-
1
-
-
78650309623
-
Large margin classifiers based on affine hulls
-
H. Cevikalp, B. Triggs, H. S. Yavuz, Y. Kucuk, M. Kucuk, and A. Barkana. Large margin classifiers based on affine hulls. Neurocomputing, 73:3160-3168, 2010.
-
(2010)
Neurocomputing
, vol.73
, pp. 3160-3168
-
-
Cevikalp, H.1
Triggs, B.2
Yavuz, H.S.3
Kucuk, Y.4
Kucuk, M.5
Barkana, A.6
-
2
-
-
0036161259
-
Gene selection for cancer classification using support vector machines
-
DOI 10.1023/A:1012487302797
-
I. Guyon, J. Weston, S. Barnhill, and V. Vapnik. Gene selection for cancer classification using support vector machines. Machine Learning, 46:389-422, 2002. (Pubitemid 34129977)
-
(2002)
Machine Learning
, vol.46
, Issue.1-3
, pp. 389-422
-
-
Guyon, I.1
Weston, J.2
Barnhill, S.3
Vapnik, V.4
-
4
-
-
34249753618
-
Support vector networks
-
C. Cortes and V. Vapnik. Support vector networks. Machine Learning, 20:273-297, 1995.
-
(1995)
Machine Learning
, vol.20
, pp. 273-297
-
-
Cortes, C.1
Vapnik, V.2
-
5
-
-
0003120218
-
Fast training of support vector machines using sequential minimal optimization
-
MIT Press, Cambridge
-
J. Platt. Fast training of support vector machines using sequential minimal optimization. In Advances in Kernel Methods: Support Vector Learning, pages 185-208. MIT Press, Cambridge, 1999.
-
(1999)
Advances in Kernel Methods: Support Vector Learning
, pp. 185-208
-
-
Platt, J.1
-
6
-
-
0002714543
-
Making large-scale support vector machine learning practical
-
MIT Press, Cambridge
-
T. Joachims. Making large-scale support vector machine learning practical. In Advances in Kernel Methods: Support Vector Learning, pages 169-184. MIT Press, Cambridge, 1999.
-
(1999)
Advances in Kernel Methods: Support Vector Learning
, pp. 169-184
-
-
Joachims, T.1
-
7
-
-
29144499905
-
Working set selection using second order information for training support vector machines
-
R.-E. Fan, P.-H. Chen, and C.-J. Lin. Working set selection using second order information for training svm. Journal of Machine Learning Research, 6:1889-1918, 2005. (Pubitemid 41798130)
-
(2005)
Journal of Machine Learning Research
, vol.6
, pp. 1889-1918
-
-
Fan, R.-E.1
Chen, P.-H.2
Lin, C.-J.3
-
9
-
-
0008202233
-
Duality and geometry in svm classifiers
-
K. P. Bennett and E. J. Bredensteiner. Duality and geometry in svm classifiers. In ICML, 2000.
-
(2000)
ICML
-
-
Bennett, K.P.1
Bredensteiner, E.J.2
-
12
-
-
11144330519
-
K-local hyperplane and convex distance nearest neighbor algorithms
-
P. Vincent and Y. Bengio. K-local hyperplane and convex distance nearest neighbor algorithms. In NIPS, 2001.
-
(2001)
NIPS
-
-
Vincent, P.1
Bengio, Y.2
-
14
-
-
78650309274
-
Manifold based local classifiers: Linear and nonlinear approaches
-
H. Cevikalp, D. Larlus, M. Neamtu, B. Triggs, and F. Jurie. Manifold based local classifiers: linear and nonlinear approaches. Journal of Signal Processing Systems, 61:61-73, 2010.
-
(2010)
Journal of Signal Processing Systems
, vol.61
, pp. 61-73
-
-
Cevikalp, H.1
Larlus, D.2
Neamtu, M.3
Triggs, B.4
Jurie, F.5
-
15
-
-
0035440011
-
The common vector approach and its relation to principal component analysis
-
DOI 10.1109/89.943343, PII S106366760107434X
-
M. B. Gulmezoglu, V. Dzhafarov, and A. Barkana. The common vector approach and its relation to principal component analysis. IEEE Trans. Speech Audio Proc., 9:655-662, 2001. (Pubitemid 32945712)
-
(2001)
IEEE Transactions on Speech and Audio Processing
, vol.9
, Issue.6
, pp. 655-662
-
-
Bilginer, G.M.1
Dzhafarov, V.2
Barkana, A.3
-
16
-
-
0942266514
-
Support vector data description
-
D. M. J. Tax and R. P. W. Duin. Support vector data description. Machine Learning, 54:45-66, 2004.
-
(2004)
Machine Learning
, vol.54
, pp. 45-66
-
-
Tax, D.M.J.1
Duin, R.P.W.2
-
17
-
-
0030106462
-
Semidefinite programming
-
L. Vandenberghe and S. Boyd. Semidefinite programming. SIAM Review, 38:49-95, 1996. (Pubitemid 126610912)
-
(1996)
SIAM Review
, vol.38
, Issue.1
, pp. 49-95
-
-
Vandenberghe, L.1
Boyd, S.2
-
19
-
-
47849086090
-
A sequential quadratically constrained quadratic programming method with an augmented lagrangian line search function
-
C.-M. Tang and J.-B. Jian. A sequential quadratically constrained quadratic programming method with an augmented lagrangian line search function. Journal of Computational and Applied Mathematics, 220:527-547, 2008.
-
(2008)
Journal of Computational and Applied Mathematics
, vol.220
, pp. 527-547
-
-
Tang, C.-M.1
Jian, J.-B.2
-
20
-
-
33847323552
-
A robust algorithm for quadratic optimization under quadratic constraints
-
DOI 10.1007/s10898-006-9063-7, Special Issue: Modelling, Computation and Optimization in Systems Engineering
-
H. Tuy and N. T. Hoai-Phuong. A robust algorithm for quadratic optimization under quadratic constraints. Journal of Global Optimization, 37:557-569, 2007. (Pubitemid 46327443)
-
(2007)
Journal of Global Optimization
, vol.37
, Issue.4
, pp. 557-569
-
-
Tuy, H.1
Hoai-Phuong, N.T.2
-
22
-
-
14344250064
-
A hierarchical method for multi-class support vector machines
-
New York, NY, USA, ACM
-
V. Vural and J. G. Dy. A hierarchical method for multi-class support vector machines. In ICML '04: Proceedings of the twenty-first international conference on Machine learning, page 105, New York, NY, USA, 2004. ACM.
-
(2004)
ICML '04: Proceedings of the Twenty-first International Conference on Machine Learning
, pp. 105
-
-
Vural, V.1
Dy, J.G.2
-
23
-
-
0004171986
-
-
Technical report, Computer Vision Center, Barcelona, Spain
-
A. M. Martinez and R. Benavente. The AR face database. Technical report, Computer Vision Center, Barcelona, Spain, 1998.
-
(1998)
The AR Face Database
-
-
Martinez, A.M.1
Benavente, R.2
-
24
-
-
0032594954
-
Input space versus feature space in kernel-based methods
-
B. Schölkopf, S. Mika, C. J. C. Burges, P. Knirsch, K. R. Müller, G. Ratsch, and A. J. Smola. Input space versus feature space in kernel-based methods. IEEE Transactions on Neural Networks, 10:1000-1017, 1999.
-
(1999)
IEEE Transactions on Neural Networks
, vol.10
, pp. 1000-1017
-
-
Schölkopf, B.1
Mika, S.2
Burges, C.J.C.3
Knirsch, P.4
Müller, K.R.5
Ratsch, G.6
Smola, A.J.7
-
25
-
-
0000156598
-
Kernel pca and de-noising in feature spaces
-
S. Mika, B. Scölkopf, A. Smola, K.-R. Müller, M. Scholz, and G. Ratsch. Kernel pca and de-noising in feature spaces. In Neural Information Processing Systems (NIPS), 1998.
-
(1998)
Neural Information Processing Systems (NIPS)
-
-
Mika, S.1
Scölkopf, B.2
Smola, A.3
Müller, K.-R.4
Scholz, M.5
Ratsch, G.6
|