메뉴 건너뛰기




Volumn , Issue , 2012, Pages 587-594

Generalized expansion dimension

Author keywords

[No Author keywords available]

Indexed keywords

CATEGORICAL DATA; COSINE SIMILARITY; DATA COMPLEXITY; DATA MINING APPLICATIONS; DATA SETS; DESIGN AND ANALYSIS OF ALGORITHMS; DISTANCE MEASURE; EUCLIDEAN DISTANCE; METRIC SPACES; ORIGINAL MODEL; OUTLIER DETECTION; PRACTICAL GUIDE; SIMILARITY SEARCH; VECTOR ANGLE;

EID: 84873108061     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/ICDMW.2012.94     Document Type: Conference Paper
Times cited : (70)

References (25)
  • 2
    • 0033909182 scopus 로고    scopus 로고
    • On the geometry of similarity search: Dimensionality curse and concentration of measure
    • V. Pestov, "On the geometry of similarity search: dimensionality curse and concentration of measure," Inf. Process. Lett., vol. 73, no. 1-2, pp. 47-51, 2000.
    • (2000) Inf. Process. Lett. , vol.73 , Issue.1-2 , pp. 47-51
    • Pestov, V.1
  • 4
    • 77955045250 scopus 로고    scopus 로고
    • Can shared-neighbor distances defeat the curse of dimensionality?
    • M. E. Houle, H.-P. Kriegel, P. Kröger, E. Schubert, and A. Zimek, "Can shared-neighbor distances defeat the curse of dimensionality?" in SSDBM, 2010, pp. 482-500.
    • (2010) SSDBM , pp. 482-500
    • Houle, M.E.1    Kriegel, H.-P.2    Kröger, P.3    Schubert, E.4    Zimek, A.5
  • 5
    • 0002198703 scopus 로고
    • Estimating the selectivity of spatial queries using the 'correlation' fractal dimension
    • A. Belussi and C. Faloutsos, "Estimating the selectivity of spatial queries using the 'correlation' fractal dimension," in VLDB, 1995, pp. 299-310.
    • (1995) VLDB , pp. 299-310
    • Belussi, A.1    Faloutsos, C.2
  • 6
    • 0033901933 scopus 로고    scopus 로고
    • Deflating the dimensionality curse using multiple fractal dimensions
    • San Diego, CA, USA
    • B.-U. Pagel, F. Korn, and C. Faloutsos, "Deflating the dimensionality curse using multiple fractal dimensions," in ICDE, San Diego, CA, USA, 2000, pp. 589-598.
    • (2000) ICDE , pp. 589-598
    • Pagel, B.-U.1    Korn, F.2    Faloutsos, C.3
  • 7
    • 0027983227 scopus 로고
    • Beyond uniformity and independence: Analysis of R-trees using the concept of fractal dimension
    • C. Faloutsos and I. Kamel, "Beyond uniformity and independence: analysis of R-trees using the concept of fractal dimension," in PODS, 1994, pp. 4-13.
    • (1994) PODS , pp. 4-13
    • Faloutsos, C.1    Kamel, I.2
  • 8
    • 0033453107 scopus 로고    scopus 로고
    • Nearest neighbor queries in metric spaces
    • K. L. Clarkson, "Nearest neighbor queries in metric spaces," Discrete & Comput. Geom., vol. 22, pp. 63-93, 1999.
    • (1999) Discrete & Comput. Geom. , vol.22 , pp. 63-93
    • Clarkson, K.L.1
  • 9
    • 49749132118 scopus 로고    scopus 로고
    • Conical dimension as an intrinsic dimension estimator and its applications
    • X. Yang, S. Michea, and H. Zha, "Conical dimension as an intrinsic dimension estimator and its applications," in SDM, 2007, pp. 169-179.
    • (2007) SDM , pp. 169-179
    • Yang, X.1    Michea, S.2    Zha, H.3
  • 10
    • 0036040736 scopus 로고    scopus 로고
    • Finding nearest neighbors in growthrestricted metrics
    • D. R. Karger and M. Ruhl, "Finding nearest neighbors in growthrestricted metrics," in STOC, 2002, pp. 741-750.
    • (2002) STOC , pp. 741-750
    • Karger, D.R.1    Ruhl, M.2
  • 11
    • 33749260356 scopus 로고    scopus 로고
    • Cover trees for nearest neighbor
    • A. Beygelzimer, S. Kakade, and J. Langford, "Cover trees for nearest neighbor," in ICML, 2006, pp. 97-104.
    • (2006) ICML , pp. 97-104
    • Beygelzimer, A.1    Kakade, S.2    Langford, J.3
  • 14
    • 42549130490 scopus 로고    scopus 로고
    • Disorder inequality: A combinatorial approach to nearest neighbor search
    • N. Goyal, Y. Lifshits, and H. Schütze, "Disorder inequality: a combinatorial approach to nearest neighbor search," in WSDM, 2008, pp. 25-32.
    • (2008) WSDM , pp. 25-32
    • Goyal, N.1    Lifshits, Y.2    Schütze, H.3
  • 15
    • 70349088564 scopus 로고    scopus 로고
    • Combinatorial algorithms for nearest neighbors, near-duplicates and small-world design
    • Y. Lifshits and S. Zhang, "Combinatorial algorithms for nearest neighbors, near-duplicates and small-world design," in SODA, 2009, pp. 318-326.
    • (2009) SODA , pp. 318-326
    • Lifshits, Y.1    Zhang, S.2
  • 16
    • 84874079752 scopus 로고    scopus 로고
    • Dimensional testing for multi-step similarity search
    • M. E. Houle, X. Ma, M. Nett, and V. Oria, "Dimensional testing for multi-step similarity search," in ICDM, 2012.
    • (2012) ICDM
    • Houle, M.E.1    Ma, X.2    Nett, M.3    Oria, V.4
  • 17
    • 79951739637 scopus 로고    scopus 로고
    • Finding local anomalies in very high dimensional space
    • T. de Vries, S. Chawla, and M. E. Houle, "Finding local anomalies in very high dimensional space," in ICDM, 2010, pp. 128-137.
    • (2010) ICDM , pp. 128-137
    • De Vries, T.1    Chawla, S.2    Houle, M.E.3
  • 18
    • 84862647152 scopus 로고    scopus 로고
    • Density-preserving projections for large-scale local anomaly detection
    • - - , "Density-preserving projections for large-scale local anomaly detection," Knowl. Inf. Syst., vol. 32, no. 1, pp. 25-52, 2012.
    • (2012) Knowl. Inf. Syst. , vol.32 , Issue.1 , pp. 25-52
    • De Vries, T.1    Chawla, S.2    Houle, M.E.3
  • 20
    • 52649106960 scopus 로고    scopus 로고
    • The relevant-set correlation model for data clustering
    • M. E. Houle, "The relevant-set correlation model for data clustering," in SDM, 2008, pp. 775-786.
    • (2008) SDM , pp. 775-786
    • Houle, M.E.1
  • 21
    • 85170282443 scopus 로고    scopus 로고
    • A density-based algorithm for discovering clusters in large spatial databases with noise
    • M. Ester, H.-P. Kriegel, J. Sander, and X. Xu, "A density-based algorithm for discovering clusters in large spatial databases with noise," in KDD, 1996, pp. 226-231.
    • (1996) KDD , pp. 226-231
    • Ester, M.1    Kriegel, H.-P.2    Sander, J.3    Xu, X.4
  • 22
    • 0039253819 scopus 로고    scopus 로고
    • LOF: Identifying density-based local outliers
    • M. M. Breunig, H.-P. Kriegel, R. T. Ng, and J. Sander, "LOF: identifying density-based local outliers," in SIGMOD, 2000, pp. 93-104.
    • (2000) SIGMOD , pp. 93-104
    • Breunig, M.M.1    Kriegel, H.-P.2    Ng, R.T.3    Sander, J.4
  • 23
    • 84873104997 scopus 로고    scopus 로고
    • Volumes of generalized unit balls
    • X. Wang, "Volumes of Generalized Unit Balls," Mathematics Magazine, vol. 78, no. 5, 2005.
    • (2005) Mathematics Magazine , vol.78 , Issue.5
    • Wang, X.1
  • 25
    • 0000584511 scopus 로고
    • The tail of the hypergeometric distribution
    • V. Chvátal, "The tail of the hypergeometric distribution," Discrete Math., pp. 285-287, 1979.
    • (1979) Discrete Math. , pp. 285-287
    • Chvátal, V.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.