메뉴 건너뛰기




Volumn 93, Issue PART 9, 2012, Pages 1876-1886

Protein B5 is required on extracellular enveloped vaccinia virus for repulsion of superinfecting virions

Author keywords

[No Author keywords available]

Indexed keywords

PROTEIN A33; PROTEIN A36; PROTEIN B5; UNCLASSIFIED DRUG; VIRUS PROTEIN;

EID: 84865119394     PISSN: 00221317     EISSN: 14652099     Source Type: Journal    
DOI: 10.1099/vir.0.043943-0     Document Type: Article
Times cited : (27)

References (83)
  • 1
    • 0026646637 scopus 로고
    • A soluble receptor for interleukin-1b encoded by vaccinia virus: A novel mechanism of virus modulation of the host response to infection
    • Alcamí, A. & Smith, G. L. (1992). A soluble receptor for interleukin-1b encoded by vaccinia virus: a novel mechanism of virus modulation of the host response to infection. Cell 71, 153-167.
    • (1992) Cell , vol.71 , pp. 153-167
    • Alcamí, A.1    Smith, G.L.2
  • 2
    • 0026039370 scopus 로고
    • Extracellular vaccinia virus formation and cell-to-cell virus transmission are prevented by deletion of the gene encoding the 37,000-dalton outer envelope protein
    • Blasco, R. & Moss, B. (1991). Extracellular vaccinia virus formation and cell-to-cell virus transmission are prevented by deletion of the gene encoding the 37,000-dalton outer envelope protein. J Virol 65, 5910-5920.
    • (1991) J Virol , vol.65 , pp. 5910-5920
    • Blasco, R.1    Moss, B.2
  • 3
    • 0027191921 scopus 로고
    • Dissociation of progeny vaccinia virus from the cell membrane is regulated by a viral envelope glycoprotein: Effect of a point mutation in the lectin homology domain of the A34R gene
    • Blasco, R., Sisler, J. R. & Moss, B. (1993). Dissociation of progeny vaccinia virus from the cell membrane is regulated by a viral envelope glycoprotein: effect of a point mutation in the lectin homology domain of the A34R gene. J Virol 67, 3319-3325.
    • (1993) J Virol , vol.67 , pp. 3319-3325
    • Blasco, R.1    Sisler, J.R.2    Moss, B.3
  • 4
    • 77954168702 scopus 로고    scopus 로고
    • Vaccinia virus B5 protein affects the glycosylation, localization and stability of the A34 protein
    • Breiman, A. & Smith, G. L. (2010). Vaccinia virus B5 protein affects the glycosylation, localization and stability of the A34 protein. J Gen Virol 91, 1823-1827.
    • (2010) J Gen Virol , vol.91 , pp. 1823-1827
    • Breiman, A.1    Smith, G.L.2
  • 5
    • 33746577836 scopus 로고    scopus 로고
    • In a nutshell: Structure and assembly of the vaccinia virion
    • Condit, R. C., Moussatche, N. & Traktman, P. (2006). In a nutshell: structure and assembly of the vaccinia virion. Adv Virus Res 66, 31-124.
    • (2006) Adv Virus Res , vol.66 , pp. 31-124
    • Condit, R.C.1    Moussatche, N.2    Traktman, P.3
  • 6
    • 0028866712 scopus 로고
    • Actin-based motility of vaccinia virus
    • Cudmore, S., Cossart, P., Griffiths, G. & Way, M. (1995). Actin-based motility of vaccinia virus. Nature 378, 636-638.
    • (1995) Nature , vol.378 , pp. 636-638
    • Cudmore, S.1    Cossart, P.2    Griffiths, G.3    Way, M.4
  • 7
    • 77957931682 scopus 로고    scopus 로고
    • Poxvirus complement control proteins are expressed on the cell surface through an intermolecular disulfide bridge with the viral A56 protein
    • DeHaven, B. C., Girgis, N. M., Xiao, Y., Hudson, P. N., Olson, V. A., Damon, I. K. & Isaacs, S. N. (2010). Poxvirus complement control proteins are expressed on the cell surface through an intermolecular disulfide bridge with the viral A56 protein. J Virol 84, 11245-11254.
    • (2010) J Virol , vol.84 , pp. 11245-11254
    • Dehaven, B.C.1    Girgis, N.M.2    Xiao, Y.3    Hudson, P.N.4    Olson, V.A.5    Damon, I.K.6    Isaacs, S.N.7
  • 8
    • 80051762438 scopus 로고    scopus 로고
    • The vaccinia virus A56 protein: A multifunctional transmembrane glycoprotein that anchors two secreted viral proteins
    • DeHaven, B. C., Gupta, K. & Isaacs, S. N. (2011). The vaccinia virus A56 protein: a multifunctional transmembrane glycoprotein that anchors two secreted viral proteins. J Gen Virol 92, 1971-1980.
    • (2011) J Gen Virol , vol.92 , pp. 1971-1980
    • Dehaven, B.C.1    Gupta, K.2    Isaacs, S.N.3
  • 9
    • 0036252492 scopus 로고    scopus 로고
    • High-level transduction and gene expression in hematopoietic repopulating cells using a human immunodeficiency virus type 1-based lentiviral vector containing an internal spleen focus forming virus promoter
    • Demaison, C., Parsley, K., Brouns, G., Scherr, M., Battmer, K., Kinnon, C., Grez, M. & Thrasher, A. J. (2002). High-level transduction and gene expression in hematopoietic repopulating cells using a human immunodeficiency virus type 1-based lentiviral vector containing an internal spleen focus forming virus promoter. Hum Gene Ther 13, 803-813.
    • (2002) Hum Gene Ther , vol.13 , pp. 803-813
    • Demaison, C.1    Parsley, K.2    Brouns, G.3    Scherr, M.4    Battmer, K.5    Kinnon, C.6    Grez, M.7    Thrasher, A.J.8
  • 10
    • 76749169041 scopus 로고    scopus 로고
    • Repulsion of superinfecting virions: A mechanism for rapid virus spread
    • Doceul, V., Hollinshead, M., van der Linden, L. & Smith, G. L. (2010). Repulsion of superinfecting virions: a mechanism for rapid virus spread. Science 327, 873-876.
    • (2010) Science , vol.327 , pp. 873-876
    • Doceul, V.1    Hollinshead, M.2    van der Linden, L.3    Smith, G.L.4
  • 11
    • 0031974691 scopus 로고    scopus 로고
    • Highly attenuated modified vaccinia virus Ankara replicates in baby hamster kidney cells, a potential host for virus propagation, but not in various human transformed and primary cells
    • Drexler, I., Heller, K., Wahren, B., Erfle, V. & Sutter, G. (1998). Highly attenuated modified vaccinia virus Ankara replicates in baby hamster kidney cells, a potential host for virus propagation, but not in various human transformed and primary cells. J Gen Virol 79, 347-352.
    • (1998) J Gen Virol , vol.79 , pp. 347-352
    • Drexler, I.1    Heller, K.2    Wahren, B.3    Erfle, V.4    Sutter, G.5
  • 12
    • 0026576331 scopus 로고
    • Identification and characterization of an extracellular envelope glycoprotein affecting vaccinia virus egress
    • Duncan, S. A. & Smith, G. L. (1992). Identification and characterization of an extracellular envelope glycoprotein affecting vaccinia virus egress. J Virol 66, 1610-1621.
    • (1992) J Virol , vol.66 , pp. 1610-1621
    • Duncan, S.A.1    Smith, G.L.2
  • 13
    • 39749143311 scopus 로고    scopus 로고
    • The vaccinia virus B5 protein requires A34 for efficient intracellular trafficking from the endoplasmic reticulum to the site of wrapping and incorporation into progeny virions
    • Earley, A. K., Chan, W. M. & Ward, B. M. (2008). The vaccinia virus B5 protein requires A34 for efficient intracellular trafficking from the endoplasmic reticulum to the site of wrapping and incorporation into progeny virions. J Virol 82, 2161-2169.
    • (2008) J Virol , vol.82 , pp. 2161-2169
    • Earley, A.K.1    Chan, W.M.2    Ward, B.M.3
  • 14
    • 0027319075 scopus 로고
    • The vaccinia virus 42-kDa envelope protein is required for the envelopment and egress of extracellular virus and for virus virulence
    • Engelstad, M. & Smith, G. L. (1993). The vaccinia virus 42-kDa envelope protein is required for the envelopment and egress of extracellular virus and for virus virulence. Virology 194, 627-637.
    • (1993) Virology , vol.194 , pp. 627-637
    • Engelstad, M.1    Smith, G.L.2
  • 15
    • 0026655115 scopus 로고
    • A constitutively expressed vaccinia gene encodes a 42-kDa glycoprotein related to complement control factors that forms part of the extracellular virus envelope
    • Engelstad, M., Howard, S. T. & Smith, G. L. (1992). A constitutively expressed vaccinia gene encodes a 42-kDa glycoprotein related to complement control factors that forms part of the extracellular virus envelope. Virology 188, 801-810.
    • (1992) Virology , vol.188 , pp. 801-810
    • Engelstad, M.1    Howard, S.T.2    Smith, G.L.3
  • 16
    • 4544371098 scopus 로고    scopus 로고
    • Protective immunity to vaccinia virus induced by vaccination with multiple recombinant outer membrane proteins of intracellular and extracellular virions
    • Fogg, C., Lustig, S., Whitbeck, J. C., Eisenberg, R. J., Cohen, G. H. & Moss, B. (2004). Protective immunity to vaccinia virus induced by vaccination with multiple recombinant outer membrane proteins of intracellular and extracellular virions. J Virol 78, 10230-10237.
    • (2004) J Virol , vol.78 , pp. 10230-10237
    • Fogg, C.1    Lustig, S.2    Whitbeck, J.C.3    Eisenberg, R.J.4    Cohen, G.H.5    Moss, B.6
  • 18
    • 0033080182 scopus 로고    scopus 로고
    • Neutralizing and protective antibodies directed against vaccinia virus envelope antigens
    • Galmiche, M. C., Goenaga, J., Wittek, R. & Rindisbacher, L. (1999). Neutralizing and protective antibodies directed against vaccinia virus envelope antigens. Virology 254, 71-80.
    • (1999) Virology , vol.254 , pp. 71-80
    • Galmiche, M.C.1    Goenaga, J.2    Wittek, R.3    Rindisbacher, L.4
  • 19
    • 0034772321 scopus 로고    scopus 로고
    • Movements of vaccinia virus intracellular enveloped virions with GFP tagged to the F13L envelope protein
    • Geada, M. M., Galindo, I., Lorenzo, M. M., Perdiguero, B. & Blasco, R. (2001). Movements of vaccinia virus intracellular enveloped virions with GFP tagged to the F13L envelope protein. J Gen Virol 82, 2747-2760.
    • (2001) J Gen Virol , vol.82 , pp. 2747-2760
    • Geada, M.M.1    Galindo, I.2    Lorenzo, M.M.3    Perdiguero, B.4    Blasco, R.5
  • 20
    • 0034665453 scopus 로고    scopus 로고
    • Identification and analysis of vaccinia virus palmitylproteins
    • Grosenbach, D. W., Hansen, S. G. & Hruby, D. E. (2000). Identification and analysis of vaccinia virus palmitylproteins. Virology 275, 193-206.
    • (2000) Virology , vol.275 , pp. 193-206
    • Grosenbach, D.W.1    Hansen, S.G.2    Hruby, D.E.3
  • 21
    • 2642647850 scopus 로고    scopus 로고
    • Functional analysis of vaccinia virus B5R protein: Essential role in virus envelopment is independent of a large portion of the extracellular domain
    • Herrera, E., Lorenzo, M. M., Blasco, R. & Isaacs, S. N. (1998). Functional analysis of vaccinia virus B5R protein: essential role in virus envelopment is independent of a large portion of the extracellular domain. J Virol 72, 294-302.
    • (1998) J Virol , vol.72 , pp. 294-302
    • Herrera, E.1    Lorenzo, M.M.2    Blasco, R.3    Isaacs, S.N.4
  • 22
    • 27644518531 scopus 로고    scopus 로고
    • Vaccinia virus intracellular enveloped virions move to the cell periphery on microtubules in the absence of the A36R protein
    • Herrero-Martínez, E., Roberts, K. L., Hollinshead, M. & Smith, G. L. (2005). Vaccinia virus intracellular enveloped virions move to the cell periphery on microtubules in the absence of the A36R protein. J Gen Virol 86, 2961-2968.
    • (2005) J Gen Virol , vol.86 , pp. 2961-2968
    • Herrero-Martínez, E.1    Roberts, K.L.2    Hollinshead, M.3    Smith, G.L.4
  • 23
    • 0018679460 scopus 로고
    • Interaction of assembled progeny pox viruses with the cellular cytoskeleton
    • Hiller, G., Weber, K., Schneider, L., Parajsz, C. & Jungwirth, C. (1979). Interaction of assembled progeny pox viruses with the cellular cytoskeleton. Virology 98, 142-153.
    • (1979) Virology , vol.98 , pp. 142-153
    • Hiller, G.1    Weber, K.2    Schneider, L.3    Parajsz, C.4    Jungwirth, C.5
  • 24
    • 0032935036 scopus 로고    scopus 로고
    • Vaccinia virus intracellular mature virions contain only one lipid membrane
    • Hollinshead, M., Vanderplasschen, A., Smith, G. L. & Vaux, D. J. (1999). Vaccinia virus intracellular mature virions contain only one lipid membrane. J Virol 73, 1503-1517.
    • (1999) J Virol , vol.73 , pp. 1503-1517
    • Hollinshead, M.1    Vanderplasschen, A.2    Smith, G.L.3    Vaux, D.J.4
  • 26
    • 0025750131 scopus 로고
    • Vaccinia virus encodes an active thymidylate kinase that complements a cdc8 mutant of Saccharomyces cerevisiae
    • Hughes, S. J., Johnston, L. H., de Carlos, A. & Smith, G. L. (1991). Vaccinia virus encodes an active thymidylate kinase that complements a cdc8 mutant of Saccharomyces cerevisiae. J Biol Chem 266, 20103-20109.
    • (1991) J Biol Chem , vol.266 , pp. 20103-20109
    • Hughes, S.J.1    Johnston, L.H.2    de Carlos, A.3    Smith, G.L.4
  • 27
    • 0037431263 scopus 로고    scopus 로고
    • Topology of epitopetagged F13L protein, a major membrane component of extracellular vaccinia virions
    • Husain, M., Weisberg, A. & Moss, B. (2003). Topology of epitopetagged F13L protein, a major membrane component of extracellular vaccinia virions. Virology 308, 233-242.
    • (2003) Virology , vol.308 , pp. 233-242
    • Husain, M.1    Weisberg, A.2    Moss, B.3
  • 28
    • 0026454214 scopus 로고
    • Characterization of a vaccinia virus-encoded 42-kilodalton class I membrane glycoprotein component of the extracellular virus envelope
    • Isaacs, S. N., Wolffe, E. J., Payne, L. G. & Moss, B. (1992). Characterization of a vaccinia virus-encoded 42-kilodalton class I membrane glycoprotein component of the extracellular virus envelope. J Virol 66, 7217-7224.
    • (1992) J Virol , vol.66 , pp. 7217-7224
    • Isaacs, S.N.1    Wolffe, E.J.2    Payne, L.G.3    Moss, B.4
  • 29
    • 0036827647 scopus 로고    scopus 로고
    • Identification of second-site mutations that enhance release and spread of vaccinia virus
    • Katz, E., Wolffe, E. & Moss, B. (2002). Identification of second-site mutations that enhance release and spread of vaccinia virus. J Virol 76, 11637-11644.
    • (2002) J Virol , vol.76 , pp. 11637-11644
    • Katz, E.1    Wolffe, E.2    Moss, B.3
  • 30
    • 0242331724 scopus 로고    scopus 로고
    • Mutations in the vaccinia virus A33R and B5R envelope proteins that enhancerelease of extracellular virions and eliminate formation of actincontaining microvilli without preventing tyrosine phosphorylation of the A36R protein
    • Katz, E., Ward, B. M., Weisberg, A. S. & Moss, B. (2003). Mutations in the vaccinia virus A33R and B5R envelope proteins that enhancerelease of extracellular virions and eliminate formation of actincontaining microvilli without preventing tyrosine phosphorylation of the A36R protein. J Virol 77, 12266-12275.
    • (2003) J Virol , vol.77 , pp. 12266-12275
    • Katz, E.1    Ward, B.M.2    Weisberg, A.S.3    Moss, B.4
  • 31
    • 0026061401 scopus 로고
    • Vaccinia DNA ligase complements Saccharomyces cerevisiae cdc9, localizes in cytoplasmic factories and affects virulence and virus sensitivity to DNA damaging agents
    • Kerr, S. M., Johnston, L. H., Odell, M., Duncan, S. A., Law, K. M. & Smith, G. L. (1991). Vaccinia DNA ligase complements Saccharomyces cerevisiae cdc9, localizes in cytoplasmic factories and affects virulence and virus sensitivity to DNA damaging agents. EMBO J 10, 4343-4350.
    • (1991) EMBO J , vol.10 , pp. 4343-4350
    • Kerr, S.M.1    Johnston, L.H.2    Odell, M.3    Duncan, S.A.4    Law, K.M.5    Smith, G.L.6
  • 32
    • 0026553484 scopus 로고
    • A vaccinia serine protease inhibitor which prevents virus-induced cell fusion
    • Law, K. M. & Smith, G. L. (1992). A vaccinia serine protease inhibitor which prevents virus-induced cell fusion. J Gen Virol 73, 549-557.
    • (1992) J Gen Virol , vol.73 , pp. 549-557
    • Law, K.M.1    Smith, G.L.2
  • 33
    • 0035261905 scopus 로고    scopus 로고
    • Antibody neutralization of the extracellular enveloped form of vaccinia virus
    • Law, M. & Smith, G. L. (2001). Antibody neutralization of the extracellular enveloped form of vaccinia virus. Virology 280, 132-142.
    • (2001) Virology , vol.280 , pp. 132-142
    • Law, M.1    Smith, G.L.2
  • 34
    • 0036135030 scopus 로고    scopus 로고
    • Antibody-sensitive and antibody-resistant cell-to-cell spread by vaccinia virus: Role of the A33R protein in antibody-resistant spread
    • Law, M., Hollinshead, R. & Smith, G. L. (2002). Antibody-sensitive and antibody-resistant cell-to-cell spread by vaccinia virus: role of the A33R protein in antibody-resistant spread. J Gen Virol 83, 209-222.
    • (2002) J Gen Virol , vol.83 , pp. 209-222
    • Law, M.1    Hollinshead, R.2    Smith, G.L.3
  • 36
    • 0032567508 scopus 로고    scopus 로고
    • Functional analysis of vaccinia virus B5R protein: Role of the cytoplasmic tail
    • Lorenzo, M. M., Herrera, E., Blasco, R. & Isaacs, S. N. (1998). Functional analysis of vaccinia virus B5R protein: role of the cytoplasmic tail. Virology 252, 450-457.
    • (1998) Virology , vol.252 , pp. 450-457
    • Lorenzo, M.M.1    Herrera, E.2    Blasco, R.3    Isaacs, S.N.4
  • 37
    • 0033755309 scopus 로고    scopus 로고
    • Intracellular localization of vaccinia virus extracellular enveloped virus envelope proteins individually expressed using a Semliki Forest virus replicon
    • Lorenzo, M. M., Galindo, I., Griffiths, G. & Blasco, R. (2000). Intracellular localization of vaccinia virus extracellular enveloped virus envelope proteins individually expressed using a Semliki Forest virus replicon. J Virol 74, 10535-10550.
    • (2000) J Virol , vol.74 , pp. 10535-10550
    • Lorenzo, M.M.1    Galindo, I.2    Griffiths, G.3    Blasco, R.4
  • 38
    • 84858173222 scopus 로고    scopus 로고
    • Mutagenesis of the palmitoylation site in vaccinia virus envelope glycoprotein B5
    • Lorenzo, M. M., Sánchez-Puig, J. M. & Blasco, R. (2012). Mutagenesis of the palmitoylation site in vaccinia virus envelope glycoprotein B5. J Gen Virol 93, 733-743.
    • (2012) J Gen Virol , vol.93 , pp. 733-743
    • Lorenzo, M.M.1    Sánchez-Puig J., M.2    Blasco, R.3
  • 39
    • 0021345626 scopus 로고
    • General method for production and selection of infectious vaccinia virus recombinants expressing foreign genes
    • Mackett, M., Smith, G. L. & Moss, B. (1984). General method for production and selection of infectious vaccinia virus recombinants expressing foreign genes. J Virol 49, 857-864.
    • (1984) J Virol , vol.49 , pp. 857-864
    • Mackett, M.1    Smith, G.L.2    Moss, B.3
  • 40
    • 0031911650 scopus 로고    scopus 로고
    • The extracellular domain of vaccinia virus protein B5R affects plaque phenotype, extracellular enveloped virus release, and intracellular actin tail formation
    • Mathew, E., Sanderson, C. M., Hollinshead, M. & Smith, G. L. (1998). The extracellular domain of vaccinia virus protein B5R affects plaque phenotype, extracellular enveloped virus release, and intracellular actin tail formation. J Virol 72, 2429-2438.
    • (1998) J Virol , vol.72 , pp. 2429-2438
    • Mathew, E.1    Sanderson, C.M.2    Hollinshead, M.3    Smith, G.L.4
  • 41
    • 0033527894 scopus 로고    scopus 로고
    • The effects of targeting the vaccinia virus B5R protein to the endoplasmic reticulum on virus morphogenesis and dissemination
    • Mathew, E. C., Sanderson, C. M., Hollinshead, R., Hollinshead, M., Grimley, R. & Smith, G. L. (1999). The effects of targeting the vaccinia virus B5R protein to the endoplasmic reticulum on virus morphogenesis and dissemination. Virology 265, 131-146.
    • (1999) Virology , vol.265 , pp. 131-146
    • Mathew, E.C.1    Sanderson, C.M.2    Hollinshead, R.3    Hollinshead, M.4    Grimley, R.5    Smith, G.L.6
  • 42
    • 0035008263 scopus 로고    scopus 로고
    • A mutational analysis of the vaccinia virus B5R protein
    • Mathew, E. C., Sanderson, C. M., Hollinshead, R. & Smith, G. L. (2001). A mutational analysis of the vaccinia virus B5R protein. J Gen Virol 82, 1199-1213.
    • (2001) J Gen Virol , vol.82 , pp. 1199-1213
    • Mathew, E.C.1    Sanderson, C.M.2    Hollinshead, R.3    Smith, G.L.4
  • 43
    • 0029655645 scopus 로고    scopus 로고
    • Vaccinia virus glycoprotein A34R is required for infectivity of extracellular enveloped virus
    • McIntosh, A. A. & Smith, G. L. (1996). Vaccinia virus glycoprotein A34R is required for infectivity of extracellular enveloped virus. J Virol 70, 272-281.
    • (1996) J Virol , vol.70 , pp. 272-281
    • McIntosh, A.A.1    Smith, G.L.2
  • 44
    • 42449154473 scopus 로고    scopus 로고
    • Poxviridae: The viruses and their replicaton
    • 5th edn
    • Moss, B. (2007). Poxviridae: the viruses and their replicaton. In Fields Virology, 5th edn, pp. 2905-2946.
    • (2007) Fields Virology , pp. 2905-2946
    • Moss, B.1
  • 45
    • 84865122489 scopus 로고    scopus 로고
    • Philadelphia, PA: Lippincott Williams & Wilkins
    • Edited by D. M. Knipe & P. M. Howley. Philadelphia, PA: Lippincott Williams & Wilkins.
    • Knipe D., M.1    Howley, P.M.2
  • 46
    • 6044223321 scopus 로고    scopus 로고
    • SRC mediates a switch from microtubule- to actin-based motility of vaccinia virus
    • Newsome, T. P., Scaplehorn, N. & Way, M. (2004). SRC mediates a switch from microtubule- to actin-based motility of vaccinia virus. Science 306, 124-129.
    • (2004) Science , vol.306 , pp. 124-129
    • Newsome, T.P.1    Scaplehorn, N.2    Way, M.3
  • 47
    • 30344450083 scopus 로고    scopus 로고
    • Modified vaccinia virus Ankara multiplies in rat IEC-6 cells and limited production of mature virions occurs in other mammalian cell lines
    • Okeke, M. I., Nilssen, O. & Traavik, T. (2006). Modified vaccinia virus Ankara multiplies in rat IEC-6 cells and limited production of mature virions occurs in other mammalian cell lines. J Gen Virol 87, 21-27.
    • (2006) J Gen Virol , vol.87 , pp. 21-27
    • Okeke, M.I.1    Nilssen, O.2    Traavik, T.3
  • 48
    • 0027980628 scopus 로고
    • Vaccinia virus gene A36R encodes a Mr 43-50 K protein on the surface of extracellular enveloped virus
    • Parkinson, J. E. & Smith, G. L. (1994). Vaccinia virus gene A36R encodes a Mr 43-50 K protein on the surface of extracellular enveloped virus. Virology 204, 376-390.
    • (1994) Virology , vol.204 , pp. 376-390
    • Parkinson, J.E.1    Smith, G.L.2
  • 49
    • 0018771518 scopus 로고
    • Identification of the vaccinia hemagglutinin polypeptide from a cell system yielding large amounts of extracellular enveloped virus
    • Payne, L. G. (1979). Identification of the vaccinia hemagglutinin polypeptide from a cell system yielding large amounts of extracellular enveloped virus. J Virol 31, 147-155.
    • (1979) J Virol , vol.31 , pp. 147-155
    • Payne, L.G.1
  • 50
    • 0018604063 scopus 로고
    • Mechanism of vaccinia virus release and its specific inhibition by N1-isonicotinoyl-N2-3-methyl-4- chlorobenzoylhydrazine
    • Payne, L. G. & Kristenson, K. (1979). Mechanism of vaccinia virus release and its specific inhibition by N1-isonicotinoyl-N2-3-methyl-4- chlorobenzoylhydrazine. J Virol 32, 614-622.
    • (1979) J Virol , vol.32 , pp. 614-622
    • Payne, L.G.1    Kristenson, K.2
  • 51
    • 0017159846 scopus 로고
    • Presence of haemagglutinin in the envelope of extracellular vaccinia virus particles
    • Payne, L. G. & Norrby, E. (1976). Presence of haemagglutinin in the envelope of extracellular vaccinia virus particles. J Gen Virol 32, 63-72.
    • (1976) J Gen Virol , vol.32 , pp. 63-72
    • Payne, L.G.1    Norrby, E.2
  • 52
    • 33748671566 scopus 로고    scopus 로고
    • Interaction between vaccinia virus extracellular virus envelope A33 and B5 glycoproteins
    • Perdiguero, B. & Blasco, R. (2006). Interaction between vaccinia virus extracellular virus envelope A33 and B5 glycoproteins. J Virol 80, 8763-8777.
    • (2006) J Virol , vol.80 , pp. 8763-8777
    • Perdiguero, B.1    Blasco, R.2
  • 53
    • 39749149673 scopus 로고    scopus 로고
    • Vaccinia virus A34 glycoprotein determines the protein composition of the extracellular virus envelope
    • Perdiguero, B., Lorenzo, M. M. & Blasco, R. (2008). Vaccinia virus A34 glycoprotein determines the protein composition of the extracellular virus envelope. J Virol 82, 2150-2160.
    • (2008) J Virol , vol.82 , pp. 2150-2160
    • Perdiguero, B.1    Lorenzo, M.M.2    Blasco, R.3
  • 55
    • 67849133622 scopus 로고    scopus 로고
    • Acidic residues in the membraneproximal stalk region of vaccinia virus protein B5 are required for glycosaminoglycan-mediated disruption of the extracellular enveloped virus outer membrane
    • Roberts, K. L., Breiman, A., Carter, G. C., Ewles, H. A., Hollinshead, M., Law, M. & Smith, G. L. (2009). Acidic residues in the membraneproximal stalk region of vaccinia virus protein B5 are required for glycosaminoglycan-mediated disruption of the extracellular enveloped virus outer membrane. J Gen Virol 90, 1582-1591.
    • (2009) J Gen Virol , vol.90 , pp. 1582-1591
    • Roberts, K.L.1    Breiman, A.2    Carter, G.C.3    Ewles, H.A.4    Hollinshead, M.5    Law, M.6    Smith, G.L.7
  • 56
    • 0029994032 scopus 로고    scopus 로고
    • Extracellular vaccinia virus envelope glycoprotein encoded by the A33R gene
    • Roper, R. L., Payne, L. G. & Moss, B. (1996). Extracellular vaccinia virus envelope glycoprotein encoded by the A33R gene. J Virol 70, 3753-3762.
    • (1996) J Virol , vol.70 , pp. 3753-3762
    • Roper, R.L.1    Payne, L.G.2    Moss, B.3
  • 57
    • 0031958096 scopus 로고    scopus 로고
    • The envelope protein encoded by the A33R gene is required for formation of actin-containing microvilli and efficient cell-to-cell spread of vaccinia virus
    • Roper, R. L., Wolffe, E. J., Weisberg, A. & Moss, B. (1998). The envelope protein encoded by the A33R gene is required for formation of actin-containing microvilli and efficient cell-to-cell spread of vaccinia virus. J Virol 72, 4192-4204.
    • (1998) J Virol , vol.72 , pp. 4192-4204
    • Roper, R.L.1    Wolffe, E.J.2    Weisberg, A.3    Moss, B.4
  • 58
    • 0345471829 scopus 로고    scopus 로고
    • Interactions between vaccinia virus IEV membrane proteins and their roles in IEV assembly and actin tail formation
    • Röttger, S., Frischknecht, F., Reckmann, I., Smith, G. L. & Way, M. (1999). Interactions between vaccinia virus IEV membrane proteins and their roles in IEV assembly and actin tail formation. J Virol 73, 2863-2875.
    • (1999) J Virol , vol.73 , pp. 2863-2875
    • Röttger, S.1    Frischknecht, F.2    Reckmann, I.3    Smith, G.L.4    Way, M.5
  • 59
    • 0031806239 scopus 로고    scopus 로고
    • Roles of vaccinia virus EEV-specific proteins in intracellular actin tail formation and low pH-induced cell-cell fusion
    • Sanderson, C. M., Frischknecht, F., Way, M., Hollinshead, M. & Smith, G. L. (1998a). Roles of vaccinia virus EEV-specific proteins in intracellular actin tail formation and low pH-induced cell-cell fusion. J Gen Virol 79, 1415-1425.
    • (1998) J Gen Virol , vol.79 , pp. 1415-1425
    • Sanderson, C.M.1    Frischknecht, F.2    Way, M.3    Hollinshead, M.4    Smith, G.L.5
  • 60
    • 0031906414 scopus 로고    scopus 로고
    • Virus-induced cell motility
    • Sanderson, C. M., Way, M. & Smith, G. L. (1998b). Virus-induced cell motility. J Virol 72, 1235-1243.
    • (1998) J Virol , vol.72 , pp. 1235-1243
    • Sanderson, C.M.1    Way, M.2    Smith, G.L.3
  • 61
  • 62
    • 0028097957 scopus 로고
    • Assembly of vaccinia virus: The second wrapping cisterna is derived from the trans Golgi network
    • Schmelz, M., Sodeik, B., Ericsson, M., Wolffe, E. J., Shida, H., Hiller, G. & Griffiths, G. (1994). Assembly of vaccinia virus: the second wrapping cisterna is derived from the trans Golgi network. J Virol 68, 130-147.
    • (1994) J Virol , vol.68 , pp. 130-147
    • Schmelz, M.1    Sodeik, B.2    Ericsson, M.3    Wolffe, E.J.4    Shida, H.5    Hiller, G.6    Griffiths, G.7
  • 64
    • 0020580729 scopus 로고
    • Infectious vaccinia virus recombinants that express hepatitis B virus surface antigen
    • Smith, G. L., Mackett, M. & Moss, B. (1983). Infectious vaccinia virus recombinants that express hepatitis B virus surface antigen. Nature 302, 490-495.
    • (1983) Nature , vol.302 , pp. 490-495
    • Smith, G.L.1    Mackett, M.2    Moss, B.3
  • 65
    • 0036932713 scopus 로고    scopus 로고
    • The formation and function of extracellular enveloped vaccinia virus
    • Smith, G. L., Vanderplasschen, A. & Law, M. (2002). The formation and function of extracellular enveloped vaccinia virus. J Gen Virol 83, 2915-2931.
    • (2002) J Gen Virol , vol.83 , pp. 2915-2931
    • Smith, G.L.1    Vanderplasschen, A.2    Law, M.3
  • 67
    • 0017067118 scopus 로고
    • High-voltage electron microscope study of the release of vaccinia virus from whole cells
    • Stokes, G. V. (1976). High-voltage electron microscope study of the release of vaccinia virus from whole cells. J Virol 18, 636-643.
    • (1976) J Virol , vol.18 , pp. 636-643
    • Stokes, G.V.1
  • 68
    • 77649200550 scopus 로고    scopus 로고
    • The structure of the poxvirus A33 protein reveals a dimer of unique Ctype lectin-like domains
    • Su, H. P., Singh, K., Gittis, A. G. & Garboczi, D. N. (2010). The structure of the poxvirus A33 protein reveals a dimer of unique Ctype lectin-like domains. J Virol 84, 2502-2510.
    • (2010) J Virol , vol.84 , pp. 2502-2510
    • Su, H.P.1    Singh, K.2    Gittis, A.G.3    Garboczi, D.N.4
  • 69
    • 0026027719 scopus 로고
    • Regulation of plaque size and host range by a vaccinia virus gene related to complement system proteins
    • Takahashi-Nishimaki, F., Funahashi, S., Miki, K., Hashizume, S. & Sugimoto, M. (1991). Regulation of plaque size and host range by a vaccinia virus gene related to complement system proteins. Virology 181, 158-164.
    • (1991) Virology , vol.181 , pp. 158-164
    • Takahashi-Nishimaki, F.1    Funahashi, S.2    Miki, K.3    Hashizume, S.4    Sugimoto, M.5
  • 70
    • 33645034664 scopus 로고    scopus 로고
    • The cowpox virus fusion regulator proteins SPI-3 and hemagglutinin interact in infected and uninfected cells
    • Turner, P. C. & Moyer, R. W. (2006). The cowpox virus fusion regulator proteins SPI-3 and hemagglutinin interact in infected and uninfected cells. Virology 347, 88-99.
    • (2006) Virology , vol.347 , pp. 88-99
    • Turner, P.C.1    Moyer, R.W.2
  • 71
    • 31144458118 scopus 로고    scopus 로고
    • Vaccinia virus-induced cell motility requires F11Lmediated inhibition of RhoA signaling
    • Valderrama, F., Cordeiro, J. V., Schleich, S., Frischknecht, F. & Way, M. (2006). Vaccinia virus-induced cell motility requires F11Lmediated inhibition of RhoA signaling. Science 311, 377-381.
    • (2006) Science , vol.311 , pp. 377-381
    • Valderrama, F.1    Cordeiro, J.V.2    Schleich, S.3    Frischknecht, F.4    Way, M.5
  • 72
    • 0034713248 scopus 로고    scopus 로고
    • The vaccinia virus A36R protein is a type Ib membrane protein present on intracellular but not extracellular enveloped virus particles
    • van Eijl, H., Hollinshead, M. & Smith, G. L. (2000). The vaccinia virus A36R protein is a type Ib membrane protein present on intracellular but not extracellular enveloped virus particles. Virology 271, 26-36.
    • (2000) Virology , vol.271 , pp. 26-36
    • van Eijl, H.1    Hollinshead, M.2    Smith, G.L.3
  • 73
    • 0036135767 scopus 로고    scopus 로고
    • The vaccinia virus F12L protein is associated with intracellular enveloped virus particles and is required for their egress to the cell surface
    • van Eijl, H., Hollinshead, M., Rodger, G., Zhang, W. H. & Smith, G. L. (2002). The vaccinia virus F12L protein is associated with intracellular enveloped virus particles and is required for their egress to the cell surface. J Gen Virol 83, 195-207.
    • (2002) J Gen Virol , vol.83 , pp. 195-207
    • van Eijl, H.1    Hollinshead, M.2    Rodger, G.3    Zhang, W.H.4    Smith, G.L.5
  • 74
    • 34249936107 scopus 로고    scopus 로고
    • Association of vaccinia virus fusion regulatory proteins with the multicomponent entry/fusion complex
    • Wagenaar, T. R. & Moss, B. (2007). Association of vaccinia virus fusion regulatory proteins with the multicomponent entry/fusion complex. J Virol 81, 6286-6293.
    • (2007) J Virol , vol.81 , pp. 6286-6293
    • Wagenaar, T.R.1    Moss, B.2
  • 75
    • 59649101872 scopus 로고    scopus 로고
    • Expression of the A56 and K2 proteins is sufficient to inhibit vaccinia virus entry and cell fusion
    • Wagenaar, T. R. & Moss, B. (2009). Expression of the A56 and K2 proteins is sufficient to inhibit vaccinia virus entry and cell fusion. J Virol 83, 1546-1554.
    • (2009) J Virol , vol.83 , pp. 1546-1554
    • Wagenaar, T.R.1    Moss, B.2
  • 76
    • 43949114191 scopus 로고    scopus 로고
    • Vaccinia virus A56/K2 fusion regulatory protein interacts with the A16 and G9 subunits of the entry fusion complex
    • Wagenaar, T. R., Ojeda, S. & Moss, B. (2008). Vaccinia virus A56/K2 fusion regulatory protein interacts with the A16 and G9 subunits of the entry fusion complex. J Virol 82, 5153-5160.
    • (2008) J Virol , vol.82 , pp. 5153-5160
    • Wagenaar, T.R.1    Ojeda, S.2    Moss, B.3
  • 77
    • 0035164017 scopus 로고    scopus 로고
    • Vaccinia virus intracellular movement is associated with microtubules and independent of actin tails
    • Ward, B. M. & Moss, B. (2001). Vaccinia virus intracellular movement is associated with microtubules and independent of actin tails. J Virol 75, 11651-11663.
    • (2001) J Virol , vol.75 , pp. 11651-11663
    • Ward, B.M.1    Moss, B.2
  • 78
    • 0037379187 scopus 로고    scopus 로고
    • Mapping and functional analysis of interaction sites within the cytoplasmic domains of the vaccinia virus A33R and A36R envelope proteins
    • Ward, B. M., Weisberg, A. S. & Moss, B. (2003). Mapping and functional analysis of interaction sites within the cytoplasmic domains of the vaccinia virus A33R and A36R envelope proteins. J Virol 77, 4113-4126.
    • (2003) J Virol , vol.77 , pp. 4113-4126
    • Ward, B.M.1    Weisberg, A.S.2    Moss, B.3
  • 79
    • 0027162408 scopus 로고
    • Deletion of the vaccinia virus B5R gene encoding a 42-kilodalton membrane glycoprotein inhibits extracellular virus envelope formation and dissemination
    • Wolffe, E. J., Isaacs, S. N. & Moss, B. (1993). Deletion of the vaccinia virus B5R gene encoding a 42-kilodalton membrane glycoprotein inhibits extracellular virus envelope formation and dissemination. J Virol 67, 4732-4741.
    • (1993) J Virol , vol.67 , pp. 4732-4741
    • Wolffe, E.J.1    Isaacs, S.N.2    Moss, B.3
  • 80
    • 0034749285 scopus 로고    scopus 로고
    • The vaccinia virus A33R protein provides a chaperone function for viral membrane localization and tyrosine phosphorylation of the A36R protein
    • Wolffe, E. J., Weisberg, A. S. & Moss, B. (2001). The vaccinia virus A33R protein provides a chaperone function for viral membrane localization and tyrosine phosphorylation of the A36R protein. J Virol 75, 303-310.
    • (2001) J Virol , vol.75 , pp. 303-310
    • Wolffe, E.J.1    Weisberg, A.S.2    Moss, B.3
  • 81
    • 0034468812 scopus 로고    scopus 로고
    • Vaccinia virus F12L protein is required for actin tail formation, normal plaque size, and virulence
    • Zhang, W. H., Wilcock, D. & Smith, G. L. (2000). Vaccinia virus F12L protein is required for actin tail formation, normal plaque size, and virulence. J Virol 74, 11654-11662.
    • (2000) J Virol , vol.74 , pp. 11654-11662
    • Zhang, W.H.1    Wilcock, D.2    Smith, G.L.3
  • 82
    • 0026736421 scopus 로고
    • The vaccinia virus K2L gene encodes a serine protease inhibitor which inhibits cell-cell fusion
    • Zhou, J., Sun, X. Y., Fernando, G. J. & Frazer, I. H. (1992). The vaccinia virus K2L gene encodes a serine protease inhibitor which inhibits cell-cell fusion. Virology 189, 678-686.
    • (1992) Virology , vol.189 , pp. 678-686
    • Zhou, J.1    Sun, X.Y.2    Fernando, G.J.3    Frazer, I.H.4
  • 83
    • 77954541066 scopus 로고    scopus 로고
    • Functional F11L and K1L genes in modified vaccinia virus Ankara restore virus-induced cell motility but not growth in human and murine cells
    • Zwilling, J., Sliva, K., Schwantes, A., Schnierle, B. & Sutter, G. (2010). Functional F11L and K1L genes in modified vaccinia virus Ankara restore virus-induced cell motility but not growth in human and murine cells. Virology 404, 231-239.
    • (2010) Virology , vol.404 , pp. 231-239
    • Zwilling, J.1    Sliva, K.2    Schwantes, A.3    Schnierle, B.4    Sutter, G.5


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.