-
1
-
-
79957580977
-
Vertebrate segmentation: from cyclic gene networks to scoliosis.
-
Pourquié O. Vertebrate segmentation: from cyclic gene networks to scoliosis. Cell 2011, 145:650-663.
-
(2011)
Cell
, vol.145
, pp. 650-663
-
-
Pourquié, O.1
-
2
-
-
0030840351
-
Avian hairy gene expression identifies a molecular clock linked to vertebrate segmentation and somitogenesis.
-
Palmeirim I, Henrique D, Ish-Horowicz D, Pourquié O. Avian hairy gene expression identifies a molecular clock linked to vertebrate segmentation and somitogenesis. Cell 1997, 91:639-648.
-
(1997)
Cell
, vol.91
, pp. 639-648
-
-
Palmeirim, I.1
Henrique, D.2
Ish-Horowicz, D.3
Pourquié, O.4
-
3
-
-
0034098483
-
Notch signalling is required for cyclic expression of the hairy-like gene HES1 in the presomitic mesoderm.
-
Jouve C, Palmeirim I, Henrique D, Beckers J, Gossler A, Ish-Horowicz D, Pourquié O. Notch signalling is required for cyclic expression of the hairy-like gene HES1 in the presomitic mesoderm. Development 2000, 127:1421-1429.
-
(2000)
Development
, vol.127
, pp. 1421-1429
-
-
Jouve, C.1
Palmeirim, I.2
Henrique, D.3
Beckers, J.4
Gossler, A.5
Ish-Horowicz, D.6
Pourquié, O.7
-
4
-
-
0035887251
-
Dynamic expression and essential functions of Hes7 in somite segmentation.
-
Bessho Y, Sakata R, Komatsu S, Shiota K, Yamada S, Kageyama R. Dynamic expression and essential functions of Hes7 in somite segmentation. Genes Dev 2001, 15:2642-2647.
-
(2001)
Genes Dev
, vol.15
, pp. 2642-2647
-
-
Bessho, Y.1
Sakata, R.2
Komatsu, S.3
Shiota, K.4
Yamada, S.5
Kageyama, R.6
-
5
-
-
34547418278
-
The initiation and propagation of Hes7 oscillation are cooperatively regulated by Fgf and Notch signaling in the somite segmentation clock.
-
Niwa Y, Masamizu Y, Liu T, Nakayama R, Deng C-X, Kageyama R. The initiation and propagation of Hes7 oscillation are cooperatively regulated by Fgf and Notch signaling in the somite segmentation clock. Dev Cell 2007, 13:298-304.
-
(2007)
Dev Cell
, vol.13
, pp. 298-304
-
-
Niwa, Y.1
Masamizu, Y.2
Liu, T.3
Nakayama, R.4
Deng, C.-X.5
Kageyama, R.6
-
6
-
-
56049123626
-
Mutation of HAIRY-AND-ENHANCER-OF-SPLIT-7 in humans causes spondylocostal dysostosis.
-
Sparrow DB, Guillén-Navarro E, Fatkin D, Dunwoodie SL. Mutation of HAIRY-AND-ENHANCER-OF-SPLIT-7 in humans causes spondylocostal dysostosis. Hum Mol Genet 2008, 17:3761-3766.
-
(2008)
Hum Mol Genet
, vol.17
, pp. 3761-3766
-
-
Sparrow, D.B.1
Guillén-Navarro, E.2
Fatkin, D.3
Dunwoodie, S.L.4
-
7
-
-
0034234968
-
Control of her1 expression during zebrafish somitogenesis by a Delta-dependent oscillator and an independent wave-front activity.
-
Holley SA, Geisler R, Nüsslein-Volhard C. Control of her1 expression during zebrafish somitogenesis by a Delta-dependent oscillator and an independent wave-front activity. Genes Dev 2000, 14:1678-1690.
-
(2000)
Genes Dev
, vol.14
, pp. 1678-1690
-
-
Holley, S.A.1
Geisler, R.2
Nüsslein-Volhard, C.3
-
8
-
-
0036679340
-
Two linked hairy/Enhancer of split-related zebrafish genes, her1 and her7, function together to refine alternating somite boundaries.
-
Henry CA, Urban MK, Dill KK, Merlie JP, Page MF, Kimmel CB, Amacher SL. Two linked hairy/Enhancer of split-related zebrafish genes, her1 and her7, function together to refine alternating somite boundaries. Development 2002, 129:3693-3704.
-
(2002)
Development
, vol.129
, pp. 3693-3704
-
-
Henry, C.A.1
Urban, M.K.2
Dill, K.K.3
Merlie, J.P.4
Page, M.F.5
Kimmel, C.B.6
Amacher, S.L.7
-
9
-
-
0036332729
-
her1 and the notch pathway function within the oscillator mechanism that regulates zebrafish somitogenesis.
-
Holley SA, Jükich D, Rauch G, Geisler R, Nüsslein-Volhard C. her1 and the notch pathway function within the oscillator mechanism that regulates zebrafish somitogenesis. Development 2002, 129:1175-1183.
-
(2002)
Development
, vol.129
, pp. 1175-1183
-
-
Holley, S.A.1
Jükich, D.2
Rauch, G.3
Geisler, R.4
Nüsslein-Volhard, C.5
-
10
-
-
0035984002
-
Hairy/E(spl)-related (Her) genes are central components of the segmentation oscillator and display redundancy with the Delta/Notch signaling pathway in the formation of anterior segmental boundaries in the zebrafish.
-
Oates AC, Ho RK. Hairy/E(spl)-related (Her) genes are central components of the segmentation oscillator and display redundancy with the Delta/Notch signaling pathway in the formation of anterior segmental boundaries in the zebrafish. Development 2002, 129:2929-2946.
-
(2002)
Development
, vol.129
, pp. 2929-2946
-
-
Oates, A.C.1
Ho, R.K.2
-
11
-
-
0042673755
-
Anterior and posterior waves of cyclic her1 gene expression are differentially regulated in the presomitic mesoderm of zebrafish.
-
Gajewski M, Sieger D, Alt B, Leve C, Hans S, Wilff C, Rohr KB, Tautz D. Anterior and posterior waves of cyclic her1 gene expression are differentially regulated in the presomitic mesoderm of zebrafish. Development 2003, 130:4269-4278.
-
(2003)
Development
, vol.130
, pp. 4269-4278
-
-
Gajewski, M.1
Sieger, D.2
Alt, B.3
Leve, C.4
Hans, S.5
Wilff, C.6
Rohr, K.B.7
Tautz, D.8
-
12
-
-
0038046204
-
Periodic repression by the bHLH factor Hes7 is an essential mechanism for the somite segmentation clock.
-
Bessho Y, Hirata H, Masamizu Y, Kageyama R. Periodic repression by the bHLH factor Hes7 is an essential mechanism for the somite segmentation clock. Genes Dev 2003, 17:1451-1456.
-
(2003)
Genes Dev
, vol.17
, pp. 1451-1456
-
-
Bessho, Y.1
Hirata, H.2
Masamizu, Y.3
Kageyama, R.4
-
13
-
-
30944454348
-
Negative feedback loop formed by Lunatic fringe and Hes7 controls their oscillatory expression during somitogenesis.
-
Chen J, Kang L, Zhang N. Negative feedback loop formed by Lunatic fringe and Hes7 controls their oscillatory expression during somitogenesis. Genesis 2005, 43:196-204.
-
(2005)
Genesis
, vol.43
, pp. 196-204
-
-
Chen, J.1
Kang, L.2
Zhang, N.3
-
14
-
-
34250316233
-
Setting the tempo in development: an investigation of the zebrafish somite clock mechanism.
-
Giudicelli F, Ozbudak EM, Wright GJ, Lewis J. Setting the tempo in development: an investigation of the zebrafish somite clock mechanism. PLoS Biol 2007, 5:e150.
-
(2007)
PLoS Biol
, vol.5
-
-
Giudicelli, F.1
Ozbudak, E.M.2
Wright, G.J.3
Lewis, J.4
-
15
-
-
0037464494
-
Sustained oscillations and time delays in gene expression of protein Hes1.
-
Jensen MH, Sneppen K, Tiana G. Sustained oscillations and time delays in gene expression of protein Hes1. FEBS Lett 2003, 541:176-177.
-
(2003)
FEBS Lett
, vol.541
, pp. 176-177
-
-
Jensen, M.H.1
Sneppen, K.2
Tiana, G.3
-
16
-
-
0041677612
-
Autoinhibition with transcriptional delay: a simple mechanism for the zebrafish somitogenesis oscillator.
-
Lewis J. Autoinhibition with transcriptional delay: a simple mechanism for the zebrafish somitogenesis oscillator. Curr Biol 2003, 13:1398-1408.
-
(2003)
Curr Biol
, vol.13
, pp. 1398-1408
-
-
Lewis, J.1
-
17
-
-
0043180477
-
Oscillatory expression of Hes1, p53, and NF-κB driven by transcriptional time delays.
-
Monk NAM. Oscillatory expression of Hes1, p53, and NF-κB driven by transcriptional time delays. Curr Biol 2003, 13:1409-1413.
-
(2003)
Curr Biol
, vol.13
, pp. 1409-1413
-
-
Monk, N.A.M.1
-
18
-
-
3042842911
-
Instability of Hes7 protein is crucial for the somite segmentation clock.
-
Hirata H, Bessho Y, Kokubu H, Masamizu Y, Yamada S, Lewis J, Kageyama R. Instability of Hes7 protein is crucial for the somite segmentation clock. Nat Genet 2004, 36:750-754.
-
(2004)
Nat Genet
, vol.36
, pp. 750-754
-
-
Hirata, H.1
Bessho, Y.2
Kokubu, H.3
Masamizu, Y.4
Yamada, S.5
Lewis, J.6
Kageyama, R.7
-
19
-
-
77955424990
-
Intercellular coupling regulates the period of the segmentation clock.
-
Herrgen L, Ares S, Morelli LG, Schröter C, Jülicher F, Oates AC. Intercellular coupling regulates the period of the segmentation clock. Curr Biol 2010, 20:1244-1253.
-
(2010)
Curr Biol
, vol.20
, pp. 1244-1253
-
-
Herrgen, L.1
Ares, S.2
Morelli, L.G.3
Schröter, C.4
Jülicher, F.5
Oates, A.C.6
-
20
-
-
77951224757
-
The oscillation of Notch activation, but not its boundary, is required for somite border formation and rostral-caudal patterning within a somite.
-
Oginuma M, Takahashi Y, Kitajima S, Kiso M, Kanno J, Kimura A, Saga Y. The oscillation of Notch activation, but not its boundary, is required for somite border formation and rostral-caudal patterning within a somite. Development 2010, 137:1515-1522.
-
(2010)
Development
, vol.137
, pp. 1515-1522
-
-
Oginuma, M.1
Takahashi, Y.2
Kitajima, S.3
Kiso, M.4
Kanno, J.5
Kimura, A.6
Saga, Y.7
-
21
-
-
79958056964
-
Different types of oscillations in Notch and Fgf signaling regulate the spatiotemporal periodicity of somitogenesis.
-
Niwa Y, Shimojo H, Isomura A, González A, Miyachi H, Kageyama R. Different types of oscillations in Notch and Fgf signaling regulate the spatiotemporal periodicity of somitogenesis. Genes Dev 2011, 25:1115-1120.
-
(2011)
Genes Dev
, vol.25
, pp. 1115-1120
-
-
Niwa, Y.1
Shimojo, H.2
Isomura, A.3
González, A.4
Miyachi, H.5
Kageyama, R.6
-
22
-
-
79952766407
-
Intronic delay is essential for oscillatory expression in the segmentation clock.
-
Takashima Y, Ohtsuka T, González A, Miyachi H, Kageyama R. Intronic delay is essential for oscillatory expression in the segmentation clock. Proc Natl Acad Sci USA 2011, 108:3300-3305.
-
(2011)
Proc Natl Acad Sci USA
, vol.108
, pp. 3300-3305
-
-
Takashima, Y.1
Ohtsuka, T.2
González, A.3
Miyachi, H.4
Kageyama, R.5
-
23
-
-
21444449061
-
Synchronised cycling gene oscillations in presomitic mesoderm cells require cell-cell contact.
-
Maroto M, Dale JK, Dequéant M-L, Petit A-C, Pourquié O. Synchronised cycling gene oscillations in presomitic mesoderm cells require cell-cell contact. Int J Dev Biol 2005, 49:309-315.
-
(2005)
Int J Dev Biol
, vol.49
, pp. 309-315
-
-
Maroto, M.1
Dale, J.K.2
Dequéant, M.-L.3
Petit, A.-C.4
Pourquié, O.5
-
24
-
-
31944447678
-
Real-time imaging of the somite segmentation clock: revelation of unstable oscillators in the individual presomitic mesoderm cells.
-
Masamizu Y, Ohtsuka T, Takashima Y, Nagahara H, Takenaka Y, Yoshikawa K, Okamura H, Kageyama R. Real-time imaging of the somite segmentation clock: revelation of unstable oscillators in the individual presomitic mesoderm cells. Proc Natl Acad Sci USA 2006, 103:1313-1318.
-
(2006)
Proc Natl Acad Sci USA
, vol.103
, pp. 1313-1318
-
-
Masamizu, Y.1
Ohtsuka, T.2
Takashima, Y.3
Nagahara, H.4
Takenaka, Y.5
Yoshikawa, K.6
Okamura, H.7
Kageyama, R.8
-
25
-
-
0033617522
-
Notch signaling: cell fate control and signal integration in development.
-
Artavanis-Tsakonas S, Rand MD, Lake RJ. Notch signaling: cell fate control and signal integration in development. Science 1999, 284:770-776.
-
(1999)
Science
, vol.284
, pp. 770-776
-
-
Artavanis-Tsakonas, S.1
Rand, M.D.2
Lake, R.J.3
-
26
-
-
54949151933
-
Dynamic Notch signaling in neural progenitor cells and a revised view of lateral inhibition.
-
Kageyama R, Ohtsuka T, Shimojo H, Imayoshi I. Dynamic Notch signaling in neural progenitor cells and a revised view of lateral inhibition. Nat Neurosci 2008, 11:1247-1251.
-
(2008)
Nat Neurosci
, vol.11
, pp. 1247-1251
-
-
Kageyama, R.1
Ohtsuka, T.2
Shimojo, H.3
Imayoshi, I.4
-
27
-
-
64249172203
-
The canonical Notch signaling pathway: unfolding the activation mechanism.
-
Kopan R, Ilagan MXG. The canonical Notch signaling pathway: unfolding the activation mechanism. Cell 2009, 137:216-233.
-
(2009)
Cell
, vol.137
, pp. 216-233
-
-
Kopan, R.1
Ilagan, M.X.G.2
-
28
-
-
0034707072
-
Notch signaling and the synchronization of the somite segmentation clock.
-
Jiang Y-J, Aerne BL, Smithers L, Haddon C, Ish-Horowicz D, Lewis J. Notch signaling and the synchronization of the somite segmentation clock. Nature 2000, 408:475-479.
-
(2000)
Nature
, vol.408
, pp. 475-479
-
-
Jiang, Y.-J.1
Aerne, B.L.2
Smithers, L.3
Haddon, C.4
Ish-Horowicz, D.5
Lewis, J.6
-
29
-
-
34848818078
-
Synchrony dynamics during initiation, failure, and rescue of the segmentation clock.
-
Riedel-Kruse IH, Müller C, Oates AC. Synchrony dynamics during initiation, failure, and rescue of the segmentation clock. Science 2007, 317:1911-1915.
-
(2007)
Science
, vol.317
, pp. 1911-1915
-
-
Riedel-Kruse, I.H.1
Müller, C.2
Oates, A.C.3
-
30
-
-
40149093742
-
Notch signaling synchronizes the zebrafish segmentation clock but is not needed to create somite boundaries.
-
Özbudak EM, Lewis J. Notch signaling synchronizes the zebrafish segmentation clock but is not needed to create somite boundaries. PLoS Genet 2008, 4:e15.
-
(2008)
PLoS Genet
, vol.4
-
-
Özbudak, E.M.1
Lewis, J.2
-
31
-
-
33745000977
-
Noise-resistant and synchronized oscillation of the segmentation clock.
-
Horikawa K, Ishimatsu K, Yoshimoto E, Kondo S, Takeda H. Noise-resistant and synchronized oscillation of the segmentation clock. Nature 2006, 441:719-723.
-
(2006)
Nature
, vol.441
, pp. 719-723
-
-
Horikawa, K.1
Ishimatsu, K.2
Yoshimoto, E.3
Kondo, S.4
Takeda, H.5
-
32
-
-
34247863926
-
Priming, initiation and synchronization of the segmentation clock by deltaD and deltaC.
-
Mara A, Schroeder J, Chalouni C, Holley SA. Priming, initiation and synchronization of the segmentation clock by deltaD and deltaC. Nat Cell Biol 2007, 9:523-530.
-
(2007)
Nat Cell Biol
, vol.9
, pp. 523-530
-
-
Mara, A.1
Schroeder, J.2
Chalouni, C.3
Holley, S.A.4
-
33
-
-
0030976083
-
Maintenance of somite borders in mice requires the Delta homologue Dll1.
-
Hrabe de Angelis M, McIntyre II, J, Gossler A. Maintenance of somite borders in mice requires the Delta homologue Dll1. Nature 1997, 386:717-721.
-
(1997)
Nature
, vol.386
, pp. 717-721
-
-
Hrabe de Angelis, M.1
McIntyre, J.2
Gossler, A.3
-
34
-
-
25444518441
-
Involvement of SIP1 in positioning of somite boundaries in the mouse embryo.
-
Maruhashi M, Van de Putte T, Huylebroeck D, Kondoh H, Higashi Y. Involvement of SIP1 in positioning of somite boundaries in the mouse embryo. Dev Dyn 2005, 234:332-338.
-
(2005)
Dev Dyn
, vol.234
, pp. 332-338
-
-
Maruhashi, M.1
Van de Putte, T.2
Huylebroeck, D.3
Kondoh, H.4
Higashi, Y.5
-
35
-
-
0032504991
-
Waves of mouse Lunatic fringe expression, in four-hour cycles at two-hour intervals, precede somite boundary formation.
-
Forsberg H, Crozet F, Brown NA. Waves of mouse Lunatic fringe expression, in four-hour cycles at two-hour intervals, precede somite boundary formation. Curr Biol 1998, 8:1027-1030.
-
(1998)
Curr Biol
, vol.8
, pp. 1027-1030
-
-
Forsberg, H.1
Crozet, F.2
Brown, N.A.3
-
36
-
-
13144297173
-
The lunatic fringe gene is a target of the molecular clock linked to somite segmentation in avian embryos.
-
McGrew MJ, Dale JK, Fraboulet S, Pourquié O. The lunatic fringe gene is a target of the molecular clock linked to somite segmentation in avian embryos. Curr Biol 1998, 8:979-982.
-
(1998)
Curr Biol
, vol.8
, pp. 979-982
-
-
McGrew, M.J.1
Dale, J.K.2
Fraboulet, S.3
Pourquié, O.4
-
37
-
-
0033104404
-
Dynamic expression of lunatic fringe suggests a link between notch signaling and an autonomous cellular oscillator driving somite segmentation.
-
Aulehla A, Johnson RL. Dynamic expression of lunatic fringe suggests a link between notch signaling and an autonomous cellular oscillator driving somite segmentation. Dev Biol 1999, 207:49-61.
-
(1999)
Dev Biol
, vol.207
, pp. 49-61
-
-
Aulehla, A.1
Johnson, R.L.2
-
38
-
-
0033528998
-
Interaction between Notch signalling and Lunatic fringe during somite boundary formation in the mouse.
-
del Barco Barrantes I, Elia AJ, Wünsch K, Hrabe de Angelis MH, Mak TW, Rossant J, Conlon RA, Gossler A, de la Pompa JL. Interaction between Notch signalling and Lunatic fringe during somite boundary formation in the mouse. Curr Boil 1999, 9:470-480.
-
(1999)
Curr Boil
, vol.9
, pp. 470-480
-
-
del Barco Barrantes, I.1
Elia, A.J.2
Wünsch, K.3
Hrabe de Angelis, M.H.4
Mak, T.W.5
Rossant, J.6
Conlon, R.A.7
Gossler, A.8
de la Pompa, J.L.9
-
39
-
-
0037448536
-
Periodic Notch inhibition by Lunatic Fringe underlies the chick segmentation clock.
-
Dale JK, Maroto M, Dequeant ML, Malapert P, McGrew M, Pourquié O. Periodic Notch inhibition by Lunatic Fringe underlies the chick segmentation clock. Nature 2003, 421:275-278.
-
(2003)
Nature
, vol.421
, pp. 275-278
-
-
Dale, J.K.1
Maroto, M.2
Dequeant, M.L.3
Malapert, P.4
McGrew, M.5
Pourquié, O.6
-
40
-
-
0032560814
-
lunatic fringe is an essential mediator of somite segmentation and patterning.
-
Evrard YA, Lun Y, Aulehla A, Gan L, Johnson RL. lunatic fringe is an essential mediator of somite segmentation and patterning. Nature 1998, 394:377-381.
-
(1998)
Nature
, vol.394
, pp. 377-381
-
-
Evrard, Y.A.1
Lun, Y.2
Aulehla, A.3
Gan, L.4
Johnson, R.L.5
-
41
-
-
0032560766
-
Defects in somite formation in lunatic fringe-deficient mice.
-
Zhang N, Gridley T. Defects in somite formation in lunatic fringe-deficient mice. Nature 1998, 394:374-377.
-
(1998)
Nature
, vol.394
, pp. 374-377
-
-
Zhang, N.1
Gridley, T.2
-
42
-
-
0037380655
-
Transcriptional oscillation of Lunatic fringe is essential for somitogenesis.
-
Serth K, Schuster-Gossler K, Cordes R, Gossler A. Transcriptional oscillation of Lunatic fringe is essential for somitogenesis. Genes Dev 2003, 17:912-925.
-
(2003)
Genes Dev
, vol.17
, pp. 912-925
-
-
Serth, K.1
Schuster-Gossler, K.2
Cordes, R.3
Gossler, A.4
-
43
-
-
42149133151
-
Oscillatory lunatic fringe activity is crucial for segmentation of the anterior but not posterior skeleton.
-
Shifley ET, Vanhorn KM, Perez-Balaguer A, Franklin JD, Weinstein M, Cole SE. Oscillatory lunatic fringe activity is crucial for segmentation of the anterior but not posterior skeleton. Development 2008, 135:899-908.
-
(2008)
Development
, vol.135
, pp. 899-908
-
-
Shifley, E.T.1
Vanhorn, K.M.2
Perez-Balaguer, A.3
Franklin, J.D.4
Weinstein, M.5
Cole, S.E.6
-
44
-
-
71049155007
-
Differential axial requirements for lunatic fringe and Hes7 transcription during mouse somitogenesis.
-
Stauber M, Sachidanandan C, Morgenstern C, Ish-Horowicz D. Differential axial requirements for lunatic fringe and Hes7 transcription during mouse somitogenesis. PLoS One 2009, 4:e7996.
-
(2009)
PLoS One
, vol.4
-
-
Stauber, M.1
Sachidanandan, C.2
Morgenstern, C.3
Ish-Horowicz, D.4
-
45
-
-
17844390391
-
Analysis of Notch function in presomitic mesoderm suggests a γ-secretase-independent role for presenilins in somite differentiation.
-
Huppert SS, Ilagan MXG, De Strooper B, Kopan R. Analysis of Notch function in presomitic mesoderm suggests a γ-secretase-independent role for presenilins in somite differentiation. Dev Cell 2005, 8:677-688.
-
(2005)
Dev Cell
, vol.8
, pp. 677-688
-
-
Huppert, S.S.1
Ilagan, M.X.G.2
De Strooper, B.3
Kopan, R.4
-
46
-
-
19644371990
-
The Mesp2 transcription factor establishes segmental borders by suppressing Notch activity.
-
Morimoto M, Takahashi Y, Endo M, Saga Y. The Mesp2 transcription factor establishes segmental borders by suppressing Notch activity. Nature 2005, 435:354-359.
-
(2005)
Nature
, vol.435
, pp. 354-359
-
-
Morimoto, M.1
Takahashi, Y.2
Endo, M.3
Saga, Y.4
-
47
-
-
70349682625
-
Notch is a critical component of the mouse somitogenesis oscillator and is essential for the formation of the somites.
-
Ferjentsik Z, Hayashi S, Dale JK, Bessho Y, Herreman A, De Strooper B, del Monte G, de la Pompa JL, Maroto M. Notch is a critical component of the mouse somitogenesis oscillator and is essential for the formation of the somites. PLoS Genet 2009, 5:e1000662.
-
(2009)
PLoS Genet
, vol.5
-
-
Ferjentsik, Z.1
Hayashi, S.2
Dale, J.K.3
Bessho, Y.4
Herreman, A.5
De Strooper, B.6
del Monte, G.7
de la Pompa, J.L.8
Maroto, M.9
-
48
-
-
0035214904
-
Fgf/MAPK signalling is a crucial positional cue in somite boundary formation.
-
Sawada A, Shinya M, Jiang Y-J, Kawakami A, Kuroiwa A, Takeda H. Fgf/MAPK signalling is a crucial positional cue in somite boundary formation. Development 2001, 128:4873-4880.
-
(2001)
Development
, vol.128
, pp. 4873-4880
-
-
Sawada, A.1
Shinya, M.2
Jiang, Y.-J.3
Kawakami, A.4
Kuroiwa, A.5
Takeda, H.6
-
49
-
-
23844468774
-
Control of the segmentation process by graded MAPK/ERK activation in the chick embryo.
-
Delfini M-C, Dubrulle J, Malapert P, Chal J, Pourquié O. Control of the segmentation process by graded MAPK/ERK activation in the chick embryo. Proc Natl Acad Sci USA 2005, 102:11343-11348.
-
(2005)
Proc Natl Acad Sci USA
, vol.102
, pp. 11343-11348
-
-
Delfini, M.-C.1
Dubrulle, J.2
Malapert, P.3
Chal, J.4
Pourquié, O.5
-
50
-
-
33845444174
-
A complex oscillating network of signaling genes underlies the mouse segmentation clock.
-
Dequéant M-L, Glynn E, Gaudenz K, Wahl M, Chen J, Mushegian A, Pourquié O. A complex oscillating network of signaling genes underlies the mouse segmentation clock. Science 2006, 314:1595-1598.
-
(2006)
Science
, vol.314
, pp. 1595-1598
-
-
Dequéant, M.-L.1
Glynn, E.2
Gaudenz, K.3
Wahl, M.4
Chen, J.5
Mushegian, A.6
Pourquié, O.7
-
51
-
-
37249044796
-
FGF signaling acts upstream of the NOTCH and WNT signaling pathways to control segmentation clock oscillations in mouse somitogenesis.
-
Wahl MB, Deng C, Lewandoski M, Pourquié O. FGF signaling acts upstream of the NOTCH and WNT signaling pathways to control segmentation clock oscillations in mouse somitogenesis. Development 2007, 134:4033-4041.
-
(2007)
Development
, vol.134
, pp. 4033-4041
-
-
Wahl, M.B.1
Deng, C.2
Lewandoski, M.3
Pourquié, O.4
-
52
-
-
0036065035
-
Clock regulatory elements control cyclic expression of Lunatic fringe during somitogenesis.
-
Cole SE, Levorse JM, Tilghman SM, Vogt TF. Clock regulatory elements control cyclic expression of Lunatic fringe during somitogenesis. Dev Cell 2002, 3:75-84.
-
(2002)
Dev Cell
, vol.3
, pp. 75-84
-
-
Cole, S.E.1
Levorse, J.M.2
Tilghman, S.M.3
Vogt, T.F.4
-
53
-
-
0036065333
-
Periodic Lunatic fringe expression is controlled during segmentation by a cyclic transcriptional enhancer responsive to notch signaling.
-
Morales AV, Yasuda Y, Ish-Horowicz D. Periodic Lunatic fringe expression is controlled during segmentation by a cyclic transcriptional enhancer responsive to notch signaling. Dev Cell 2002, 3:63-74.
-
(2002)
Dev Cell
, vol.3
, pp. 63-74
-
-
Morales, A.V.1
Yasuda, Y.2
Ish-Horowicz, D.3
-
54
-
-
77952171393
-
Emergence of traveling waves in the zebrafish segmentation clock.
-
Ishimatsu K, Takamatsu A, Takeda H. Emergence of traveling waves in the zebrafish segmentation clock. Development 2010, 137:1595-1599.
-
(2010)
Development
, vol.137
, pp. 1595-1599
-
-
Ishimatsu, K.1
Takamatsu, A.2
Takeda, H.3
-
55
-
-
0029595271
-
Targeted disruption of mammalian hairy and Enhancer of split homolog-1 (HES-1) leads to up-regulation of neural helix-loop-helix factors, premature neurogenesis, and severe neural tube defects.
-
Ishibashi M, Ang SL, Shiota K, Nakanishi S, Kageyama R, Guillemot F. Targeted disruption of mammalian hairy and Enhancer of split homolog-1 (HES-1) leads to up-regulation of neural helix-loop-helix factors, premature neurogenesis, and severe neural tube defects. Genes Dev 1995, 9:3136-3148.
-
(1995)
Genes Dev
, vol.9
, pp. 3136-3148
-
-
Ishibashi, M.1
Ang, S.L.2
Shiota, K.3
Nakanishi, S.4
Kageyama, R.5
Guillemot, F.6
-
56
-
-
41549140462
-
Oscillations in notch signaling regulate maintenance of neural progenitors.
-
Shimojo H, Ohtsuka T, Kageyama R. Oscillations in notch signaling regulate maintenance of neural progenitors. Neuron 2008, 58:52-64.
-
(2008)
Neuron
, vol.58
, pp. 52-64
-
-
Shimojo, H.1
Ohtsuka, T.2
Kageyama, R.3
-
57
-
-
0037174669
-
Oscillatory expression of the bHLH factor Hes1 regulated by a negative feedback loop.
-
Hirata H, Yoshiura S, Ohtsuka T, Bessho Y, Harada T, Yoshikawa K, Kageyama R. Oscillatory expression of the bHLH factor Hes1 regulated by a negative feedback loop. Science 2002, 298:840-843.
-
(2002)
Science
, vol.298
, pp. 840-843
-
-
Hirata, H.1
Yoshiura, S.2
Ohtsuka, T.3
Bessho, Y.4
Harada, T.5
Yoshikawa, K.6
Kageyama, R.7
-
58
-
-
42049116557
-
FGF induces oscillations of Hes1 expression and Ras/ERK activation.
-
Nakayama K, Satoh T, Igari A, Kageyama R, Nishida E. FGF induces oscillations of Hes1 expression and Ras/ERK activation. Curr Biol 2008, 18:R332-R334.
-
(2008)
Curr Biol
, vol.18
-
-
Nakayama, K.1
Satoh, T.2
Igari, A.3
Kageyama, R.4
Nishida, E.5
-
59
-
-
0037344080
-
Wnt3a plays a major role in the segmentation clock controlling somitogenesis.
-
Aulehla A, Wehrle C, Brand-Saberi B, Kemler R, Gossler A, Kanzler B, Herrmann BG. Wnt3a plays a major role in the segmentation clock controlling somitogenesis. Dev Cell 2003, 4:395-406.
-
(2003)
Dev Cell
, vol.4
, pp. 395-406
-
-
Aulehla, A.1
Wehrle, C.2
Brand-Saberi, B.3
Kemler, R.4
Gossler, A.5
Kanzler, B.6
Herrmann, B.G.7
-
60
-
-
38849137768
-
A beta-catenin gradient links the clock and wavefront systems in mouse embryo segmentation.
-
Aulehla A, Wiegraebe W, Baubet V, Wahl MB, Deng C, Taketo M, Lewandoski M, Pourquié O. A beta-catenin gradient links the clock and wavefront systems in mouse embryo segmentation. Nat Cell Biol 2008, 10:186-193.
-
(2008)
Nat Cell Biol
, vol.10
, pp. 186-193
-
-
Aulehla, A.1
Wiegraebe, W.2
Baubet, V.3
Wahl, M.B.4
Deng, C.5
Taketo, M.6
Lewandoski, M.7
Pourquié, O.8
-
61
-
-
38849171709
-
Wnt3a/β-catenin signaling controls posterior body development by coordinating mesoderm formation and segmentation.
-
Dunty WC, Biris KK, Chalamalasetty RB, Taketo MM, Lewandoski M, Yamaguchi TP. Wnt3a/β-catenin signaling controls posterior body development by coordinating mesoderm formation and segmentation. Development 2008, 135:85-94.
-
(2008)
Development
, vol.135
, pp. 85-94
-
-
Dunty, W.C.1
Biris, K.K.2
Chalamalasetty, R.B.3
Taketo, M.M.4
Lewandoski, M.5
Yamaguchi, T.P.6
-
62
-
-
0028157392
-
Wnt-3a regulates somite and tailbud formation in the mouse embryo.
-
Takada S, Stark KL, Shea MJ, Vassileva G, McMahon JA, McMahon AP. Wnt-3a regulates somite and tailbud formation in the mouse embryo. Genes Dev 1994, 8:174-189.
-
(1994)
Genes Dev
, vol.8
, pp. 174-189
-
-
Takada, S.1
Stark, K.L.2
Shea, M.J.3
Vassileva, G.4
McMahon, J.A.5
McMahon, A.P.6
-
63
-
-
69249215528
-
The cyclic gene Hes1 contributes to diverse differentiation responses of embryonic stem cells.
-
Kobayashi T, Mizuno H, Imayoshi I, Furusawa C, Shirahige K, Kageyama R. The cyclic gene Hes1 contributes to diverse differentiation responses of embryonic stem cells. Genes Dev 2009, 23:1870-1875.
-
(2009)
Genes Dev
, vol.23
, pp. 1870-1875
-
-
Kobayashi, T.1
Mizuno, H.2
Imayoshi, I.3
Furusawa, C.4
Shirahige, K.5
Kageyama, R.6
-
64
-
-
0030850751
-
Mesp2: a novel mouse gene expressed in the presegmented mesoderm and essential for segmentation initiation.
-
Saga Y, Hata N, Koseki H, Taketo MM. Mesp2: a novel mouse gene expressed in the presegmented mesoderm and essential for segmentation initiation. Genes Dev 1997, 11:1827-1839.
-
(1997)
Genes Dev
, vol.11
, pp. 1827-1839
-
-
Saga, Y.1
Hata, N.2
Koseki, H.3
Taketo, M.M.4
-
65
-
-
0017122064
-
A clock and wavefront model for control of the number of repeated structures during animal morphogenesis.
-
Cooke J, Zeeman EC. A clock and wavefront model for control of the number of repeated structures during animal morphogenesis. J Theor Biol 1976, 58:455-476.
-
(1976)
J Theor Biol
, vol.58
, pp. 455-476
-
-
Cooke, J.1
Zeeman, E.C.2
-
66
-
-
0032510049
-
Three neural tubes in mouse embryos with mutations in the T-box gene Tbx6.
-
Chapman DL, Papaioannou VE. Three neural tubes in mouse embryos with mutations in the T-box gene Tbx6. Nature 1998, 391:695-697.
-
(1998)
Nature
, vol.391
, pp. 695-697
-
-
Chapman, D.L.1
Papaioannou, V.E.2
-
67
-
-
33644866845
-
Tbx6-mediated Notch signaling controls somite-specific Mesp2 expression.
-
Yasuhiko Y, Haraguchi S, Kitajima S, Takahashi Y, Kanno J, Saga Y. Tbx6-mediated Notch signaling controls somite-specific Mesp2 expression. Proc Natl Acad Sci USA 2006, 103:3651-3656.
-
(2006)
Proc Natl Acad Sci USA
, vol.103
, pp. 3651-3656
-
-
Yasuhiko, Y.1
Haraguchi, S.2
Kitajima, S.3
Takahashi, Y.4
Kanno, J.5
Saga, Y.6
-
68
-
-
50649117174
-
Mesp2 and Tbx6 cooperatively create periodic patterns coupled with the clock machinery during mouse somitogenesis.
-
Oginuma M, Niwa Y, Chapman DL, Saga Y. Mesp2 and Tbx6 cooperatively create periodic patterns coupled with the clock machinery during mouse somitogenesis. Development 2008, 135:2555-2562.
-
(2008)
Development
, vol.135
, pp. 2555-2562
-
-
Oginuma, M.1
Niwa, Y.2
Chapman, D.L.3
Saga, Y.4
-
69
-
-
0842264188
-
fgf8 mRNA decay establishes a gradient that couples axial elongation to patterning in the vertebrate embryo.
-
Dubrulle J, Pourquié O. fgf8 mRNA decay establishes a gradient that couples axial elongation to patterning in the vertebrate embryo. Nature 2004, 427:419-422.
-
(2004)
Nature
, vol.427
, pp. 419-422
-
-
Dubrulle, J.1
Pourquié, O.2
-
70
-
-
0035958586
-
FGF signaling controls somite boundary position and regulates segmentation clock control of spatiotemporal Hox gene activation.
-
Dubrulle J, McGrew MJ, Pourquié O. FGF signaling controls somite boundary position and regulates segmentation clock control of spatiotemporal Hox gene activation. Cell 2001, 106:219-232.
-
(2001)
Cell
, vol.106
, pp. 219-232
-
-
Dubrulle, J.1
McGrew, M.J.2
Pourquié, O.3
-
71
-
-
50049093489
-
Noncyclic Notch activity in the presomitic mesoderm demonstrates uncoupling of somite compartmentalization and boundary formation.
-
Feller J, Schneider A, Schuster-Gossler K, Gossler A. Noncyclic Notch activity in the presomitic mesoderm demonstrates uncoupling of somite compartmentalization and boundary formation. Genes Dev 2008, 22:2166-2171.
-
(2008)
Genes Dev
, vol.22
, pp. 2166-2171
-
-
Feller, J.1
Schneider, A.2
Schuster-Gossler, K.3
Gossler, A.4
-
72
-
-
18844427286
-
Zebrafish Hairy/Enhancer of split protein links FGF signaling to cyclic gene expression in the periodic segmentation of somites
-
Kawamura A, Koshida S, Hijikata H, Sakaguchi T, Kondoh H, Takada S. Zebrafish Hairy/Enhancer of split protein links FGF signaling to cyclic gene expression in the periodic segmentation of somites.Genes Dev 2005, 19:1156-1161.
-
(2005)
Genes Dev
, vol.19
, pp. 1156-1161
-
-
Kawamura, A.1
Koshida, S.2
Hijikata, H.3
Sakaguchi, T.4
Kondoh, H.5
Takada, S.6
-
73
-
-
79957538412
-
Segment number and axial identity in a segmentation clock period mutant.
-
Schröter C, Oates AC. Segment number and axial identity in a segmentation clock period mutant. Curr Biol 2010, 20:1254-1258.
-
(2010)
Curr Biol
, vol.20
, pp. 1254-1258
-
-
Schröter, C.1
Oates, A.C.2
-
74
-
-
67349121585
-
Interfering with Wnt signalling alters the periodicity of the segmentation clock.
-
Gibb S, Zagorska A, Melton K, Tenin G, Vacca I, Trainor P, Maroto M, Dale JK. Interfering with Wnt signalling alters the periodicity of the segmentation clock. Dev Biol 2009, 330:21-31.
-
(2009)
Dev Biol
, vol.330
, pp. 21-31
-
-
Gibb, S.1
Zagorska, A.2
Melton, K.3
Tenin, G.4
Vacca, I.5
Trainor, P.6
Maroto, M.7
Dale, J.K.8
-
75
-
-
51149102891
-
Intron length increases oscillatory periods of gene expression in animal cells
-
Swinburne IA, Miguez DG, Landgraf D, Silver PA. Intron length increases oscillatory periods of gene expression in animal cells.Genes Dev 2008, 22: 2342-2346.
-
(2008)
Genes Dev
, vol.22
, pp. 2342-2346
-
-
Swinburne, I.A.1
Miguez, D.G.2
Landgraf, D.3
Silver, P.A.4
-
76
-
-
42349117524
-
Segmental patterning of the vertebrate embryonic axis.
-
Dequéant ML, Pourquié O. Segmental patterning of the vertebrate embryonic axis. Nat Rev Genet 2008, 9:370-382.
-
(2008)
Nat Rev Genet
, vol.9
, pp. 370-382
-
-
Dequéant, M.L.1
Pourquié, O.2
-
77
-
-
34248139757
-
The Hes gene family: repressors and oscillators that orchestrate embryogenesis.
-
Kageyama R, Ohtsuka T, Kobayashi T. The Hes gene family: repressors and oscillators that orchestrate embryogenesis. Development 2007, 134:1243-1251.
-
(2007)
Development
, vol.134
, pp. 1243-1251
-
-
Kageyama, R.1
Ohtsuka, T.2
Kobayashi, T.3
-
78
-
-
66249094051
-
Notch signaling, the segmentation clock, and the patterning of vertebrate somites.
-
Lewis J, Hanisch A, Holder M. Notch signaling, the segmentation clock, and the patterning of vertebrate somites. J Biol 2009, 8:44.
-
(2009)
J Biol
, vol.8
, pp. 44
-
-
Lewis, J.1
Hanisch, A.2
Holder, M.3
-
79
-
-
36248977654
-
Oscillators and the emergence of tissue organization during zebrafish somitogenesis.
-
Mara A, Holley SA. Oscillators and the emergence of tissue organization during zebrafish somitogenesis. Trends Cell Biol 2007, 17:593-599.
-
(2007)
Trends Cell Biol
, vol.17
, pp. 593-599
-
-
Mara, A.1
Holley, S.A.2
-
80
-
-
67651083469
-
Quantitative approaches in developmental biology.
-
Oates AC, Gorfinkiel N, González-Gaitán M, Heisenberg C-P. Quantitative approaches in developmental biology. Nat Rev Genet 2009, 10:517-530.
-
(2009)
Nat Rev Genet
, vol.10
, pp. 517-530
-
-
Oates, A.C.1
Gorfinkiel, N.2
González-Gaitán, M.3
Heisenberg, C.-P.4
|