메뉴 건너뛰기




Volumn 87, Issue 3, 2013, Pages 1569-1585

Unusual features of vaccinia virus extracellular virion form neutralization resistance revealed in human antibody responses to the smallpox vaccine

Author keywords

[No Author keywords available]

Indexed keywords

MEMBRANE PROTEIN; MEMBRANE PROTEIN A34; MONOCLONAL ANTIBODY; SMALLPOX VACCINE; UNCLASSIFIED DRUG; VACCINIA ANTIBODY; VACCINIA ANTIGEN A33; VACCINIA ANTIGEN A56; VACCINIA ANTIGEN B5; VIRUS ANTIGEN; VIRUS PROTEIN;

EID: 84873026488     PISSN: 0022538X     EISSN: 10985514     Source Type: Journal    
DOI: 10.1128/JVI.02152-12     Document Type: Article
Times cited : (28)

References (110)
  • 2
    • 84873031379 scopus 로고    scopus 로고
    • Reference deleted.
    • Reference deleted.
  • 4
    • 0035234114 scopus 로고    scopus 로고
    • Strengthening national preparedness for smallpox: an update
    • LeDuc JW, Jahrling PB. 2001. Strengthening national preparedness for smallpox: an update. Emerg. Infect. Dis. 7:155-157.
    • (2001) Emerg. Infect. Dis. , vol.7 , pp. 155-157
    • LeDuc, J.W.1    Jahrling, P.B.2
  • 14
    • 33746577836 scopus 로고    scopus 로고
    • In a nutshell: structure and assembly of the vaccinia virion
    • Condit RC, Moussatche N, Traktman P. 2006. In a nutshell: structure and assembly of the vaccinia virion. Adv. Virus Res. 66:31-124.
    • (2006) Adv. Virus Res. , vol.66 , pp. 31-124
    • Condit, R.C.1    Moussatche, N.2    Traktman, P.3
  • 15
    • 79952082581 scopus 로고    scopus 로고
    • Lipid membranes in poxvirus replication
    • Laliberte JP, Moss B. 2010. Lipid membranes in poxvirus replication. Viruses 2:972-986.
    • (2010) Viruses , vol.2 , pp. 972-986
    • Laliberte, J.P.1    Moss, B.2
  • 16
    • 53049097995 scopus 로고    scopus 로고
    • Vaccinia virus morphogenesis and dissemination
    • Roberts KL, Smith GL. 2008. Vaccinia virus morphogenesis and dissemination. Trends Microbiol. 16:472-479.
    • (2008) Trends Microbiol. , vol.16 , pp. 472-479
    • Roberts, K.L.1    Smith, G.L.2
  • 17
    • 0036932713 scopus 로고    scopus 로고
    • The formation and function of extracellular enveloped vaccinia virus
    • Smith GL, Vanderplasschen A, Law M. 2002. The formation and function of extracellular enveloped vaccinia virus. J. Gen. Virol. 83:2915-2931.
    • (2002) J. Gen. Virol. , vol.83 , pp. 2915-2931
    • Smith, G.L.1    Vanderplasschen, A.2    Law, M.3
  • 18
    • 84855274274 scopus 로고    scopus 로고
    • The membrane fusion step of vaccinia virus entry is cooperatively mediated by multiple viral proteins and host cell components
    • Laliberte JP, Weisberg AS, Moss B. 2011. The membrane fusion step of vaccinia virus entry is cooperatively mediated by multiple viral proteins and host cell components. PLoS Pathog. 7:e1002446.
    • (2011) PLoS Pathog. , vol.7
    • Laliberte, J.P.1    Weisberg, A.S.2    Moss, B.3
  • 19
    • 42449154473 scopus 로고    scopus 로고
    • Poxviridae: the viruses and their replication
    • Knipe DM, Howley PM, Griffin DE, Lamb RA, Martin MA, Roizman B, Straus SE (ed), 5th ed. Lippincott Williams&Wilkins, Philadelphia, PA
    • Moss B. 2007. Poxviridae: the viruses and their replication. In Knipe DM, Howley PM, Griffin DE, Lamb RA, Martin MA, Roizman B, Straus SE (ed), Fields virology, 5th ed. Lippincott Williams&Wilkins, Philadelphia, PA.
    • (2007) Fields virology
    • Moss, B.1
  • 20
    • 78650578440 scopus 로고    scopus 로고
    • Smallpox vaccines: targets of protective immunity
    • Moss B. 2011. Smallpox vaccines: targets of protective immunity. Immunol. Rev. 239:8-26.
    • (2011) Immunol. Rev. , vol.239 , pp. 8-26
    • Moss, B.1
  • 21
    • 84865119394 scopus 로고    scopus 로고
    • Protein B5 is required on extracellular enveloped vaccinia virus for repulsion of super-infecting virions
    • Doceul V, Hollinshead M, Breiman A, Laval K, Smith GL. 2012. Protein B5 is required on extracellular enveloped vaccinia virus for repulsion of super-infecting virions. J. Gen. Virol. 93(Pt 9):1876-1886.
    • (2012) J. Gen. Virol. , vol.93 , Issue.PART 9 , pp. 1876-1886
    • Doceul, V.1    Hollinshead, M.2    Breiman, A.3    Laval, K.4    Smith, G.L.5
  • 22
    • 76749169041 scopus 로고    scopus 로고
    • Repulsion of superinfecting virions: a mechanism for rapid virus spread
    • Doceul V, Hollinshead M, van der Linden L, Smith GL. 2010. Repulsion of superinfecting virions: a mechanism for rapid virus spread. Science 327:873-876.
    • (2010) Science , vol.327 , pp. 873-876
    • Doceul, V.1    Hollinshead, M.2    van der Linden, L.3    Smith, G.L.4
  • 24
    • 0019199323 scopus 로고
    • Significance of extracellular enveloped virus in the in vitro and in vivo dissemination of vaccinia
    • Payne LG. 1980. Significance of extracellular enveloped virus in the in vitro and in vivo dissemination of vaccinia. J. Gen. Virol. 50:89-100.
    • (1980) J. Gen. Virol. , vol.50 , pp. 89-100
    • Payne, L.G.1
  • 25
    • 0029994032 scopus 로고    scopus 로고
    • Extracellular vaccinia virus envelope glycoprotein encoded by the A33R gene
    • Roper RL, Payne LG, Moss B. 1996. Extracellular vaccinia virus envelope glycoprotein encoded by the A33R gene. J. Virol. 70:3753-3762.
    • (1996) J. Virol. , vol.70 , pp. 3753-3762
    • Roper, R.L.1    Payne, L.G.2    Moss, B.3
  • 26
    • 0026576331 scopus 로고
    • Identification and characterization of an extracellular envelope glycoprotein affecting vaccinia virus egress
    • Duncan SA, Smith GL. 1992. Identification and characterization of an extracellular envelope glycoprotein affecting vaccinia virus egress. J. Virol. 66:1610-1621.
    • (1992) J. Virol. , vol.66 , pp. 1610-1621
    • Duncan, S.A.1    Smith, G.L.2
  • 27
    • 0027980628 scopus 로고
    • Vaccinia virus gene A36R encodes a M(r) 43-50 K protein on the surface of extracellular enveloped virus
    • Parkinson JE, Smith GL. 1994. Vaccinia virus gene A36R encodes a M(r) 43-50 K protein on the surface of extracellular enveloped virus. Virology 204:376-390.
    • (1994) Virology , vol.204 , pp. 376-390
    • Parkinson, J.E.1    Smith, G.L.2
  • 28
    • 0022625330 scopus 로고
    • Nucleotide sequence of the vaccinia virus hemagglutinin gene
    • Shida H. 1986. Nucleotide sequence of the vaccinia virus hemagglutinin gene. Virology 150:451-462.
    • (1986) Virology , vol.150 , pp. 451-462
    • Shida, H.1
  • 29
    • 0026454214 scopus 로고
    • Characterization of a vaccinia virus-encoded 42-kilodalton class I membrane glycoprotein component of the extracellular virus envelope
    • Isaacs SN, Wolffe EJ, Payne LG, Moss B. 1992. Characterization of a vaccinia virus-encoded 42-kilodalton class I membrane glycoprotein component of the extracellular virus envelope. J. Virol. 66:7217-7224.
    • (1992) J. Virol. , vol.66 , pp. 7217-7224
    • Isaacs, S.N.1    Wolffe, E.J.2    Payne, L.G.3    Moss, B.4
  • 30
    • 0031806239 scopus 로고    scopus 로고
    • Roles of vaccinia virus EEV-specific proteins in intracellular actin tail formation and low pH-induced cell-cell fusion
    • Sanderson CM, Frischknecht F, Way M, Hollinshead M, Smith GL. 1998. Roles of vaccinia virus EEV-specific proteins in intracellular actin tail formation and low pH-induced cell-cell fusion. J. Gen. Virol. 79(Pt 6):1415-1425.
    • (1998) J. Gen. Virol. , vol.79 , Issue.PART 6 , pp. 1415-1425
    • Sanderson, C.M.1    Frischknecht, F.2    Way, M.3    Hollinshead, M.4    Smith, G.L.5
  • 31
    • 0032565358 scopus 로고    scopus 로고
    • Role for the vaccinia virus A36R outer envelope protein in the formation of virus-tipped actin-containing microvilli and cell-to-cell virus spread
    • Wolffe EJ, Weisberg AS, Moss B. 1998. Role for the vaccinia virus A36R outer envelope protein in the formation of virus-tipped actin-containing microvilli and cell-to-cell virus spread. Virology 244:20-26.
    • (1998) Virology , vol.244 , pp. 20-26
    • Wolffe, E.J.1    Weisberg, A.S.2    Moss, B.3
  • 35
    • 13744253460 scopus 로고    scopus 로고
    • Vaccinia virus penetration requires cholesterol and results in specific viral envelope proteins associated with lipid rafts
    • Chung CS, Huang CY, Chang W. 2005. Vaccinia virus penetration requires cholesterol and results in specific viral envelope proteins associated with lipid rafts. J. Virol. 79:1623-1634.
    • (2005) J. Virol. , vol.79 , pp. 1623-1634
    • Chung, C.S.1    Huang, C.Y.2    Chang, W.3
  • 36
    • 70350449406 scopus 로고    scopus 로고
    • Appraising the apoptotic mimicry model and the role of phospholipids for poxvirus entry
    • Laliberte JP, Moss B. 2009. Appraising the apoptotic mimicry model and the role of phospholipids for poxvirus entry. Proc. Natl. Acad. Sci. U. S. A. 106:17517-17521.
    • (2009) Proc. Natl. Acad. Sci. U. S. A. , vol.106 , pp. 17517-17521
    • Laliberte, J.P.1    Moss, B.2
  • 37
    • 42549153337 scopus 로고    scopus 로고
    • Vaccinia virus uses macropinocytosis and apoptotic mimicry to enter host cells
    • Mercer J, Helenius A. 2008. Vaccinia virus uses macropinocytosis and apoptotic mimicry to enter host cells. Science 320:531-535.
    • (2008) Science , vol.320 , pp. 531-535
    • Mercer, J.1    Helenius, A.2
  • 39
    • 0022322675 scopus 로고
    • Reversible inactivation and reactivation of vaccinia virus by manipulation of viral lipid composition
    • Oie M. 1985. Reversible inactivation and reactivation of vaccinia virus by manipulation of viral lipid composition. Virology 142:299-306.
    • (1985) Virology , vol.142 , pp. 299-306
    • Oie, M.1
  • 40
    • 79955051520 scopus 로고    scopus 로고
    • The soluble serum protein Gas6 bridges virion envelope phosphatidylserine to the TAM receptor tyrosine kinase Axl to mediate viral entry
    • Morizono K, Xie Y, Olafsen T, Lee B, Dasgupta A, Wu AM, Chen IS. 2011. The soluble serum protein Gas6 bridges virion envelope phosphatidylserine to the TAM receptor tyrosine kinase Axl to mediate viral entry. Cell Host Microbe 9:286-298.
    • (2011) Cell Host Microbe , vol.9 , pp. 286-298
    • Morizono, K.1    Xie, Y.2    Olafsen, T.3    Lee, B.4    Dasgupta, A.5    Wu, A.M.6    Chen, I.S.7
  • 41
    • 44049108744 scopus 로고    scopus 로고
    • Toward an AIDS vaccine
    • Walker BD, Burton DR. 2008. Toward an AIDS vaccine. Science 320: 760-764.
    • (2008) Science , vol.320 , pp. 760-764
    • Walker, B.D.1    Burton, D.R.2
  • 42
    • 33745068410 scopus 로고    scopus 로고
    • Immunity and immunological memory following smallpox vaccination
    • Amanna IJ, Slifka MK, Crotty S. 2006. Immunity and immunological memory following smallpox vaccination. Immunol. Rev. 211:320-337.
    • (2006) Immunol. Rev. , vol.211 , pp. 320-337
    • Amanna, I.J.1    Slifka, M.K.2    Crotty, S.3
  • 43
    • 3142604952 scopus 로고    scopus 로고
    • Antibodies against the extracellular enveloped virus B5R protein are mainly responsible for the EEV neutralizing capacity of vaccinia immune globulin
    • Bell E, Shamim M, Whitbeck JC, Sfyroera G, Lambris JD, Isaacs SN. 2004. Antibodies against the extracellular enveloped virus B5R protein are mainly responsible for the EEV neutralizing capacity of vaccinia immune globulin. Virology 325:425-431.
    • (2004) Virology , vol.325 , pp. 425-431
    • Bell, E.1    Shamim, M.2    Whitbeck, J.C.3    Sfyroera, G.4    Lambris, J.D.5    Isaacs, S.N.6
  • 46
    • 0015310492 scopus 로고
    • A prospective study of serum antibody and protection against smallpox
    • Mack TM, Noble J, Jr, Thomas DB. 1972. A prospective study of serum antibody and protection against smallpox. Am. J. Trop. Med. Hyg. 21: 214-218.
    • (1972) Am. J. Trop. Med. Hyg. , vol.21 , pp. 214-218
    • Mack, T.M.1    Noble Jr., J.2    Thomas, D.B.3
  • 53
    • 37849005004 scopus 로고    scopus 로고
    • Clonal vaccinia virus grown in cell culture fully protects monkeys from lethal monkeypox challenge
    • Marriott KA, Parkinson CV, Morefield SI, Davenport R, Nichols R, Monath TP. 2008. Clonal vaccinia virus grown in cell culture fully protects monkeys from lethal monkeypox challenge. Vaccine 26:581-588.
    • (2008) Vaccine , vol.26 , pp. 581-588
    • Marriott, K.A.1    Parkinson, C.V.2    Morefield, S.I.3    Davenport, R.4    Nichols, R.5    Monath, T.P.6
  • 57
    • 33750690187 scopus 로고    scopus 로고
    • Quantification of antibody responses against multiple antigens of the two infectious forms of vaccinia virus provides a benchmark for smallpox vaccination
    • Pütz MM, Midgley CM, Law M, Smith GL. 2006. Quantification of antibody responses against multiple antigens of the two infectious forms of vaccinia virus provides a benchmark for smallpox vaccination. Nat. Med. 12:1310-1315.
    • (2006) Nat. Med. , vol.12 , pp. 1310-1315
    • Pütz, M.M.1    Midgley, C.M.2    Law, M.3    Smith, G.L.4
  • 58
    • 0033080182 scopus 로고    scopus 로고
    • Neutralizing and protective antibodies directed against vaccinia virus envelope antigens
    • Galmiche MC, Goenaga J, Wittek R, Rindisbacher L. 1999. Neutralizing and protective antibodies directed against vaccinia virus envelope antigens. Virology 254:71-80.
    • (1999) Virology , vol.254 , pp. 71-80
    • Galmiche, M.C.1    Goenaga, J.2    Wittek, R.3    Rindisbacher, L.4
  • 59
    • 4544351079 scopus 로고    scopus 로고
    • Synergistic neutralizing activities of antibodies to outer membrane proteins of the two infectious forms of vaccinia virus in the presence of complement
    • Lustig S, Fogg C, Whitbeck JC, Moss B. 2004. Synergistic neutralizing activities of antibodies to outer membrane proteins of the two infectious forms of vaccinia virus in the presence of complement. Virology 328:30-35.
    • (2004) Virology , vol.328 , pp. 30-35
    • Lustig, S.1    Fogg, C.2    Whitbeck, J.C.3    Moss, B.4
  • 60
    • 0035222608 scopus 로고    scopus 로고
    • The antiviral activity of antibodies in vitro and in vivo
    • Parren PW, Burton DR. 2001. The antiviral activity of antibodies in vitro and in vivo. Adv. Immunol. 77:195-262.
    • (2001) Adv. Immunol. , vol.77 , pp. 195-262
    • Parren, P.W.1    Burton, D.R.2
  • 61
    • 79959812241 scopus 로고    scopus 로고
    • A dynamic landscape for antibody binding modulates antibody-mediated neutralization of West Nile virus
    • Dowd KA, Jost CA, Durbin AP, Whitehead SS, Pierson TC. 2011. A dynamic landscape for antibody binding modulates antibody-mediated neutralization of West Nile virus. PLoS Pathog. 7:e1002111.
    • (2011) PLoS Pathog. , vol.7
    • Dowd, K.A.1    Jost, C.A.2    Durbin, A.P.3    Whitehead, S.S.4    Pierson, T.C.5
  • 63
    • 36048944421 scopus 로고    scopus 로고
    • Modeling how many envelope glycoprotein trimers per virion participate in human immunodeficiency virus infectivity and its neutralization by antibody
    • Klasse PJ. 2007. Modeling how many envelope glycoprotein trimers per virion participate in human immunodeficiency virus infectivity and its neutralization by antibody. Virology 369:245-262.
    • (2007) Virology , vol.369 , pp. 245-262
    • Klasse, P.J.1
  • 64
    • 34147189542 scopus 로고    scopus 로고
    • Antibodies to West Nile virus: a doubleedged sword
    • Klasse PJ, Burton D. 2007. Antibodies to West Nile virus: a doubleedged sword. Cell Host Microbe 1:87-89.
    • (2007) Cell Host Microbe , vol.1 , pp. 87-89
    • Klasse, P.J.1    Burton, D.2
  • 65
    • 0029130062 scopus 로고
    • Human cytomegalovirus neutralizing antibody-resistant phenotype is associated with reduced expression of glycoprotein H
    • Li L, Coelingh KL, Britt WJ. 1995. Human cytomegalovirus neutralizing antibody-resistant phenotype is associated with reduced expression of glycoprotein H. J. Virol. 69:6047-6053.
    • (1995) J. Virol. , vol.69 , pp. 6047-6053
    • Li, L.1    Coelingh, K.L.2    Britt, W.J.3
  • 67
    • 79958142642 scopus 로고    scopus 로고
    • Antibody against extracellular vaccinia virus (EV) protects mice through complement and Fc receptors
    • Cohen ME, Xiao Y, Eisenberg RJ, Cohen GH, Isaacs SN. 2011. Antibody against extracellular vaccinia virus (EV) protects mice through complement and Fc receptors. PLoS One 6:e20597.
    • (2011) PLoS One , vol.6
    • Cohen, M.E.1    Xiao, Y.2    Eisenberg, R.J.3    Cohen, G.H.4    Isaacs, S.N.5
  • 68
    • 37849047713 scopus 로고    scopus 로고
    • Antibody profiling by proteome microarray reveals the immunogenicity of the attenuated smallpox vaccine modified vaccinia virus Ankara is comparable to that of Dryvax
    • Davies DH, Wyatt LS, Newman FK, Earl PL, Chun S, Hernandez JE, Molina D, Hirst S, Moss B, Frey SE, Felgner PL. 2008. Antibody profiling by proteome microarray reveals the immunogenicity of the attenuated smallpox vaccine modified vaccinia virus Ankara is comparable to that of Dryvax. J. Virol. 82:652-663.
    • (2008) J. Virol. , vol.82 , pp. 652-663
    • Davies, D.H.1    Wyatt, L.S.2    Newman, F.K.3    Earl, P.L.4    Chun, S.5    Hernandez, J.E.6    Molina, D.7    Hirst, S.8    Moss, B.9    Frey, S.E.10    Felgner, P.L.11
  • 69
    • 27144437524 scopus 로고    scopus 로고
    • Combinations of polyclonal or monoclonal antibodies to proteins of the outer membranes of the two infectious forms of vaccinia virus protect mice against a lethal respiratory challenge
    • Lustig S, Fogg C, Whitbeck JC, Eisenberg RJ, Cohen GH, Moss B. 2005. Combinations of polyclonal or monoclonal antibodies to proteins of the outer membranes of the two infectious forms of vaccinia virus protect mice against a lethal respiratory challenge. J. Virol. 79:13454-13462.
    • (2005) J. Virol. , vol.79 , pp. 13454-13462
    • Lustig, S.1    Fogg, C.2    Whitbeck, J.C.3    Eisenberg, R.J.4    Cohen, G.H.5    Moss, B.6
  • 71
    • 77649200550 scopus 로고    scopus 로고
    • The structure of the poxvirus A33 protein reveals a dimer of unique C-type lectin-like domains
    • Su HP, Singh K, Gittis AG, Garboczi DN. 2010. The structure of the poxvirus A33 protein reveals a dimer of unique C-type lectin-like domains. J. Virol. 84:2502-2510.
    • (2010) J. Virol. , vol.84 , pp. 2502-2510
    • Su, H.P.1    Singh, K.2    Gittis, A.G.3    Garboczi, D.N.4
  • 72
    • 46149113910 scopus 로고    scopus 로고
    • An optimized electrofusion-based protocol for generating virus-specific human monoclonal antibodies
    • Yu X, McGraw PA, House FS, Crowe JE, Jr. 2008. An optimized electrofusion-based protocol for generating virus-specific human monoclonal antibodies. J. Immunol. Methods 336:142-151.
    • (2008) J. Immunol. Methods , vol.336 , pp. 142-151
    • Yu, X.1    McGraw, P.A.2    House, F.S.3    Crowe Jr., J.E.4
  • 74
    • 78650260578 scopus 로고    scopus 로고
    • Generation and characterization of a large panel of murine monoclonal antibodies against vaccinia virus
    • Meng X, Zhong Y, Embry A, Yan B, Lu S, Zhong G, Xiang Y. 2011. Generation and characterization of a large panel of murine monoclonal antibodies against vaccinia virus. Virology 409:271-279.
    • (2011) Virology , vol.409 , pp. 271-279
    • Meng, X.1    Zhong, Y.2    Embry, A.3    Yan, B.4    Lu, S.5    Zhong, G.6    Xiang, Y.7
  • 75
    • 70349750487 scopus 로고    scopus 로고
    • Cloning and expression of murine Ig genes from single B cells
    • Tiller T, Busse CE, Wardemann H. 2009. Cloning and expression of murine Ig genes from single B cells. J. Immunol. Methods 350:183-193.
    • (2009) J. Immunol. Methods , vol.350 , pp. 183-193
    • Tiller, T.1    Busse, C.E.2    Wardemann, H.3
  • 76
    • 48449094247 scopus 로고    scopus 로고
    • IMGT/V-QUEST: the highly customized and integrated system for IG andTRstandardized V-J. and V-D-J. sequence analysis
    • Brochet X, Lefranc MP, Giudicelli V. 2008. IMGT/V-QUEST: the highly customized and integrated system for IG andTRstandardized V-J. and V-D-J. sequence analysis. Nucleic Acids Res. 36:W503-W508.
    • (2008) Nucleic Acids Res. , vol.36
    • Brochet, X.1    Lefranc, M.P.2    Giudicelli, V.3
  • 78
    • 0030849402 scopus 로고    scopus 로고
    • Antibodies against vaccinia virus do not neutralize extracellular enveloped virus but prevent virus release from infected cells and comet formation
    • Vanderplasschen A, Hollinshead M, Smith GL. 1997. Antibodies against vaccinia virus do not neutralize extracellular enveloped virus but prevent virus release from infected cells and comet formation. J. Gen. Virol. 78(Pt 8):2041-2048.
    • (1997) J. Gen. Virol. , vol.78 , Issue.PART 8 , pp. 2041-2048
    • Vanderplasschen, A.1    Hollinshead, M.2    Smith, G.L.3
  • 79
    • 0036135030 scopus 로고    scopus 로고
    • Antibody-sensitive and antibody- resistant cell-to-cell spread by vaccinia virus: role of the A33R protein in antibody-resistant spread
    • Law M, Hollinshead R, Smith GL. 2002. Antibody-sensitive and antibody- resistant cell-to-cell spread by vaccinia virus: role of the A33R protein in antibody-resistant spread. J. Gen. Virol. 83:209-222.
    • (2002) J. Gen. Virol. , vol.83 , pp. 209-222
    • Law, M.1    Hollinshead, R.2    Smith, G.L.3
  • 80
    • 0035261905 scopus 로고    scopus 로고
    • Antibody neutralization of the extracellular enveloped form of vaccinia virus
    • Law M, Smith GL. 2001. Antibody neutralization of the extracellular enveloped form of vaccinia virus. Virology 280:132-142.
    • (2001) Virology , vol.280 , pp. 132-142
    • Law, M.1    Smith, G.L.2
  • 82
    • 18544373834 scopus 로고
    • Intracellular forms of pox viruses as shown by the electron microscope (Vaccinia, Ectromelia, Molluscum Contagiosum)
    • Gaylord WH, Jr, Melnick JL. 1953. Intracellular forms of pox viruses as shown by the electron microscope (Vaccinia, Ectromelia, Molluscum Contagiosum). J. Exp. Med. 98:157-172.
    • (1953) J. Exp. Med. , vol.98 , pp. 157-172
    • Gaylord Jr., W.H.1    Melnick, J.L.2
  • 84
    • 0001183203 scopus 로고
    • Structure and development of viruses observed in the electron microscope. II. Vaccinia and fowl pox viruses
    • Morgan C, Ellison SA, Rose HM, Moore DH. 1954. Structure and development of viruses observed in the electron microscope. II. Vaccinia and fowl pox viruses. J. Exp. Med. 100:301-310.
    • (1954) J. Exp. Med. , vol.100 , pp. 301-310
    • Morgan, C.1    Ellison, S.A.2    Rose, H.M.3    Moore, D.H.4
  • 85
    • 33144457296 scopus 로고    scopus 로고
    • Vaccinia virus proteome: identification of proteins in vaccinia virus intracellular mature virion particles
    • Chung CS, Chen CH, Ho MY, Huang CY, Liao CL, Chang W. 2006. Vaccinia virus proteome: identification of proteins in vaccinia virus intracellular mature virion particles. J. Virol. 80:2127-2140.
    • (2006) J. Virol. , vol.80 , pp. 2127-2140
    • Chung, C.S.1    Chen, C.H.2    Ho, M.Y.3    Huang, C.Y.4    Liao, C.L.5    Chang, W.6
  • 88
    • 4544371098 scopus 로고    scopus 로고
    • Protective immunity to vaccinia virus induced by vaccination with multiple recombinant outer membrane proteins of intracellular and extracellular virions
    • Fogg C, Lustig S, Whitbeck JC, Eisenberg RJ, Cohen GH, Moss B. 2004. Protective immunity to vaccinia virus induced by vaccination with multiple recombinant outer membrane proteins of intracellular and extracellular virions. J. Virol. 78:10230-10237.
    • (2004) J. Virol. , vol.78 , pp. 10230-10237
    • Fogg, C.1    Lustig, S.2    Whitbeck, J.C.3    Eisenberg, R.J.4    Cohen, G.H.5    Moss, B.6
  • 89
    • 77957931682 scopus 로고    scopus 로고
    • Poxvirus complement control proteins are expressed on the cell surface through an intermolecular disulfide bridge with the viral A56 protein
    • DeHaven BC, Girgis NM, Xiao Y, Hudson PN, Olson VA, Damon IK, Isaacs SN. 2010. Poxvirus complement control proteins are expressed on the cell surface through an intermolecular disulfide bridge with the viral A56 protein. J. Virol. 84:11245-11254.
    • (2010) J. Virol. , vol.84 , pp. 11245-11254
    • DeHaven, B.C.1    Girgis, N.M.2    Xiao, Y.3    Hudson, P.N.4    Olson, V.A.5    Damon, I.K.6    Isaacs, S.N.7
  • 90
    • 42449122246 scopus 로고    scopus 로고
    • Cell surface expression of the vaccinia virus complement control protein is mediated by interaction with the viral A56 protein and protects infected cells from complement attack
    • Girgis NM, Dehaven BC, Fan X, Viner KM, Shamim M, Isaacs SN. 2008. Cell surface expression of the vaccinia virus complement control protein is mediated by interaction with the viral A56 protein and protects infected cells from complement attack. J. Virol. 82:4205-4214.
    • (2008) J. Virol. , vol.82 , pp. 4205-4214
    • Girgis, N.M.1    Dehaven, B.C.2    Fan, X.3    Viner, K.M.4    Shamim, M.5    Isaacs, S.N.6
  • 91
    • 0038785559 scopus 로고    scopus 로고
    • Restoration of complement-enhanced neutralization of vaccinia virus virions by novel monoclonal antibodies raised against the vaccinia virus complement control protein
    • Isaacs SN, Argyropoulos E, Sfyroera G, Mohammad S, Lambris JD. 2003. Restoration of complement-enhanced neutralization of vaccinia virus virions by novel monoclonal antibodies raised against the vaccinia virus complement control protein. J. Virol. 77:8256-8262.
    • (2003) J. Virol. , vol.77 , pp. 8256-8262
    • Isaacs, S.N.1    Argyropoulos, E.2    Sfyroera, G.3    Mohammad, S.4    Lambris, J.D.5
  • 92
    • 0026544083 scopus 로고
    • Vaccinia virus complementcontrol protein prevents antibody-dependent complement-enhanced neutralization of infectivity and contributes to virulence
    • Isaacs SN, Kotwal GJ, Moss B. 1992. Vaccinia virus complementcontrol protein prevents antibody-dependent complement-enhanced neutralization of infectivity and contributes to virulence. Proc. Natl. Acad. Sci. U. S. A. 89:628-632.
    • (1992) Proc. Natl. Acad. Sci. U. S. A. , vol.89 , pp. 628-632
    • Isaacs, S.N.1    Kotwal, G.J.2    Moss, B.3
  • 93
    • 0029655645 scopus 로고    scopus 로고
    • Vaccinia virus glycoprotein A34R is required for infectivity of extracellular enveloped virus
    • McIntosh AA, Smith GL. 1996. Vaccinia virus glycoprotein A34R is required for infectivity of extracellular enveloped virus. J. Virol. 70:272-281.
    • (1996) J. Virol. , vol.70 , pp. 272-281
    • McIntosh, A.A.1    Smith, G.L.2
  • 95
    • 0036719574 scopus 로고    scopus 로고
    • Antibodies, viruses and vaccines
    • Burton D. 2002. Antibodies, viruses and vaccines. Nat. Rev. Immunol. 2:706-713.
    • (2002) Nat. Rev. Immunol. , vol.2 , pp. 706-713
    • Burton, D.1
  • 97
    • 80052264028 scopus 로고    scopus 로고
    • Vaccinia extracellular virions enter cells by macropinocytosis and acid-activated membrane rupture
    • Schmidt FI, Bleck CK, Helenius A, Mercer J. 2011. Vaccinia extracellular virions enter cells by macropinocytosis and acid-activated membrane rupture. EMBO J. 30:3647-3661.
    • (2011) EMBO J. , vol.30 , pp. 3647-3661
    • Schmidt, F.I.1    Bleck, C.K.2    Helenius, A.3    Mercer, J.4
  • 98
    • 0036145303 scopus 로고    scopus 로고
    • Complement component C1q enhances the biological activity of influenza virus hemagglutinin- specific antibodies depending on their fine antigen specificity and heavy-chain isotype
    • Feng JQ, Mozdzanowska K, Gerhard W. 2002. Complement component C1q enhances the biological activity of influenza virus hemagglutinin- specific antibodies depending on their fine antigen specificity and heavy-chain isotype. J. Virol. 76:1369-1378.
    • (2002) J. Virol. , vol.76 , pp. 1369-1378
    • Feng, J.Q.1    Mozdzanowska, K.2    Gerhard, W.3
  • 99
    • 44149126703 scopus 로고    scopus 로고
    • Differential mechanisms of complement-mediated neutralization of the closely related paramyxoviruses simian virus 5 and mumps virus
    • Johnson JB, Capraro GA, Parks GD. 2008. Differential mechanisms of complement-mediated neutralization of the closely related paramyxoviruses simian virus 5 and mumps virus. Virology 376:112-123.
    • (2008) Virology , vol.376 , pp. 112-123
    • Johnson, J.B.1    Capraro, G.A.2    Parks, G.D.3
  • 100
    • 0017345641 scopus 로고
    • Effect of selective complement deficiency on the rate of neutralization of enveloped viruses by human sera
    • Leddy JP, Simons RL, Douglas RG. 1977. Effect of selective complement deficiency on the rate of neutralization of enveloped viruses by human sera. J. Immunol. 118:28-34.
    • (1977) J. Immunol. , vol.118 , pp. 28-34
    • Leddy, J.P.1    Simons, R.L.2    Douglas, R.G.3
  • 102
    • 33646707490 scopus 로고    scopus 로고
    • Protective immune responses against West Nile virus are primed by distinct complement activation pathways
    • Mehlhop E, Diamond MS. 2006. Protective immune responses against West Nile virus are primed by distinct complement activation pathways. J. Exp. Med. 203:1371-1381.
    • (2006) J. Exp. Med. , vol.203 , pp. 1371-1381
    • Mehlhop, E.1    Diamond, M.S.2
  • 103
    • 70349247668 scopus 로고    scopus 로고
    • Complement modulates pathogenesis and antibody-dependent neutralization of West Nile virus infection through a C5-independent mechanism
    • Mehlhop E, Fuchs A, Engle M, Diamond MS. 2009. Complement modulates pathogenesis and antibody-dependent neutralization of West Nile virus infection through a C5-independent mechanism. Virology 393:11-15.
    • (2009) Virology , vol.393 , pp. 11-15
    • Mehlhop, E.1    Fuchs, A.2    Engle, M.3    Diamond, M.S.4
  • 105
    • 58149218613 scopus 로고    scopus 로고
    • Surviving mousepox infection requires the complement system
    • Moulton EA, Atkinson JP, Buller RM. 2008. Surviving mousepox infection requires the complement system. PLoS Pathog. 4:e1000249.
    • (2008) PLoS Pathog. , vol.4
    • Moulton, E.A.1    Atkinson, J.P.2    Buller, R.M.3
  • 106
    • 0014305622 scopus 로고
    • The morphological and biological effects of various antisera on avian infectious bronchitis virus
    • Berry DM, Almeida JD. 1968. The morphological and biological effects of various antisera on avian infectious bronchitis virus. J. Gen. Virol. 3:97-102.
    • (1968) J. Gen. Virol. , vol.3 , pp. 97-102
    • Berry, D.M.1    Almeida, J.D.2
  • 107
    • 0034667942 scopus 로고    scopus 로고
    • Novel mechanism of antibody-independent complement neutralization of herpes simplex virus type 1
    • Friedman HM, Wang L, Pangburn MK, Lambris JD, Lubinski J. 2000. Novel mechanism of antibody-independent complement neutralization of herpes simplex virus type 1. J. Immunol. 165:4528-4536.
    • (2000) J. Immunol. , vol.165 , pp. 4528-4536
    • Friedman, H.M.1    Wang, L.2    Pangburn, M.K.3    Lambris, J.D.4    Lubinski, J.5
  • 108
    • 0015545446 scopus 로고
    • The complement-requiring neutralization of equine arteritis virus by late antisera
    • Radwan AI, Burger D. 1973. The complement-requiring neutralization of equine arteritis virus by late antisera. Virology 51:71-77.
    • (1973) Virology , vol.51 , pp. 71-77
    • Radwan, A.I.1    Burger, D.2
  • 109
    • 0016716880 scopus 로고
    • Immune lysis of Sindbis virus
    • Stollar V. 1975. Immune lysis of Sindbis virus. Virology 66:620-624.
    • (1975) Virology , vol.66 , pp. 620-624
    • Stollar, V.1
  • 110
    • 0017187011 scopus 로고
    • Antibody- complement interactions with purified lymphocytic choriomeningitis virus
    • Welsh RM, Jr, Lampert PW, Burner PA, Oldstone MB. 1976. Antibody- complement interactions with purified lymphocytic choriomeningitis virus. Virology 73:59-71.
    • (1976) Virology , vol.73 , pp. 59-71
    • Welsh Jr., R.M.1    Lampert, P.W.2    Burner, P.A.3    Oldstone, M.B.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.