메뉴 건너뛰기




Volumn 46, Issue 6, 2013, Pages 1523-1531

Hyperdisk based large margin classifier

Author keywords

Classification; Convex approximation; Hyperdisk; Kernel method; Large margin classifier; Support Vector Machine

Indexed keywords

BINARY CLASSIFICATION; CLASS MODELS; COMBINING BINARY CLASSIFIERS; CONVEX APPROXIMATION; CONVEX HULL; DATA SETS; FEATURE SPACE; HYPERDISK; KERNEL METHODS; KERNEL TRICK; LARGE MARGIN CLASSIFIERS; LINEAR CLASSIFIERS; MULTI-CLASS PROBLEMS; NONLINEAR FEATURES; QUADRATIC PROGRAMS; TRAINING SAMPLE;

EID: 84873111848     PISSN: 00313203     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.patcog.2012.11.004     Document Type: Article
Times cited : (24)

References (51)
  • 2
    • 0002935122 scopus 로고    scopus 로고
    • Combining support vector and mathematical programming methods for classification
    • MIT Press, Cambridge
    • K.P. Bennett, Combining support vector and mathematical programming methods for classification, in: Advances in Kernel Methods: Support Vector Learning, MIT Press, Cambridge, 1999, pp. 307-326.
    • (1999) Advances in Kernel Methods: Support Vector Learning , pp. 307-326
    • Bennett, K.P.1
  • 5
    • 77953138700 scopus 로고    scopus 로고
    • New clustering algorithms for the support vector machine based hierarchical classification
    • H. Cevikalp New clustering algorithms for the support vector machine based hierarchical classification Pattern Recognition Letters 31 2010 1285 1291
    • (2010) Pattern Recognition Letters , vol.31 , pp. 1285-1291
    • Cevikalp, H.1
  • 11
    • 34249753618 scopus 로고
    • Support vector networks
    • C. Cortes, and V. Vapnik Support vector networks Machine Learning 20 1995 273 297
    • (1995) Machine Learning , vol.20 , pp. 273-297
    • Cortes, C.1    Vapnik, V.2
  • 14
    • 34250776571 scopus 로고    scopus 로고
    • R1-pca: Rotational invariant l1-norm principal component analysis for robust subspace factorization
    • C. Ding, D. Zhou, X. He, H. Zha, R1-pca: rotational invariant l1-norm principal component analysis for robust subspace factorization, in: International Conference on Machine Learning, 2006.
    • (2006) International Conference on Machine Learning
    • Ding, C.1    Zhou, D.2    He, X.3    Zha, H.4
  • 15
    • 29144499905 scopus 로고    scopus 로고
    • Working set selection using second order information for training SVM
    • R.-E. Fan, P.-H. Chen, and C.-J. Lin Working set selection using second order information for training SVM Journal of Machine Learning Research 6 2005 1889 1918
    • (2005) Journal of Machine Learning Research , vol.6 , pp. 1889-1918
    • Fan, R.-E.1    Chen, P.-H.2    Lin, C.-J.3
  • 18
    • 0036161259 scopus 로고    scopus 로고
    • Gene selection for cancer classification using support vector machines
    • I. Guyon, J. Weston, S. Barnhill, and V. Vapnik Gene selection for cancer classification using support vector machines Machine Learning 46 2002 389 422
    • (2002) Machine Learning , vol.46 , pp. 389-422
    • Guyon, I.1    Weston, J.2    Barnhill, S.3    Vapnik, V.4
  • 20
    • 0002714543 scopus 로고    scopus 로고
    • Making large-scale support vector machine learning practical
    • MIT Press, Cambridge
    • T. Joachims, Making large-scale support vector machine learning practical, in: Advances in Kernel Methods: Support Vector Learning, MIT Press, Cambridge, 1999, pp. 185-208.
    • (1999) Advances in Kernel Methods: Support Vector Learning , pp. 185-208
    • Joachims, T.1
  • 25
    • 33749247281 scopus 로고    scopus 로고
    • Domain described support vector classifier for multi-classification problems
    • D. Lee, and J. Lee Domain described support vector classifier for multi-classification problems Pattern Recognition 40 2006 41 51
    • (2006) Pattern Recognition , vol.40 , pp. 41-51
    • Lee, D.1    Lee, J.2
  • 27
    • 3042535216 scopus 로고    scopus 로고
    • Distinctive image features from scale invariant keypoints
    • D. Lowe Distinctive image features from scale invariant keypoints International Journal of Computer Vision 60 2004 91 110
    • (2004) International Journal of Computer Vision , vol.60 , pp. 91-110
    • Lowe, D.1
  • 31
    • 84898970836 scopus 로고    scopus 로고
    • Kernel PCA and de-noising in feature spaces
    • S. Mika, B. Schölkopf, A. Smola, K.-R. Müller, M. Scholz, G. Ratsch, Kernel PCA and de-noising in feature spaces, in: Neural Information Processing Systems (NIPS), 1999.
    • (1999) Neural Information Processing Systems (NIPS)
    • S. Mika1
  • 34
    • 0003120218 scopus 로고    scopus 로고
    • Fast training of support vector machines using sequential minimal optimization
    • MIT Press, Cambridge
    • J. Platt, Fast training of support vector machines using sequential minimal optimization, in: Advances in Kernel Methods: Support Vector Learning, MIT Press, Cambridge, 1999, pp. 185-208.
    • (1999) Advances in Kernel Methods: Support Vector Learning , pp. 185-208
    • Platt, J.1
  • 37
    • 0347243182 scopus 로고    scopus 로고
    • Nonlinear component analysis as a kernel eigenvalue problem
    • B. Schölkopf, A.J. Smola, and K.R. Müller Nonlinear component analysis as a kernel eigenvalue problem Neural Computation 10 1998 1299 1319
    • (1998) Neural Computation , vol.10 , pp. 1299-1319
    • Schölkopf, B.1    Smola, A.J.2    Müller, K.R.3
  • 42
    • 47849086090 scopus 로고    scopus 로고
    • A sequential quadratically constrained quadratic programming method with an augmented Lagrangian line search function
    • C.-M. Tang, and J.-B. Jian A sequential quadratically constrained quadratic programming method with an augmented Lagrangian line search function Journal of Computational and Applied Mathematics 220 2008 527 547
    • (2008) Journal of Computational and Applied Mathematics , vol.220 , pp. 527-547
    • Tang, C.-M.1    Jian, J.-B.2
  • 43
    • 0942266514 scopus 로고    scopus 로고
    • Support vector data description
    • D.M.J. Tax, and R.P.W. Duin Support vector data description Machine Learning 54 2004 45 66
    • (2004) Machine Learning , vol.54 , pp. 45-66
    • Tax, D.M.J.1    Duin, R.P.W.2
  • 45
    • 33847323552 scopus 로고    scopus 로고
    • A robust algorithm for quadratic optimization under quadratic constraints
    • H. Tuy, and N.T. Hoai-Phuong A robust algorithm for quadratic optimization under quadratic constraints Journal of Global Optimization 37 2007 557 569
    • (2007) Journal of Global Optimization , vol.37 , pp. 557-569
    • Tuy, H.1    Hoai-Phuong, N.T.2
  • 46
    • 0030106462 scopus 로고    scopus 로고
    • Semidefinite programming
    • L. Vandenberghe, and S. Boyd Semidefinite programming SIAM Review 38 1996 49 95
    • (1996) SIAM Review , vol.38 , pp. 49-95
    • Vandenberghe, L.1    Boyd, S.2
  • 51
    • 0036887673 scopus 로고    scopus 로고
    • Linear programming support vector machines
    • W. Zhou, L. Zhang, and L. Jiao Linear programming support vector machines Pattern Recognition 35 2002 2927 2936
    • (2002) Pattern Recognition , vol.35 , pp. 2927-2936
    • Zhou, W.1    Zhang, L.2    Jiao, L.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.