메뉴 건너뛰기




Volumn , Issue , 2008, Pages 120-127

Nearest hyperdisk methods for high-dimensional classification

Author keywords

[No Author keywords available]

Indexed keywords

COMPUTATIONAL GEOMETRY; MACHINE LEARNING; NEAREST NEIGHBOR SEARCH; SAMPLING; CLASSIFIERS; COMPUTATIONAL COMPLEXITY; ROBOT LEARNING;

EID: 56449118263     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1145/1390156.1390172     Document Type: Conference Paper
Times cited : (43)

References (17)
  • 1
    • 0008202233 scopus 로고    scopus 로고
    • Duality and geometry in svm classifiers
    • Bennett, K. P., & Bredensteiner, E. J. (2000). Duality and geometry in svm classifiers. ICML.
    • (2000) ICML
    • Bennett, K.P.1    Bredensteiner, E.J.2
  • 5
    • 0035440011 scopus 로고    scopus 로고
    • The common vector approach and its relation to principal component analysis
    • Gulmezoglu, M. B., Dzhafarov, V., & Barkana, A. (2001). The common vector approach and its relation to principal component analysis. IEEE Trans. Speech Audio Proc., 9, 655-662.
    • (2001) IEEE Trans. Speech Audio Proc , vol.9 , pp. 655-662
    • Gulmezoglu, M.B.1    Dzhafarov, V.2    Barkana, A.3
  • 9
    • 3042535216 scopus 로고    scopus 로고
    • Distinctive image features from scale-invariant keypoints
    • Lowe, D. (2004). Distinctive image features from scale-invariant keypoints. International Journal of Computer Vision, 60, 91-110.
    • (2004) International Journal of Computer Vision , vol.60 , pp. 91-110
    • Lowe, D.1
  • 10
    • 56449108994 scopus 로고    scopus 로고
    • Nearest convex hull classification
    • Econometric Institute and Erasmus Research Institute of Management
    • Nalbantov, G. I., Groenen, P. J. F., & Bioch, J. C. (2007). Nearest convex hull classification (Technical Report). Econometric Institute and Erasmus Research Institute of Management.
    • (2007) Technical Report
    • Nalbantov, G.I.1    Groenen, P.J.F.2    Bioch, J.C.3
  • 11
    • 0034704222 scopus 로고    scopus 로고
    • Nonlinear dimensionality reduction by locally linear embedding
    • Roweis, S. T., & Saul, L. K. (2000). Nonlinear dimensionality reduction by locally linear embedding. Science, 290, 2323-2326.
    • (2000) Science , vol.290 , pp. 2323-2326
    • Roweis, S.T.1    Saul, L.K.2
  • 12
    • 0347243182 scopus 로고    scopus 로고
    • Nonlinear component analysis as a kernel eigenvalue problem
    • Schölkopf, B., Smola, A. J., & Muller, K. R. (1998). Nonlinear component analysis as a kernel eigenvalue problem. Neural Computation, 10, 1299-1319.
    • (1998) Neural Computation , vol.10 , pp. 1299-1319
    • Schölkopf, B.1    Smola, A.J.2    Muller, K.R.3
  • 14
    • 0942266514 scopus 로고    scopus 로고
    • Support vector data description
    • Tax, D. M. J., & Duin, R. P. W. (2004). Support vector data description. Machine Learning, 54, 45-66.
    • (2004) Machine Learning , vol.54 , pp. 45-66
    • Tax, D.M.J.1    Duin, R.P.W.2
  • 15
    • 33748149588 scopus 로고    scopus 로고
    • Learning non-linear image manifolds by global alignment of local linear models
    • Verbeek, J. (2006). Learning non-linear image manifolds by global alignment of local linear models. IEEE Transactions on PAMI, 28, 1236-1250.
    • (2006) IEEE Transactions on PAMI , vol.28 , pp. 1236-1250
    • Verbeek, J.1
  • 16
    • 11144330519 scopus 로고    scopus 로고
    • K-local hyperplane and convex distance nearest neighbor algorithms
    • Vincent, P., & Bengio, Y. (2001). K-local hyperplane and convex distance nearest neighbor algorithms. NIPS.
    • (2001) NIPS
    • Vincent, P.1    Bengio, Y.2
  • 17
    • 33745328317 scopus 로고    scopus 로고
    • Pattern classification via single spheres
    • Wang, J., Neskovic, P., & Cooper, L. N. (2005). Pattern classification via single spheres. Discovery Science (pp. 241-252).
    • (2005) Discovery Science , pp. 241-252
    • Wang, J.1    Neskovic, P.2    Cooper, L.N.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.