메뉴 건너뛰기




Volumn 39, Issue 1, 2009, Pages 298-303

A new RBF neural network with boundary value constraints

Author keywords

Boundary value constraints (BVC); D optimality; Forward regression; Radial basis function (RBF); System identification

Indexed keywords

ATTITUDE CONTROL; CURVE FITTING; RADIAL BASIS FUNCTION NETWORKS; STOCHASTIC MODELS;

EID: 61549100585     PISSN: 10834419     EISSN: None     Source Type: Journal    
DOI: 10.1109/TSMCB.2008.2005124     Document Type: Article
Times cited : (52)

References (22)
  • 1
    • 0000672424 scopus 로고
    • Fast learning in networks of locally-tuned processing units
    • J. E. Moody and C. J. Darken, "Fast learning in networks of locally-tuned processing units," Neural Comput., vol. 1, no. 2, pp. 281-294, 1989.
    • (1989) Neural Comput , vol.1 , Issue.2 , pp. 281-294
    • Moody, J.E.1    Darken, C.J.2
  • 2
    • 0026116468 scopus 로고
    • Orthogonal least squares learning algorithm for radial basis function networks
    • Mar
    • S. Chen, C. F. Cowan, and P.M. Grant, "Orthogonal least squares learning algorithm for radial basis function networks," IEEE Trans. Neural Netw., vol. 2, no. 2, pp. 302-309, Mar. 1991.
    • (1991) IEEE Trans. Neural Netw , vol.2 , Issue.2 , pp. 302-309
    • Chen, S.1    Cowan, C.F.2    Grant, P.M.3
  • 3
    • 0032122726 scopus 로고    scopus 로고
    • Conditional fuzzy clustering in the design of radial basis function neural networks
    • Jul
    • W. Pedrycz, "Conditional fuzzy clustering in the design of radial basis function neural networks," IEEE Trans. Neural Netw., vol. 9, no. 4, pp. 601-612, Jul. 1998.
    • (1998) IEEE Trans. Neural Netw , vol.9 , Issue.4 , pp. 601-612
    • Pedrycz, W.1
  • 4
    • 1642578191 scopus 로고    scopus 로고
    • Experimental design and model construction algorithms for radial basis function networks
    • X. Hong and C. J. Harris, "Experimental design and model construction algorithms for radial basis function networks," Int. J. Syst. Sci. vol. 34, no. 14/15, pp. 733-745, 2003.
    • (2003) Int. J. Syst. Sci , vol.34 , Issue.14-15 , pp. 733-745
    • Hong, X.1    Harris, C.J.2
  • 5
    • 0024771664 scopus 로고
    • Orthogonal least squares methods and their application to non-linear system identification
    • S. Chen, S. A. Billings, and W. Luo, "Orthogonal least squares methods and their application to non-linear system identification," Int. J. Control, vol. 50, pp. 1873-1896, 1989.
    • (1989) Int. J. Control , vol.50 , pp. 1873-1896
    • Chen, S.1    Billings, S.A.2    Luo, W.3
  • 6
    • 0032594851 scopus 로고    scopus 로고
    • Combined genetic algorithm optimization and regularized orthogonal least squares learning for radial basis function networks
    • Sep
    • S. Chen, Y. Wu, and B. L. Luk, "Combined genetic algorithm optimization and regularized orthogonal least squares learning for radial basis function networks," IEEE Trans. Neural Netw., vol. 10, no. 5, pp. 1239-1243, Sep. 1999.
    • (1999) IEEE Trans. Neural Netw , vol.10 , Issue.5 , pp. 1239-1243
    • Chen, S.1    Wu, Y.2    Luk, B.L.3
  • 7
    • 33751560009 scopus 로고
    • Regularisation in the selection of radial basis function centers
    • May
    • M. J. L. Orr, "Regularisation in the selection of radial basis function centers," Neural Comput., vol. 7, no. 3, pp. 954-975, May 1995.
    • (1995) Neural Comput , vol.7 , Issue.3 , pp. 954-975
    • Orr, M.J.L.1
  • 8
    • 0026928374 scopus 로고
    • Fuzzy basis functions, universal approximation, and orthogonal least-squares learning
    • Sep
    • L. Wang and J. M. Mendel, "Fuzzy basis functions, universal approximation, and orthogonal least-squares learning," IEEE Trans. Neural Netw., vol. 5, no. 5, pp. 807-814, Sep. 1992.
    • (1992) IEEE Trans. Neural Netw , vol.5 , Issue.5 , pp. 807-814
    • Wang, L.1    Mendel, J.M.2
  • 9
    • 0035502839 scopus 로고    scopus 로고
    • Neurofuzzy design and model construction of nonlinear dynamical processes from data
    • Nov
    • X. Hong and C. J. Harris, "Neurofuzzy design and model construction of nonlinear dynamical processes from data," Proc. Inst. Elect. Eng.-Control Theory Appl., vol. 148, no. 6, pp. 530-538, Nov. 2001.
    • (2001) Proc. Inst. Elect. Eng.-Control Theory Appl , vol.148 , Issue.6 , pp. 530-538
    • Hong, X.1    Harris, C.J.2
  • 10
    • 0031098254 scopus 로고
    • Using wavelet network in nonparametric estimation
    • Mar
    • Q. Zhang, "Using wavelet network in nonparametric estimation," IEEE Trans. Neural Netw., vol. 8, no. 2, pp. 227-236, Mar. 1993.
    • (1993) IEEE Trans. Neural Netw , vol.8 , Issue.2 , pp. 227-236
    • Zhang, Q.1
  • 11
    • 27944498559 scopus 로고    scopus 로고
    • The wavelet-NARMAX representation: A hybrid model structure combining polynomial models with multiresolution wavelet decompositions
    • Feb
    • S. A. Billings and H. L. Wei, "The wavelet-NARMAX representation: A hybrid model structure combining polynomial models with multiresolution wavelet decompositions," Int. J. Syst. Sci., vol. 36, no. 3, pp. 137-152, Feb. 2005.
    • (2005) Int. J. Syst. Sci , vol.36 , Issue.3 , pp. 137-152
    • Billings, S.A.1    Wei, H.L.2
  • 12
    • 0035414889 scopus 로고    scopus 로고
    • Nonlinear gas turbine modeling using NARMAX structures
    • Aug
    • N. Chiras, C. Evans, and D. Rees, "Nonlinear gas turbine modeling using NARMAX structures," IEEE Trans. Instrum. Meas., vol. 50, no. 4, pp. 893-898, Aug. 2001.
    • (2001) IEEE Trans. Instrum. Meas , vol.50 , Issue.4 , pp. 893-898
    • Chiras, N.1    Evans, C.2    Rees, D.3
  • 13
    • 0042880039 scopus 로고    scopus 로고
    • Online adaptive fuzzy neural identification and control of a class of MIMO nonlinear systems
    • Aug
    • Y. Gao and M. J. Er, "Online adaptive fuzzy neural identification and control of a class of MIMO nonlinear systems," IEEE Trans. Fuzzy Syst., vol. 11, no. 4, pp. 462-477, Aug. 2003.
    • (2003) IEEE Trans. Fuzzy Syst , vol.11 , Issue.4 , pp. 462-477
    • Gao, Y.1    Er, M.J.2
  • 14
    • 19344364532 scopus 로고    scopus 로고
    • Adaptive control of power factor correction converter using nonlinear system identification
    • May
    • K. M. Tsang and W. L. Chan, "Adaptive control of power factor correction converter using nonlinear system identification," Proc. Inst. Elect. Eng.-Elect. Power Appl., vol. 152, no. 3, pp. 627-633, May 2005.
    • (2005) Proc. Inst. Elect. Eng.-Elect. Power Appl , vol.152 , Issue.3 , pp. 627-633
    • Tsang, K.M.1    Chan, W.L.2
  • 17
    • 0036738761 scopus 로고    scopus 로고
    • Nonlinear model structure design and construction using orthogonal least squares and D-optimality design
    • Sep
    • X. Hong and C. J. Harris, "Nonlinear model structure design and construction using orthogonal least squares and D-optimality design," IEEE Trans. Neural Netw., vol. 13, no. 5, pp. 1245-1250, Sep. 2002.
    • (2002) IEEE Trans. Neural Netw , vol.13 , Issue.5 , pp. 1245-1250
    • Hong, X.1    Harris, C.J.2
  • 18
    • 84949203556 scopus 로고    scopus 로고
    • Locally regularised orthogonal least squares algorithm for the construction of sparse kernel regression models
    • Beijing, China
    • S. Chen, "Locally regularised orthogonal least squares algorithm for the construction of sparse kernel regression models," in Proc. 6th Int. Conf. Signal Process., Beijing, China, 2002, pp. 1229-1232.
    • (2002) Proc. 6th Int. Conf. Signal Process , pp. 1229-1232
    • Chen, S.1
  • 19
    • 0035271447 scopus 로고    scopus 로고
    • Nonlinear model structure detection using optimum experimental design and orthogonal least squares
    • Mar
    • X. Hong and J. Harris, "Nonlinear model structure detection using optimum experimental design and orthogonal least squares," IEEE Trans. Neural Netw., vol. 12, no. 2, pp. 435-439, Mar. 2001.
    • (2001) IEEE Trans. Neural Netw , vol.12 , Issue.2 , pp. 435-439
    • Hong, X.1    Harris, J.2
  • 20
    • 0038548172 scopus 로고    scopus 로고
    • Sparse kernel regression modeling using combined locally regularized orthogonal least squares and D-optimality experimental design
    • Jun
    • S. Chen, X. Hong, and C. J. Harris, "Sparse kernel regression modeling using combined locally regularized orthogonal least squares and D-optimality experimental design," IEEE Trans. Autom. Control, vol. 48, no. 6, pp. 1029-1036, Jun. 2003.
    • (2003) IEEE Trans. Autom. Control , vol.48 , Issue.6 , pp. 1029-1036
    • Chen, S.1    Hong, X.2    Harris, C.J.3
  • 21
    • 0037355208 scopus 로고    scopus 로고
    • Sparse multioutput radial basis function network construction using combined locally regularised orthogonal least square and D-optimality experimental design
    • Mar
    • S. Chen, X. Hong, and C. J. Harris, "Sparse multioutput radial basis function network construction using combined locally regularised orthogonal least square and D-optimality experimental design," Proc. Inst. Elect. Eng.-Control Theory Appl., vol. 150, no. 2, pp. 139-146, Mar. 2003.
    • (2003) Proc. Inst. Elect. Eng.-Control Theory Appl , vol.150 , Issue.2 , pp. 139-146
    • Chen, S.1    Hong, X.2    Harris, C.J.3
  • 22
    • 1842430977 scopus 로고    scopus 로고
    • Sparse modeling using orthogonal forward regression with PRESS statistic and regularization
    • Apr
    • S. Chen, X. Hong, C. J. Harris, and P.M. Sharkey, "Sparse modeling using orthogonal forward regression with PRESS statistic and regularization," IEEE Trans. Syst., Man Cybern. B, Cybern., vol. 34, no. 2, pp. 898-911, Apr. 2004.
    • (2004) IEEE Trans. Syst., Man Cybern. B, Cybern , vol.34 , Issue.2 , pp. 898-911
    • Chen, S.1    Hong, X.2    Harris, C.J.3    Sharkey, P.M.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.