메뉴 건너뛰기




Volumn 1, Issue , 2011, Pages 370-375

Large margin classifier based on hyperdisks

Author keywords

classification; convex hull; hyperdisk; kernel methods; large margin classifier; quadratic programming; support vector machines

Indexed keywords

CONVEX HULL; HYPERDISK; KERNEL METHODS; LARGE MARGIN CLASSIFIERS; SUPPORT VECTOR MACHINE (SVM);

EID: 84857812896     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/ICMLA.2011.86     Document Type: Conference Paper
Times cited : (5)

References (25)
  • 2
    • 0036161259 scopus 로고    scopus 로고
    • Gene selection for cancer classification using support vector machines
    • DOI 10.1023/A:1012487302797
    • I. Guyon, J. Weston, S. Barnhill, and V. Vapnik. Gene selection for cancer classification using support vector machines. Machine Learning, 46:389-422, 2002. (Pubitemid 34129977)
    • (2002) Machine Learning , vol.46 , Issue.1-3 , pp. 389-422
    • Guyon, I.1    Weston, J.2    Barnhill, S.3    Vapnik, V.4
  • 4
    • 34249753618 scopus 로고
    • Support vector networks
    • C. Cortes and V. Vapnik. Support vector networks. Machine Learning, 20:273-297, 1995.
    • (1995) Machine Learning , vol.20 , pp. 273-297
    • Cortes, C.1    Vapnik, V.2
  • 5
    • 0003120218 scopus 로고    scopus 로고
    • Fast training of support vector machines using sequential minimal optimization
    • MIT Press, Cambridge
    • J. Platt. Fast training of support vector machines using sequential minimal optimization. In Advances in Kernel Methods: Support Vector Learning, pages 185-208. MIT Press, Cambridge, 1999.
    • (1999) Advances in Kernel Methods: Support Vector Learning , pp. 185-208
    • Platt, J.1
  • 6
    • 0002714543 scopus 로고    scopus 로고
    • Making large-scale support vector machine learning practical
    • MIT Press, Cambridge
    • T. Joachims. Making large-scale support vector machine learning practical. In Advances in Kernel Methods: Support Vector Learning, pages 169-184. MIT Press, Cambridge, 1999.
    • (1999) Advances in Kernel Methods: Support Vector Learning , pp. 169-184
    • Joachims, T.1
  • 7
    • 29144499905 scopus 로고    scopus 로고
    • Working set selection using second order information for training support vector machines
    • R.-E. Fan, P.-H. Chen, and C.-J. Lin. Working set selection using second order information for training svm. Journal of Machine Learning Research, 6:1889-1918, 2005. (Pubitemid 41798130)
    • (2005) Journal of Machine Learning Research , vol.6 , pp. 1889-1918
    • Fan, R.-E.1    Chen, P.-H.2    Lin, C.-J.3
  • 9
    • 0008202233 scopus 로고    scopus 로고
    • Duality and geometry in svm classifiers
    • K. P. Bennett and E. J. Bredensteiner. Duality and geometry in svm classifiers. In ICML, 2000.
    • (2000) ICML
    • Bennett, K.P.1    Bredensteiner, E.J.2
  • 12
    • 11144330519 scopus 로고    scopus 로고
    • K-local hyperplane and convex distance nearest neighbor algorithms
    • P. Vincent and Y. Bengio. K-local hyperplane and convex distance nearest neighbor algorithms. In NIPS, 2001.
    • (2001) NIPS
    • Vincent, P.1    Bengio, Y.2
  • 15
    • 0035440011 scopus 로고    scopus 로고
    • The common vector approach and its relation to principal component analysis
    • DOI 10.1109/89.943343, PII S106366760107434X
    • M. B. Gulmezoglu, V. Dzhafarov, and A. Barkana. The common vector approach and its relation to principal component analysis. IEEE Trans. Speech Audio Proc., 9:655-662, 2001. (Pubitemid 32945712)
    • (2001) IEEE Transactions on Speech and Audio Processing , vol.9 , Issue.6 , pp. 655-662
    • Bilginer, G.M.1    Dzhafarov, V.2    Barkana, A.3
  • 16
    • 0942266514 scopus 로고    scopus 로고
    • Support vector data description
    • D. M. J. Tax and R. P. W. Duin. Support vector data description. Machine Learning, 54:45-66, 2004.
    • (2004) Machine Learning , vol.54 , pp. 45-66
    • Tax, D.M.J.1    Duin, R.P.W.2
  • 17
    • 0030106462 scopus 로고    scopus 로고
    • Semidefinite programming
    • L. Vandenberghe and S. Boyd. Semidefinite programming. SIAM Review, 38:49-95, 1996. (Pubitemid 126610912)
    • (1996) SIAM Review , vol.38 , Issue.1 , pp. 49-95
    • Vandenberghe, L.1    Boyd, S.2
  • 19
    • 47849086090 scopus 로고    scopus 로고
    • A sequential quadratically constrained quadratic programming method with an augmented lagrangian line search function
    • C.-M. Tang and J.-B. Jian. A sequential quadratically constrained quadratic programming method with an augmented lagrangian line search function. Journal of Computational and Applied Mathematics, 220:527-547, 2008.
    • (2008) Journal of Computational and Applied Mathematics , vol.220 , pp. 527-547
    • Tang, C.-M.1    Jian, J.-B.2
  • 20
    • 33847323552 scopus 로고    scopus 로고
    • A robust algorithm for quadratic optimization under quadratic constraints
    • DOI 10.1007/s10898-006-9063-7, Special Issue: Modelling, Computation and Optimization in Systems Engineering
    • H. Tuy and N. T. Hoai-Phuong. A robust algorithm for quadratic optimization under quadratic constraints. Journal of Global Optimization, 37:557-569, 2007. (Pubitemid 46327443)
    • (2007) Journal of Global Optimization , vol.37 , Issue.4 , pp. 557-569
    • Tuy, H.1    Hoai-Phuong, N.T.2
  • 23
    • 0004171986 scopus 로고    scopus 로고
    • Technical report, Computer Vision Center, Barcelona, Spain
    • A. M. Martinez and R. Benavente. The AR face database. Technical report, Computer Vision Center, Barcelona, Spain, 1998.
    • (1998) The AR Face Database
    • Martinez, A.M.1    Benavente, R.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.