메뉴 건너뛰기




Volumn 21, Issue 1, 2013, Pages 30-44

A new gradient descent approach for local learning of fuzzy neural models

Author keywords

Fuzzy systems; gradient descent; interpretability; local learning; Takagi Sugeno Kang (TSK) model

Indexed keywords

BLACK-BOX MODEL; CRITICAL STEPS; DESIGN REQUIREMENTS; FUZZY MODELS; FUZZY NEURAL MODELS; FUZZY PARTITION; FUZZY-NEURAL; GRADIENT DESCENT; IN-BUILDINGS; INTERPRETABILITY; LEARNING APPROACH; LEARNING METHODS; LEVENBERG-MARQUARDT OPTIMIZATION; LINEAR PARAMETERS; LOCAL LEARNING; NON-LINEAR PARAMETERS; NUMERICAL EXAMPLE; SECOND ORDERS; SYSTEM BEHAVIORS; SYSTEM OUTPUT; TAKAGI-SUGENO-KANG MODEL; TWO STAGE OPTIMIZATIONS;

EID: 84873385216     PISSN: 10636706     EISSN: None     Source Type: Journal    
DOI: 10.1109/TFUZZ.2012.2200900     Document Type: Article
Times cited : (40)

References (47)
  • 1
    • 77950665021 scopus 로고    scopus 로고
    • A maximizing-discriminability-based selforganizing fuzzy network for classification problems
    • Apr.
    • G. D. Wu and P. H. Huang, "A maximizing-discriminability-based selforganizing fuzzy network for classification problems," IEEE Trans. Fuzzy Syst., vol. 18, no. 2, pp. 362-373, Apr. 2010.
    • (2010) IEEE Trans. Fuzzy Syst , vol.18 , Issue.2 , pp. 362-373
    • Wu, G.D.1    Huang, P.H.2
  • 2
    • 79952487748 scopus 로고    scopus 로고
    • Approaches to extended nonquadratic stability and stabilization conditions for discrete-time Takagi-Sugeno fuzzy systems
    • D. H. Lee, J. B. Park, and Y. H. Joo, "Approaches to extended nonquadratic stability and stabilization conditions for discrete-time Takagi-Sugeno fuzzy systems," Automatica, vol. 47, no. 3, pp. 534-538, 2011.
    • (2011) Automatica , vol.47 , Issue.3 , pp. 534-538
    • Lee, D.H.1    Park, J.B.2    Joo, Y.H.3
  • 3
    • 80051499182 scopus 로고    scopus 로고
    • A new fuzzy Lyapunov function for relaxed stability condition of continuous-time Takagi-Sugeno fuzzy systems
    • Aug.
    • D. H. Lee, J. B. Park, and Y. H. Joo, "A new fuzzy Lyapunov function for relaxed stability condition of continuous-time Takagi-Sugeno fuzzy systems," IEEE Trans. Fuzzy Syst., vol. 19, no. 4, pp. 785-791, Aug. 2011.
    • (2011) IEEE Trans. Fuzzy Syst , vol.19 , Issue.4 , pp. 785-791
    • Lee, D.H.1    Park, J.B.2    Joo, Y.H.3
  • 4
    • 80051514033 scopus 로고    scopus 로고
    • Extraction and adaptation of fuzzy rules for frictionmodeling and control compensation
    • Aug.
    • Y.Wang, D.Wang, and T. Chai, "Extraction and adaptation of fuzzy rules for frictionmodeling and control compensation," IEEE Trans. Fuzzy Syst., vol. 19, no. 4, pp. 682-693, Aug. 2011.
    • (2011) IEEE Trans. Fuzzy Syst , vol.19 , Issue.4 , pp. 682-693
    • Wang, Y.1    Wang, D.2    Chai, T.3
  • 5
    • 61549100585 scopus 로고    scopus 로고
    • A new RBF neural network with boundary value constraints
    • Feb
    • X. Hong and S. Chen, "A new RBF neural network with boundary value constraints," IEEE Trans. Syst., Man, Cybern. B, Cybern., vol. 39, no. 1, pp. 298-303, Feb. 2009.
    • (2009) IEEE Trans. Syst., Man, Cybern. B, Cybern , vol.39 , Issue.1 , pp. 298-303
    • Hong, X.1    Chen, S.2
  • 6
    • 77951880436 scopus 로고    scopus 로고
    • RBF networks-based adaptive inversemodel control system for electronic throttle
    • May
    • X. Yuan, Y. Wang, W. Sun, and L. Wu, "RBF networks-based adaptive inversemodel control system for electronic throttle," IEEE Trans. Control Syst. Technol., vol. 18, no. 3, pp. 750-756, May 2010.
    • (2010) IEEE Trans. Control Syst. Technol , vol.18 , Issue.3 , pp. 750-756
    • Yuan, X.1    Wang, Y.2    Sun, W.3    Wu, L.4
  • 7
    • 58149500793 scopus 로고    scopus 로고
    • Guest editorial evolving fuzzy systems-Preface to the special section
    • Dec
    • P. Angelov, D. Filev, and N. Kasabov, "Guest editorial evolving fuzzy systems-Preface to the special section," IEEE Trans. Fuzzy Syst., vol. 16, no. 6, pp. 1390-1392, Dec. 2008.
    • (2008) IEEE Trans. Fuzzy Syst , vol.16 , Issue.6 , pp. 1390-1392
    • Angelov, P.1    Filev, D.2    Kasabov, N.3
  • 8
    • 84897586070 scopus 로고    scopus 로고
    • Artificial neural networks are zero-order TSK fuzzy systems
    • Jun
    • C. J. Mantas and J. M. Puche, "Artificial neural networks are zero-order TSK fuzzy systems," IEEE Trans. Fuzzy Syst., vol. 16, no. 3, pp. 630-643, Jun. 2008.
    • (2008) IEEE Trans. Fuzzy Syst , vol.16 , Issue.3 , pp. 630-643
    • Mantas, C.J.1    Puche, J.M.2
  • 10
    • 78649732347 scopus 로고    scopus 로고
    • A self-organizing fuzzy neural network based on a growing-and-pruning algorithm
    • Dec.
    • H. Han and J. Qiao, "A self-organizing fuzzy neural network based on a growing-and-pruning algorithm," IEEE Trans. Fuzzy Syst., vol. 18, no. 6, pp. 1129-1143, Dec. 2010.
    • (2010) IEEE Trans. Fuzzy Syst , vol.18 , Issue.6 , pp. 1129-1143
    • Han, H.1    Qiao, J.2
  • 11
    • 0016451032 scopus 로고
    • An experiment in linguistic synthesis with a fuzzy logic controller
    • E. H. Mamdani and S. Assilian, "An experiment in linguistic synthesis with a fuzzy logic controller," Int. J. Man-Machine Studies, vol. 7, no. 1, pp. 1-13, 1975.
    • (1975) Int. J. Man-Machine Studies , vol.7 , Issue.1 , pp. 1-13
    • Mamdani, E.H.1    Assilian, S.2
  • 12
    • 0021892282 scopus 로고
    • Fuzzy identification of systems and its applications to modeling and control
    • Jan./Feb
    • T. Takagi and M. Sugeno, "Fuzzy identification of systems and its applications to modeling and control," IEEE Trans. Syst. Man Cybern., vol. SMC-15, no. 1, pp. 116-132, Jan./Feb. 1985.
    • (1985) IEEE Trans. Syst. Man Cybern , vol.SMC-15 , Issue.1 , pp. 116-132
    • Takagi, T.1    Sugeno, M.2
  • 13
    • 79960004108 scopus 로고    scopus 로고
    • Parameter identification of TSK neurofuzzy models
    • A. Banakar and M. F. Azeem, "Parameter identification of TSK neurofuzzy models," Fuzzy Sets Syst., vol. 179, no. 1, pp. 62-82, 2011.
    • (2011) Fuzzy Sets Syst , vol.179 , Issue.1 , pp. 62-82
    • Banakar, A.1    Azeem, M.F.2
  • 14
    • 77955490941 scopus 로고    scopus 로고
    • An interval type-2 fuzzyneural network with support-vector regression for noisy regression problems
    • Aug.
    • C. F. Juang, R. B. Huang, and W. Y. Cheng, "An interval type-2 fuzzyneural network with support-vector regression for noisy regression problems," IEEE Trans. Fuzzy Syst., vol. 18, no. 4, pp. 686-699, Aug. 2010.
    • (2010) IEEE Trans. Fuzzy Syst , vol.18 , Issue.4 , pp. 686-699
    • Juang, C.F.1    Huang, R.B.2    Cheng, W.Y.3
  • 15
    • 77957823980 scopus 로고    scopus 로고
    • Adaptive fault-tolerant tracking control of near-space vehicle using Takagi-Sugeno fuzzy models
    • Oct.
    • B. Jiang, Z. Gao, P. Shi, and Y. Xu, "Adaptive fault-tolerant tracking control of near-space vehicle using Takagi-Sugeno fuzzy models," IEEE Trans. Fuzzy Syst., vol. 18, no. 5, pp. 1000-1007, Oct. 2010.
    • (2010) IEEE Trans. Fuzzy Syst , vol.18 , Issue.5 , pp. 1000-1007
    • Jiang, B.1    Gao, Z.2    Shi, P.3    Xu, Y.4
  • 16
    • 67149103907 scopus 로고    scopus 로고
    • Stability of cascaded fuzzy systems and observers
    • Jun
    • Z. Lendek, R. Babuska, and B. De Schutter, "Stability of cascaded fuzzy systems and observers," IEEE Trans. Fuzzy Syst., vol. 17, no. 3, pp. 641-653, Jun. 2009.
    • (2009) IEEE Trans. Fuzzy Syst , vol.17 , Issue.3 , pp. 641-653
    • Lendek, Z.1    Babuska, R.2    De Schutter, B.3
  • 17
    • 52949088628 scopus 로고    scopus 로고
    • Low-level interpretability and high-level interpretability: A unified view of data-driven interpretable fuzzy system modelling
    • S. M. Zhou and J. Q. Gan, "Low-level interpretability and high-level interpretability: A unified view of data-driven interpretable fuzzy system modelling," Fuzzy Sets Syst., vol. 159, no. 23, pp. 3091-3131, 2008.
    • (2008) Fuzzy Sets Syst , vol.159 , Issue.23 , pp. 3091-3131
    • Zhou, S.M.1    Gan, J.Q.2
  • 18
    • 0005619704 scopus 로고    scopus 로고
    • Generalization of adaptive neuro-fuzzy inference systems
    • Nov
    • M. F. Azeem,M. Hanmandlu, and N. Ahmad, "Generalization of adaptive neuro-fuzzy inference systems," IEEE Trans. Neural Netw., vol. 11, no. 6, pp. 1332-1346, Nov. 2000.
    • (2000) IEEE Trans. Neural Netw , vol.11 , Issue.6 , pp. 1332-1346
    • Azeem, M.F.1    Hanmandlu, M.2    Ahmad, N.3
  • 20
    • 84974743850 scopus 로고
    • Fuzzy model identification based on cluster estimation
    • S. Chiu, "Fuzzy model identification based on cluster estimation," J. Intell. Fuzzy Syst., vol. 2, no. 3, pp. 267-278, 1994.
    • (1994) J. Intell. Fuzzy Syst , vol.2 , Issue.3 , pp. 267-278
    • Chiu, S.1
  • 22
    • 24644469161 scopus 로고    scopus 로고
    • A TSK-type neurofuzzy network approach to system modeling problems
    • Aug
    • C. S. Ouyang,W. J. Lee, and S. J. Lee, "A TSK-type neurofuzzy network approach to system modeling problems," IEEE Trans. Syst.,Man, Cybern. B, Cybern., vol. 35, no. 4, pp. 751-767, Aug. 2005.
    • (2005) IEEE Trans. Syst.,Man, Cybern. B, Cybern , vol.35 , Issue.4 , pp. 751-767
    • Ouyang, C.S.1    Lee, W.J.2    Lee, S.J.3
  • 23
    • 77950638805 scopus 로고    scopus 로고
    • SparseFIS: Data-driven learning of fuzzy systems with sparsity constraints
    • Apr.
    • E. Lughofer and S. Kindermann, "SparseFIS: Data-driven learning of fuzzy systems with sparsity constraints," IEEE Trans. Fuzzy Syst., vol. 18, no. 2, pp. 396-411, Apr. 2010.
    • (2010) IEEE Trans. Fuzzy Syst , vol.18 , Issue.2 , pp. 396-411
    • Lughofer, E.1    Kindermann, S.2
  • 24
    • 72649101229 scopus 로고    scopus 로고
    • Fuzzy regression models using the leastsquares method based on the concept of distance
    • Dec
    • L. H. Chen and C. C. Hsueh, "Fuzzy regression models using the leastsquares method based on the concept of distance," IEEE Trans. Fuzzy Syst., vol. 17, no. 6, pp. 1259-1272, Dec. 2009.
    • (2009) IEEE Trans. Fuzzy Syst , vol.17 , Issue.6 , pp. 1259-1272
    • Chen, L.H.1    Hsueh, C.C.2
  • 25
    • 0027601884 scopus 로고
    • ANFIS: Adaptive-network-based fuzzy inference system
    • May/Jun
    • J. S. R. Jang, "ANFIS: Adaptive-network-based fuzzy inference system," IEEE Trans. Syst. Man Cybern., vol. 23, no. 3, pp. 665-685, May/Jun. 1993.
    • (1993) IEEE Trans. Syst. Man Cybern , vol.23 , Issue.3 , pp. 665-685
    • Jang, J.S.R.1
  • 26
    • 59649125893 scopus 로고    scopus 로고
    • Training ANFIS as an identifier with intelligent hybrid stable learning algorithm based on particle swarm optimization and extended Kalman filter
    • M. A. Shoorehdeli, M. Teshnehlab, and A. K. Sedigh, "Training ANFIS as an identifier with intelligent hybrid stable learning algorithm based on particle swarm optimization and extended Kalman filter," Fuzzy Sets Syst., vol. 160, no. 7, pp. 922-948, 2009.
    • (2009) Fuzzy Sets Syst , vol.160 , Issue.7 , pp. 922-948
    • Shoorehdeli, M.A.1    Teshnehlab, M.2    Sedigh, A.K.3
  • 28
    • 76849088600 scopus 로고    scopus 로고
    • Hierarchical cluster-based multispecies particle-swarm optimization for fuzzy-system optimization
    • Feb.
    • C. F. Juang, C. M. Hsiao, and C. H. Hsu, "Hierarchical cluster-based multispecies particle-swarm optimization for fuzzy-system optimization," IEEE Trans. Fuzzy Syst., vol. 18, no. 1, pp. 14-26, Feb. 2010.
    • (2010) IEEE Trans. Fuzzy Syst , vol.18 , Issue.1 , pp. 14-26
    • Juang, C.F.1    Hsiao, C.M.2    Hsu, C.H.3
  • 29
    • 76849086927 scopus 로고    scopus 로고
    • Designing fuzzy-rule-based systems using continuous ant-colony optimization
    • Feb.
    • C. F. Juang and P. H. Chang, "Designing fuzzy-rule-based systems using continuous ant-colony optimization," IEEE Trans. Fuzzy Syst., vol. 18, no. 1, pp. 138-149, Feb. 2010.
    • (2010) IEEE Trans. Fuzzy Syst , vol.18 , Issue.1 , pp. 138-149
    • Juang, C.F.1    Chang, P.H.2
  • 30
    • 0742272554 scopus 로고    scopus 로고
    • An approach to online identification of Takagi-Sugeno fuzzy models
    • Feb
    • P. P. Angelov and D. P. Filev, "An approach to online identification of Takagi-Sugeno fuzzy models," IEEE Trans. Syst., Man, Cybern. B, Cybern., vol. 34, no. 1, pp. 484-498, Feb. 2004.
    • (2004) IEEE Trans. Syst., Man, Cybern. B, Cybern , vol.34 , Issue.1 , pp. 484-498
    • Angelov, P.P.1    Filev, D.P.2
  • 31
    • 53149134642 scopus 로고    scopus 로고
    • Evolving fuzzy classifiers using differentmodel architectures
    • P. Angelov, E. Lughofer, and X. Zhou, "Evolving fuzzy classifiers using differentmodel architectures," Fuzzy Sets Syst., vol. 159, no. 23, pp. 3160-3182, 2008.
    • (2008) Fuzzy Sets Syst , vol.159 , Issue.23 , pp. 3160-3182
    • Angelov, P.1    Lughofer, E.2    Zhou, X.3
  • 32
    • 0032205732 scopus 로고    scopus 로고
    • Improving the interpretability of TSK fuzzy models by combining global learning and local learning
    • Nov
    • J. Yen, L. Wang, and C. W. Gillespie, "Improving the interpretability of TSK fuzzy models by combining global learning and local learning," IEEE Trans. Fuzzy Syst., vol. 6, no. 4, pp. 530-537, Nov 1998.
    • (1998) IEEE Trans. Fuzzy Syst , vol.6 , Issue.4 , pp. 530-537
    • Yen, J.1    Wang, L.2    Gillespie, C.W.3
  • 33
    • 0346076776 scopus 로고    scopus 로고
    • Multiobjective identification of Takagi-Sugeno fuzzy models
    • Dec
    • T. A. Johansen and R. Babuska, "Multiobjective identification of Takagi-Sugeno fuzzy models," IEEE Trans. Fuzzy Syst., vol. 11, no. 6, pp. 847-860, Dec. 2003.
    • (2003) IEEE Trans. Fuzzy Syst , vol.11 , Issue.6 , pp. 847-860
    • Johansen, T.A.1    Babuska, R.2
  • 34
    • 77950628563 scopus 로고    scopus 로고
    • The design methodology of radial basis function neural networks based on fuzzy k-nearest neighbors approach
    • S.-B. Roh, T.-C. Ahn, and W. Pedrycz, "The design methodology of radial basis function neural networks based on fuzzy k-nearest neighbors approach," Fuzzy Sets Syst., vol. 161, no. 13, pp. 1803-1822, 2010.
    • (2010) Fuzzy Sets Syst , vol.161 , Issue.13 , pp. 1803-1822
    • Roh, S.-B.1    Ahn, T.-C.2    Pedrycz, W.3
  • 35
    • 0036738759 scopus 로고    scopus 로고
    • Two highly efficient second-order algorithms for training feedforward networks
    • Sep
    • N. Ampazis and S. Perantonis, "Two highly efficient second-order algorithms for training feedforward networks," IEEE Trans. Neural Netw., vol. 13, no. 5, pp. 1064-1074, Sep. 2002.
    • (2002) IEEE Trans. Neural Netw , vol.13 , Issue.5 , pp. 1064-1074
    • Ampazis, N.1    Perantonis, S.2
  • 36
    • 77956411374 scopus 로고    scopus 로고
    • Two nonlinear optimization methods for black box identification compared
    • A. V. Mulders, J. Schoukens, M. Volckaert, andM. Diehl, "Two nonlinear optimization methods for black box identification compared," Automatica, vol. 46, no. 10, pp. 1675-1681, 2010.
    • (2010) Automatica , vol.46 , Issue.10 , pp. 1675-1681
    • Mulders, A.V.1    Schoukens, J.2    Volckaert, M.3    Diehl, M.4
  • 37
    • 26244441991 scopus 로고    scopus 로고
    • A fast nonlinear model identification method
    • Aug
    • K. Li, J. X. Peng, and G. W. Irwin, "A fast nonlinear model identification method," IEEE Trans. Autom. Control, vol. 50, no. 8, pp. 1211-1216, Aug. 2005.
    • (2005) IEEE Trans. Autom. Control , vol.50 , Issue.8 , pp. 1211-1216
    • Li, K.1    Peng, J.X.2    Irwin, G.W.3
  • 38
    • 33847421698 scopus 로고    scopus 로고
    • A novel continuous forward algorithm for RBF neural modelling
    • Jan
    • J. X. Peng, K. Li, and G.W. Irwin, "A novel continuous forward algorithm for RBF neural modelling," IEEE Trans. Autom. Control, vol. 52, no. 1, pp. 117-122, Jan. 2007.
    • (2007) IEEE Trans. Autom. Control , vol.52 , Issue.1 , pp. 117-122
    • Peng, J.X.1    Li, K.2    Irwin, G.W.3
  • 39
    • 39549096279 scopus 로고    scopus 로고
    • A new Jacobian matrix for optimal learning of single-layer neural networks
    • Jan
    • J. X. Peng, K. Li, and G. W. Irwin, "A new Jacobian matrix for optimal learning of single-layer neural networks," IEEE Trans. Neural Netw., vol. 19, no. 1, pp. 119-129, Jan. 2008.
    • (2008) IEEE Trans. Neural Netw , vol.19 , Issue.1 , pp. 119-129
    • Peng, J.X.1    Li, K.2    Irwin, G.W.3
  • 40
    • 79960555001 scopus 로고    scopus 로고
    • Interpretability of linguistic fuzzy rule-based systems: An overview of interpretability measures
    • M. J. Gacto, R. Alcaĺa, and F. Herrera, "Interpretability of linguistic fuzzy rule-based systems: An overview of interpretability measures," Inf. Sci., vol. 181, no. 20, pp. 4340-4360, 2011.
    • (2011) Inf. Sci , vol.181 , Issue.20 , pp. 4340-4360
    • Gacto, M.J.1    Alcaĺa, R.2    Herrera, F.3
  • 41
    • 0035360372 scopus 로고    scopus 로고
    • Designing fuzzy inference systems from data: An interpretability-oriented review
    • Jun
    • S. Guillaume, "Designing fuzzy inference systems from data: An interpretability-oriented review," IEEE Trans. Fuzzy Syst., vol. 9, no. 3, pp. 426-443, Jun. 2001.
    • (2001) IEEE Trans. Fuzzy Syst , vol.9 , Issue.3 , pp. 426-443
    • Guillaume, S.1
  • 43
    • 0001499487 scopus 로고    scopus 로고
    • A nonlinear forecasts combination method based on Takagi-Sugeno fuzzy systems
    • A. Fiordaliso, "A nonlinear forecasts combination method based on Takagi-Sugeno fuzzy systems," Int. J. Forecasting, vol. 14, no. 3, pp. 367-379, 1998.
    • (1998) Int. J. Forecasting , vol.14 , Issue.3 , pp. 367-379
    • Fiordaliso, A.1
  • 44
    • 0037782746 scopus 로고    scopus 로고
    • Hybridizing genetic algorithms with sharing scheme and evolution strategies for designing approximate fuzzy rulebased systems
    • O. Cord́on and F. Herrera, "Hybridizing genetic algorithms with sharing scheme and evolution strategies for designing approximate fuzzy rulebased systems," Fuzzy Sets Syst., vol. 118, no. 2, pp. 235-255, 2001.
    • (2001) Fuzzy Sets Syst , vol.118 , Issue.2 , pp. 235-255
    • Cord́on, O.1    Herrera, F.2
  • 45
    • 33947282595 scopus 로고    scopus 로고
    • Design for self-organizing fuzzy neural networks based on genetic algorithms
    • Dec
    • G. Leng, T. M. McGinnity, and G. Prasad, "Design for self-organizing fuzzy neural networks based on genetic algorithms," IEEE Trans. Fuzzy Syst., vol. 14, no. 6, pp. 755-766, Dec. 2006.
    • (2006) IEEE Trans. Fuzzy Syst , vol.14 , Issue.6 , pp. 755-766
    • Leng, G.1    McGinnity, T.M.2    Prasad, G.3
  • 46
    • 34250856811 scopus 로고    scopus 로고
    • Automatic design of hierarchical Takagi-Sugeno type fuzzy systems using evolutionary algorithms
    • Jun
    • Y. H. Chen, B. Yang, A. Abraham, and L. Z. Peng, "Automatic design of hierarchical Takagi-Sugeno type fuzzy systems using evolutionary algorithms," IEEE Trans. Fuzzy Syst., vol. 15, no. 3, pp. 385-397, Jun. 2007.
    • (2007) IEEE Trans. Fuzzy Syst , vol.15 , Issue.3 , pp. 385-397
    • Chen, Y.H.1    Yang, B.2    Abraham, A.3    Peng, L.Z.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.