-
2
-
-
0002935122
-
Combining support vector and mathematical programming methods for classification
-
MIT Press, Cambridge
-
K.P. Bennett, Combining support vector and mathematical programming methods for classification, in: Advances in Kernel Methods: Support Vector Learning, MIT Press, Cambridge, 1999, pp. 307-326.
-
(1999)
Advances in Kernel Methods: Support Vector Learning
, pp. 307-326
-
-
Bennett, K.P.1
-
5
-
-
77953138700
-
New clustering algorithms for the support vector machine based hierarchical classification
-
H. Cevikalp New clustering algorithms for the support vector machine based hierarchical classification Pattern Recognition Letters 31 2010 1285 1291
-
(2010)
Pattern Recognition Letters
, vol.31
, pp. 1285-1291
-
-
Cevikalp, H.1
-
9
-
-
78650309274
-
Manifold based local classifiers linear and nonlinear approaches
-
H. Cevikalp, D. Larlus, M. Neamtu, B. Triggs, and F. Jurie Manifold based local classifiers linear and nonlinear approaches Journal of Signal Processing Systems 61 1 2010 61 73
-
(2010)
Journal of Signal Processing Systems
, vol.61
, Issue.1
, pp. 61-73
-
-
Cevikalp, H.1
Larlus, D.2
Neamtu, M.3
Triggs, B.4
Jurie, F.5
-
10
-
-
78650309623
-
Large margin classifiers based on affine hulls
-
H. Cevikalp, B. Triggs, H.S. Yavuz, Y. Kucuk, M. Kucuk, and A. Barkana Large margin classifiers based on affine hulls Neurocomputing 73 2010 3160 3168
-
(2010)
Neurocomputing
, vol.73
, pp. 3160-3168
-
-
Cevikalp, H.1
Triggs, B.2
Yavuz, H.S.3
Kucuk, Y.4
Kucuk, M.5
Barkana, A.6
-
14
-
-
34250776571
-
R1-pca: Rotational invariant l1-norm principal component analysis for robust subspace factorization
-
C. Ding, D. Zhou, X. He, H. Zha, R1-pca: rotational invariant l1-norm principal component analysis for robust subspace factorization, in: International Conference on Machine Learning, 2006.
-
(2006)
International Conference on Machine Learning
-
-
Ding, C.1
Zhou, D.2
He, X.3
Zha, H.4
-
18
-
-
0036161259
-
Gene selection for cancer classification using support vector machines
-
I. Guyon, J. Weston, S. Barnhill, and V. Vapnik Gene selection for cancer classification using support vector machines Machine Learning 46 2002 389 422
-
(2002)
Machine Learning
, vol.46
, pp. 389-422
-
-
Guyon, I.1
Weston, J.2
Barnhill, S.3
Vapnik, V.4
-
20
-
-
0002714543
-
Making large-scale support vector machine learning practical
-
MIT Press, Cambridge
-
T. Joachims, Making large-scale support vector machine learning practical, in: Advances in Kernel Methods: Support Vector Learning, MIT Press, Cambridge, 1999, pp. 185-208.
-
(1999)
Advances in Kernel Methods: Support Vector Learning
, pp. 185-208
-
-
Joachims, T.1
-
25
-
-
33749247281
-
Domain described support vector classifier for multi-classification problems
-
D. Lee, and J. Lee Domain described support vector classifier for multi-classification problems Pattern Recognition 40 2006 41 51
-
(2006)
Pattern Recognition
, vol.40
, pp. 41-51
-
-
Lee, D.1
Lee, J.2
-
26
-
-
18244422049
-
Video-based face recognition using probabilistic appearance manifolds
-
K.C. Lee, J. Mo, M.H. Yang, D. Kriegman, Video-based face recognition using probabilistic appearance manifolds, in: IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2003.
-
(2003)
IEEE Computer Society Conference on Computer Vision and Pattern Recognition
-
-
Lee, K.C.1
Mo, J.2
Yang, M.H.3
Kriegman, D.4
-
27
-
-
3042535216
-
Distinctive image features from scale invariant keypoints
-
D. Lowe Distinctive image features from scale invariant keypoints International Journal of Computer Vision 60 2004 91 110
-
(2004)
International Journal of Computer Vision
, vol.60
, pp. 91-110
-
-
Lowe, D.1
-
30
-
-
0004171986
-
-
Computer Vision Center, Barcelona, Spain
-
A.M. Martinez, R. Benavente, The AR Face Database, Technical Report, Computer Vision Center, Barcelona, Spain, 1998.
-
(1998)
The AR Face Database, Technical Report
-
-
Martinez, A.M.1
Benavente, R.2
-
31
-
-
84898970836
-
Kernel PCA and de-noising in feature spaces
-
S. Mika, B. Schölkopf, A. Smola, K.-R. Müller, M. Scholz, G. Ratsch, Kernel PCA and de-noising in feature spaces, in: Neural Information Processing Systems (NIPS), 1999.
-
(1999)
Neural Information Processing Systems (NIPS)
-
-
S. Mika1
-
33
-
-
84873199954
-
-
EECS Department, University of California, Berkeley
-
S. Narayanan, Support Vector Machine Approximation using Kernel PCA, Technical Report, EECS Department, University of California, Berkeley, 2009.
-
(2009)
Support Vector Machine Approximation Using Kernel PCA, Technical Report
-
-
Narayanan, S.1
-
34
-
-
0003120218
-
Fast training of support vector machines using sequential minimal optimization
-
MIT Press, Cambridge
-
J. Platt, Fast training of support vector machines using sequential minimal optimization, in: Advances in Kernel Methods: Support Vector Learning, MIT Press, Cambridge, 1999, pp. 185-208.
-
(1999)
Advances in Kernel Methods: Support Vector Learning
, pp. 185-208
-
-
Platt, J.1
-
36
-
-
0031272926
-
Comparing support vector machines with Gaussian kernels to Radial Basis Function classifiers
-
B. Schölkopf, K.-K. Sung, C.J.C. Burges, F. Girosi, P. Niyogi, T. Poggio, and V. Vapnik Comparing support vector machines with Gaussian kernels to Radial Basis Function classifiers IEEE Transactions on Signal Processing 45 1997 2758 2765
-
(1997)
IEEE Transactions on Signal Processing
, vol.45
, pp. 2758-2765
-
-
Schölkopf, B.1
Sung, K.-K.2
Burges, C.J.C.3
Girosi, F.4
Niyogi, P.5
Poggio, T.6
Vapnik, V.7
-
37
-
-
0347243182
-
Nonlinear component analysis as a kernel eigenvalue problem
-
B. Schölkopf, A.J. Smola, and K.R. Müller Nonlinear component analysis as a kernel eigenvalue problem Neural Computation 10 1998 1299 1319
-
(1998)
Neural Computation
, vol.10
, pp. 1299-1319
-
-
Schölkopf, B.1
Smola, A.J.2
Müller, K.R.3
-
38
-
-
0032594954
-
Input space versus feature space in kernel-based methods
-
B. Schölkopf, S. Mika, C.J.C. Burges, P. Knirsch, K.R. Müller, G. Ratsch, and A.J. Smola Input space versus feature space in kernel-based methods IEEE Transactions on Neural Networks 10 1999 1000 1017
-
(1999)
IEEE Transactions on Neural Networks
, vol.10
, pp. 1000-1017
-
-
Schölkopf, B.1
Mika, S.2
Burges, C.J.C.3
Knirsch, P.4
Müller, K.R.5
Ratsch, G.6
Smola, A.J.7
-
42
-
-
47849086090
-
A sequential quadratically constrained quadratic programming method with an augmented Lagrangian line search function
-
C.-M. Tang, and J.-B. Jian A sequential quadratically constrained quadratic programming method with an augmented Lagrangian line search function Journal of Computational and Applied Mathematics 220 2008 527 547
-
(2008)
Journal of Computational and Applied Mathematics
, vol.220
, pp. 527-547
-
-
Tang, C.-M.1
Jian, J.-B.2
-
43
-
-
0942266514
-
Support vector data description
-
D.M.J. Tax, and R.P.W. Duin Support vector data description Machine Learning 54 2004 45 66
-
(2004)
Machine Learning
, vol.54
, pp. 45-66
-
-
Tax, D.M.J.1
Duin, R.P.W.2
-
45
-
-
33847323552
-
A robust algorithm for quadratic optimization under quadratic constraints
-
H. Tuy, and N.T. Hoai-Phuong A robust algorithm for quadratic optimization under quadratic constraints Journal of Global Optimization 37 2007 557 569
-
(2007)
Journal of Global Optimization
, vol.37
, pp. 557-569
-
-
Tuy, H.1
Hoai-Phuong, N.T.2
-
50
-
-
33745328317
-
Pattern classification via single spheres
-
J. Wang, P. Neskovic, L.N. Cooper, Pattern classification via single spheres, in: Lecture Notes in Computer Science, vol. 3735/2005, 2005, pp. 241-252.
-
(2005)
Lecture Notes in Computer Science, Vol. 3735/2005
, pp. 241-252
-
-
Wang, J.1
Neskovic, P.2
Cooper, L.N.3
-
51
-
-
0036887673
-
Linear programming support vector machines
-
W. Zhou, L. Zhang, and L. Jiao Linear programming support vector machines Pattern Recognition 35 2002 2927 2936
-
(2002)
Pattern Recognition
, vol.35
, pp. 2927-2936
-
-
Zhou, W.1
Zhang, L.2
Jiao, L.3
|