds for the therapy of osteochondral defects
    • Gelinsky M., et al. Biphasic, but monolithic scaffolds for the therapy of osteochondral defects. Intl. J. Mater. Res. 2007, 98:749-755.
    • (2007) Intl. J. Mater. Res. , vol.98 , pp. 749-755
    • Gelinsky, M.1
  • 51
    • 0034958557 scopus 로고    scopus 로고
    • Control of pore structure and size in freeze-dried collagen sponges
    • Schoof H., et al. Control of pore structure and size in freeze-dried collagen sponges. J. Biomed. Mater. Res. (Appl. Biomater.) 2001, 58:352-357.
    • (2001) J. Biomed. Mater. Res. (Appl. Biomater.) , vol.58 , pp. 352-357
    • Schoof, H.1
  • 52
    • 73249123534 scopus 로고    scopus 로고
    • Orderly osteochondral regeneration in a sheep model using a novel nano-composite multilayered biomaterial
    • Kon E., et al. Orderly osteochondral regeneration in a sheep model using a novel nano-composite multilayered biomaterial. J. Orthop. Res. 2010, 28:116-124.
    • (2010) J. Orthop. Res. , vol.28 , pp. 116-124
    • Kon, E.1
  • 53
    • 37349091115 scopus 로고    scopus 로고
    • Natural origin biodegradable systems in tissue engineering and regenerative medicine: present status and some moving trends
    • Mano J.F., et al. Natural origin biodegradable systems in tissue engineering and regenerative medicine: present status and some moving trends. J.R. Soc. Interf. 2007, 4:999-1030.
    • (2007) J.R. Soc. Interf. , vol.4 , pp. 999-1030
    • Mano, J.F.1
  • 54
    • 3242655507 scopus 로고    scopus 로고
    • Bacterial cellulose as a potential scaffold for tissue engineering of cartilage
    • Svensson A., et al. Bacterial cellulose as a potential scaffold for tissue engineering of cartilage. Biomaterials 2005, 26:419-431.
    • (2005) Biomaterials , vol.26 , pp. 419-431
    • Svensson, A.1
  • 55
    • 67651182796 scopus 로고    scopus 로고
    • Properties of collagen/chitosan scaffolds for skin tissue engineering
    • Tangsadthakun C., et al. Properties of collagen/chitosan scaffolds for skin tissue engineering. J. Met. Mat. Min. 2006, 16:37-44.
    • (2006) J. Met. Mat. Min. , vol.16 , pp. 37-44
    • Tangsadthakun, C.1
  • 56
    • 21244476308 scopus 로고    scopus 로고
    • Collagen-based scaffolds reinforced by chitosan fibres for bone tissue engineering
    • Li X., et al. Collagen-based scaffolds reinforced by chitosan fibres for bone tissue engineering. Polym. Int. 2005, 54:1034-1040.
    • (2005) Polym. Int. , vol.54 , pp. 1034-1040
    • Li, X.1
  • 57
    • 66249143380 scopus 로고    scopus 로고
    • Synthesis and evaluation of collagen-chitosan-hydroxyapatite nanocomposites for bone grafting
    • Wang X., et al. Synthesis and evaluation of collagen-chitosan-hydroxyapatite nanocomposites for bone grafting. J. Biomed. Mater. Res. 2009, 89A:1079-1087.
    • (2009) J. Biomed. Mater. Res. , vol.89 A , pp. 1079-1087
    • Wang, X.1
  • 58
    • 77956406108 scopus 로고    scopus 로고
    • Chitosan composites for bone tissue engineering-an overview
    • Venkatesan J., Kim S.-K. Chitosan composites for bone tissue engineering-an overview. Mar. Drugs 2010, 8:2252-2266.
    • (2010) Mar. Drugs , vol.8 , pp. 2252-2266
    • Venkatesan, J.1    Kim, S.-K.2
  • 59
    • 0035165289 scopus 로고    scopus 로고
    • Growth factor release from tissue engineering scaffolds
    • Whitaker M.J., et al. Growth factor release from tissue engineering scaffolds. J. Pharm. Pharmacol. 2001, 53:1427-1437.
    • (2001) J. Pharm. Pharmacol. , vol.53 , pp. 1427-1437
    • Whitaker, M.J.1
  • 60
    • 0031792031 scopus 로고    scopus 로고
    • Angiogenesis in fracture repair
    • Glowacki J. Angiogenesis in fracture repair. Clin. Orthop. Rel. Res. 1998, 355:S82-S89.
    • (1998) Clin. Orthop. Rel. Res. , vol.355
    • Glowacki, J.1
  • 61
    • 33750939285 scopus 로고    scopus 로고
    • Angiogenesis in tissue engineering: breathing life into constructed tissue substitutes
    • Laschke M.W., et al. Angiogenesis in tissue engineering: breathing life into constructed tissue substitutes. Tissue Eng. 2006, 12:2093-2104.
    • (2006) Tissue Eng. , vol.12 , pp. 2093-2104
    • Laschke, M.W.1
  • 62
    • 33746395170 scopus 로고    scopus 로고
    • Biomaterials as scaffold for bone tissue engineering
    • Schieker M., et al. Biomaterials as scaffold for bone tissue engineering. Eur. J. Trauma 2006, 32:114-124.
    • (2006) Eur. J. Trauma , vol.32 , pp. 114-124
    • Schieker, M.1
  • 63
    • 51449094036 scopus 로고    scopus 로고
    • Dual delivery of an angiogenic an osteogenic growth factor for bone regeneration enhances in a critical size defect model
    • Patel Z.S., et al. Dual delivery of an angiogenic an osteogenic growth factor for bone regeneration enhances in a critical size defect model. Bone 2008, 43:931-940.
    • (2008) Bone , vol.43 , pp. 931-940
    • Patel, Z.S.1
  • 64
    • 75149177046 scopus 로고    scopus 로고
    • A novel route in bone tissue engineering: magnetic biomimetic scaffolds
    • Bock N., et al. A novel route in bone tissue engineering: magnetic biomimetic scaffolds. Acta Biomater. 2010, 6:786-796.
    • (2010) Acta Biomater. , vol.6 , pp. 786-796
    • Bock, N.1
  • 65
    • 33751344782 scopus 로고    scopus 로고
    • Flow and magnetic field induced collagen alignment
    • Guo C., Kaufman L.J. Flow and magnetic field induced collagen alignment. Biomaterials 2007, 28:1105-1114.
    • (2007) Biomaterials , vol.28 , pp. 1105-1114
    • Guo, C.1    Kaufman, L.J.2
  • 66
    • 77955329472 scopus 로고    scopus 로고
    • Ionic substitutions in calcium phosphates synthesized at low temperature
    • Boanini E., et al. Ionic substitutions in calcium phosphates synthesized at low temperature. Acta Biomater. 2010, 6:1882-1894.
    • (2010) Acta Biomater. , vol.6 , pp. 1882-1894
    • Boanini, E.1
  • 67
    • 77954536057 scopus 로고    scopus 로고
    • Nano iron oxide-hydroxyapatite composite ceramics with enhanced radiopacity
    • Ajeesh M., et al. Nano iron oxide-hydroxyapatite composite ceramics with enhanced radiopacity. J. Mater. Sci. Mater. Med. 2010, 21:1427-1434.
    • (2010) J. Mater. Sci. Mater. Med. , vol.21 , pp. 1427-1434
    • Ajeesh, M.1
  • 68
    • 79251547045 scopus 로고    scopus 로고
    • Conceptually new type of bio-hybrid scaffold for bone regeneration
    • Tampieri A., et al. Conceptually new type of bio-hybrid scaffold for bone regeneration. Nanotechnology 2011, 22. 10.1088/0957-4484/22/1/015104.
    • (2011) Nanotechnology , vol.22
    • Tampieri, A.1
  • 69
    • 79960353395 scopus 로고    scopus 로고
    • The effect of an external magnetic force on cell adhesion and proliferation of magnetically labeled mesenchymal stem cells
    • Nakamae T., et al. The effect of an external magnetic force on cell adhesion and proliferation of magnetically labeled mesenchymal stem cells. Sports Med. Arthrosc. Rehabil. Ther. Technol. 2010, 2:5.
    • (2010) Sports Med. Arthrosc. Rehabil. Ther. Technol. , vol.2 , pp. 5
    • Nakamae, T.1
  • 70
    • 79951917381 scopus 로고    scopus 로고
    • Articular cartilage repair using an intra-articular magnet and synovium-derived cells
    • Hori J., et al. Articular cartilage repair using an intra-articular magnet and synovium-derived cells. J. Orthop. Res. 2011, 29:531-538.
    • (2011) J. Orthop. Res. , vol.29 , pp. 531-538
    • Hori, J.1
  • 71
    • 33750178910 scopus 로고    scopus 로고
    • Cell toxicity studies of albumin-based nanosized magnetic beads
    • Simioni A.R., et al. Cell toxicity studies of albumin-based nanosized magnetic beads. J. Nanosci. Nanotechnol. 2006, 6:2413-2415.
    • (2006) J. Nanosci. Nanotechnol. , vol.6 , pp. 2413-2415
    • Simioni, A.R.1
  • 72
    • 0036969621 scopus 로고    scopus 로고
    • Fe2+/Fe3+ substitution in hydroxyapatite: theory and experiment
    • Jiang M., et al. Fe2+/Fe3+ substitution in hydroxyapatite: theory and experiment. Phys. Rev. B: Condens. Matter. Mater. Phys. 2002, 66:224107-224115.
    • (2002) Phys. Rev. B: Condens. Matter. Mater. Phys. , vol.66 , pp. 224107-224115
    • Jiang, M.1
  • 73
    • 80052810239 scopus 로고    scopus 로고
    • Intrinsically magnetic hydroxyapatite, National Research Council, Finceramica Faenza S.p.A. and University of Santiago de Compostela. Italian patent, MI2010A001420
    • Tampieri, A. et al. (2010) Intrinsically magnetic hydroxyapatite, National Research Council, Finceramica Faenza S.p.A. and University of Santiago de Compostela. Italian patent, MI2010A001420.
    • (2010)
    • Tampieri, A.1
  • 74
    • 69149105893 scopus 로고    scopus 로고
    • Pellet culture elicits superior chondrogenic redifferentiation than alginate-based systems
    • Bernstein P., et al. Pellet culture elicits superior chondrogenic redifferentiation than alginate-based systems. Biotechnol. Prog. 2009, 25:1146-1152.
    • (2009) Biotechnol. Prog. , vol.25 , pp. 1146-1152
    • Bernstein, P.1
  • 75
    • 73549098444 scopus 로고    scopus 로고
    • The pore size of polycaprolactone scaffolds has limited influence on bone regeneration in an in vivo model
    • Mantila Roosa S.M., et al. The pore size of polycaprolactone scaffolds has limited influence on bone regeneration in an in vivo model. J. Biomed. Mater. Res. 2010, 92A:359-368.
    • (2010) J. Biomed. Mater. Res. , vol.92 A , pp. 359-368
    • Mantila Roosa, S.M.1
  • 76
    • 77951545880 scopus 로고    scopus 로고
    • Surface modification of PCL-TCP scaffolds in rabbit calvaria defects: Evaluation of scaffold degradation profile, biomechanical properties and bone healing patterns
    • Yeo A., et al. Surface modification of PCL-TCP scaffolds in rabbit calvaria defects: Evaluation of scaffold degradation profile, biomechanical properties and bone healing patterns. J. Biomed. Mater. Res. 2010, 93A:1358-1367.
    • (2010) J. Biomed. Mater. Res. , vol.93 A , pp. 1358-1367
    • Yeo, A.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.