-
1
-
-
33845984343
-
Molecular regulation of osteoclast activity
-
Bruzzaniti A, Baron R 2006 Molecular regulation of osteoclast activity. Rev Endocr Metab Disord 7:123-139
-
(2006)
Rev Endocr Metab Disord
, vol.7
, pp. 123-139
-
-
Bruzzaniti, A.1
Baron, R.2
-
3
-
-
78650257620
-
PPARγ in bone homeostasis
-
Wan Y 2010 PPARγ in bone homeostasis. Trends Endocrinol Metab 21:722-728
-
(2010)
Trends Endocrinol Metab
, vol.21
, pp. 722-728
-
-
Wan, Y.1
-
4
-
-
0028173214
-
c-Fos: A key regulator of osteoclastmacrophage lineage determination and bone remodeling
-
Grigoriadis AE, Wang ZQ, Cecchini MG, Hofstetter W, Felix R, Fleisch HA, Wagner EF 1994 c-Fos: a key regulator of osteoclastmacrophage lineage determination and bone remodeling. Science 266:443-448
-
(1994)
Science
, vol.266
, pp. 443-448
-
-
Grigoriadis, A.E.1
Wang, Z.Q.2
Cecchini, M.G.3
Hofstetter, W.4
Felix, R.5
Fleisch, H.A.6
Wagner, E.F.7
-
5
-
-
18744366041
-
Induction and activation of the transcription factor NFATc1 (NFAT2) integrate RANKL signaling in terminal differentiation of osteoclasts
-
Takayanagi H, Kim S, Koga T, Nishina H, Isshiki M, Yoshida H, Saiura A, Isobe M, Yokochi T, Inoue J, Wagner EF, Mak TW, Kodama T, Taniguchi T 2002 Induction and activation of the transcription factor NFATc1 (NFAT2) integrate RANKL signaling in terminal differentiation of osteoclasts. Dev Cell 3:889-901
-
(2002)
Dev Cell
, vol.3
, pp. 889-901
-
-
Takayanagi, H.1
Kim, S.2
Koga, T.3
Nishina, H.4
Isshiki, M.5
Yoshida, H.6
Saiura, A.7
Isobe, M.8
Yokochi, T.9
Inoue, J.10
Wagner, E.F.11
Mak, T.W.12
Kodama, T.13
Taniguchi, T.14
-
6
-
-
33846949349
-
Dickkopf-1 is a master regulator of joint remodeling
-
Diarra D, Stolina M, Polzer K, Zwerina J, Ominsky MS, Dwyer D, Korb A, Smolen J, Hoffmann M, Scheinecker C, van der Heide D, Landewe R, Lacey D, Richards WG, Schett G 2007 Dickkopf-1 is a master regulator of joint remodeling. Nat Med 13:156-163
-
(2007)
Nat Med
, vol.13
, pp. 156-163
-
-
Diarra, D.1
Stolina, M.2
Polzer, K.3
Zwerina, J.4
Ominsky, M.S.5
Dwyer, D.6
Korb, A.7
Smolen, J.8
Hoffmann, M.9
Scheinecker, C.10
van der Heide, D.11
Landewe, R.12
Lacey, D.13
Richards, W.G.14
Schett, G.15
-
7
-
-
67650431302
-
Anti-DKK1 mAb (BHQ880) as a potential therapeutic agent for multiple myeloma
-
Fulciniti M, Tassone P, Hideshima T, Vallet S, Nanjappa P, Ettenberg SA, Shen Z, Patel N, Tai YT, Chauhan D, Mitsiades C, Prabhala R, Raje N, Anderson KC, Stover DR, Munshi NC 2009 Anti-DKK1 mAb (BHQ880) as a potential therapeutic agent for multiple myeloma. Blood 114:371-379
-
(2009)
Blood
, vol.114
, pp. 371-379
-
-
Fulciniti, M.1
Tassone, P.2
Hideshima, T.3
Vallet, S.4
Nanjappa, P.5
Ettenberg, S.A.6
Shen, Z.7
Patel, N.8
Tai, Y.T.9
Chauhan, D.10
Mitsiades, C.11
Prabhala, R.12
Raje, N.13
Anderson, K.C.14
Stover, D.R.15
Munshi, N.C.16
-
8
-
-
65549152230
-
Sclerostin antibody treatment increases bone formation, bone mass, and bone strength in a rat model of postmenopausal osteoporosis
-
Li X, Ominsky MS, Warmington KS, Morony S, Gong J, Cao J, Gao Y, Shalhoub V, Tipton B, Haldankar R, Chen Q, Winters A, Boone T, Geng Z, Niu QT, Ke HZ, Kostenuik PJ, Simonet WS, Lacey DL, Paszty C 2009 Sclerostin antibody treatment increases bone formation, bone mass, and bone strength in a rat model of postmenopausal osteoporosis. J Bone Miner Res 24:578-588
-
(2009)
J Bone Miner Res
, vol.24
, pp. 578-588
-
-
Li, X.1
Ominsky, M.S.2
Warmington, K.S.3
Morony, S.4
Gong, J.5
Cao, J.6
Gao, Y.7
Shalhoub, V.8
Tipton, B.9
Haldankar, R.10
Chen, Q.11
Winters, A.12
Boone, T.13
Geng, Z.14
Niu, Q.T.15
Ke, H.Z.16
Kostenuik, P.J.17
Simonet, W.S.18
Lacey, D.L.19
Paszty, C.20
more..
-
9
-
-
77953481395
-
Two doses of sclerostin antibody in cynomolgus monkeys increases bone formation, bone mineral density, and bone strength
-
Ominsky MS, Vlasseros F, Jolette J, Smith SY, Stouch B, Doellgast G, Gong J, Gao Y, Cao J, Graham K, Tipton B, Cai J, Deshpande R, Zhou L, Hale MD, Lightwood DJ, Henry AJ, Popplewell AG, Moore AR, Robinson MK, Lacey DL, Simonet WS, Paszty C 2010 Two doses of sclerostin antibody in cynomolgus monkeys increases bone formation, bone mineral density, and bone strength. J Bone Miner Res 25:948-959
-
(2010)
J Bone Miner Res
, vol.25
, pp. 948-959
-
-
Ominsky, M.S.1
Vlasseros, F.2
Jolette, J.3
Smith, S.Y.4
Stouch, B.5
Doellgast, G.6
Gong, J.7
Gao, Y.8
Cao, J.9
Graham, K.10
Tipton, B.11
Cai, J.12
Deshpande, R.13
Zhou, L.14
Hale, M.D.15
Lightwood, D.J.16
Henry, A.J.17
Popplewell, A.G.18
Moore, A.R.19
Robinson, M.K.20
Lacey, D.L.21
Simonet, W.S.22
Paszty, C.23
more..
-
10
-
-
27744461726
-
Sclerostin is a delayed secreted product of osteocytes that inhibits bone formation
-
Poole KE, van Bezooijen RL, Loveridge N, Hamersma H, Papapoulos SE, Löwik CW, Reeve J 2005 Sclerostin is a delayed secreted product of osteocytes that inhibits bone formation. FASEB J 19:1842-1844
-
(2005)
FASEB J
, vol.19
, pp. 1842-1844
-
-
Poole, K.E.1
van Bezooijen, R.L.2
Loveridge, N.3
Hamersma, H.4
Papapoulos, S.E.5
Löwik, C.W.6
Reeve, J.7
-
11
-
-
0346363760
-
The role of the Wnt-signaling antagonist DKK1 in the development of osteolytic lesions in multiple myeloma
-
Tian E, Zhan F, Walker R, Rasmussen E, Ma Y, Barlogie B, Shaughnessy Jr JD 2003 The role of the Wnt-signaling antagonist DKK1 in the development of osteolytic lesions in multiple myeloma. N Engl J Med 349:2483-2494.
-
(2003)
N Engl J Med
, vol.349
, pp. 2483-2494
-
-
Tian, E.1
Zhan, F.2
Walker, R.3
Rasmussen, E.4
Ma, Y.5
Barlogie, B.6
Shaughnessy Jr., J.D.7
-
12
-
-
17844372752
-
Wnt/β-catenin signaling in mesenchymal progenitors controls osteoblast and chondrocyte differentiation during vertebrate skeletogenesis
-
Day TF, Guo X, Garrett-Beal L, Yang Y 2005 Wnt/β-catenin signaling in mesenchymal progenitors controls osteoblast and chondrocyte differentiation during vertebrate skeletogenesis. Dev Cell 8:739-750
-
(2005)
Dev Cell
, vol.8
, pp. 739-750
-
-
Day, T.F.1
Guo, X.2
Garrett-Beal, L.3
Yang, Y.4
-
13
-
-
20244373613
-
Canonical Wnt signaling in differentiated osteoblasts controls osteoclast differentiation
-
Glass II DA, Bialek P, Ahn JD, Starbuck M, Patel MS, Clevers H, Taketo MM, Long F, McMahon AP, Lang RA, Karsenty G 2005 Canonical Wnt signaling in differentiated osteoblasts controls osteoclast differentiation. Dev Cell 8:751-764
-
(2005)
Dev Cell
, vol.8
, pp. 751-764
-
-
Glass II, D.A.1
Bialek, P.2
Ahn, J.D.3
Starbuck, M.4
Patel, M.S.5
Clevers, H.6
Taketo, M.M.7
Long, F.8
McMahon, A.P.9
Lang, R.A.10
Karsenty, G.11
-
14
-
-
17844363974
-
Canonical Wnt/β-catenin signaling prevents osteoblasts from differentiating into chondrocytes
-
Hill TP, Später D, Taketo MM, Birchmeier W, Hartmann C 2005 Canonical Wnt/β-catenin signaling prevents osteoblasts from differentiating into chondrocytes. Dev Cell 8:727-738
-
(2005)
Dev Cell
, vol.8
, pp. 727-738
-
-
Hill, T.P.1
Später, D.2
Taketo, M.M.3
Birchmeier, W.4
Hartmann, C.5
-
15
-
-
20444376156
-
Essential role of β-catenin in postnatal bone acquisition
-
Holmen SL, Zylstra CR, Mukherjee A, Sigler RE, Faugere MC, Bouxsein ML, Deng L, Clemens TL, Williams BO 2005 Essential role of β-catenin in postnatal bone acquisition. J Biol Chem 280:21162-21168
-
(2005)
J Biol Chem
, vol.280
, pp. 21162-21168
-
-
Holmen, S.L.1
Zylstra, C.R.2
Mukherjee, A.3
Sigler, R.E.4
Faugere, M.C.5
Bouxsein, M.L.6
Deng, L.7
Clemens, T.L.8
Williams, B.O.9
-
16
-
-
83255192191
-
Biphasic and dosage-dependent regulation of osteoclastogenesis by β-catenin
-
Wei W, Zeve D, Suh JM, Wang X, Du Y, Zerwekh JE, Dechow PC, Graff JM, Wan Y 2011 Biphasic and dosage-dependent regulation of osteoclastogenesis by β-catenin. Mol Cell Biol 31:4706-4719
-
(2011)
Mol Cell Biol
, vol.31
, pp. 4706-4719
-
-
Wei, W.1
Zeve, D.2
Suh, J.M.3
Wang, X.4
Du, Y.5
Zerwekh, J.E.6
Dechow, P.C.7
Graff, J.M.8
Wan, Y.9
-
17
-
-
84863239847
-
TREM2 and β-catenin regulate bone homeostasis by controlling the rate of osteoclastogenesis
-
Otero K, Shinohara M, Zhao H, Cella M, Gilfillan S, Colucci A, Faccio R, Ross FP, Teitelbaum SL, Takayanagi H, Colonna M 2012 TREM2 and β-catenin regulate bone homeostasis by controlling the rate of osteoclastogenesis. J Immunol 188:2612-2621
-
(2012)
J Immunol
, vol.188
, pp. 2612-2621
-
-
Otero, K.1
Shinohara, M.2
Zhao, H.3
Cella, M.4
Gilfillan, S.5
Colucci, A.6
Faccio, R.7
Ross, F.P.8
Teitelbaum, S.L.9
Takayanagi, H.10
Colonna, M.11
-
18
-
-
57749170458
-
The many roles of histone deacetylases in development and physiology: Implications for disease and therapy
-
Haberland M, Montgomery RL, Olson EN 2009 The many roles of histone deacetylases in development and physiology: implications for disease and therapy. Nat Rev Genet 10:32-42
-
(2009)
Nat Rev Genet
, vol.10
, pp. 32-42
-
-
Haberland, M.1
Montgomery, R.L.2
Olson, E.N.3
-
19
-
-
79952003783
-
Histone deacetylases in skeletal development and bone mass maintenance
-
McGee-Lawrence ME, Westendorf JJ 2011 Histone deacetylases in skeletal development and bone mass maintenance. Gene 474:1-11
-
(2011)
Gene
, vol.474
, pp. 1-11
-
-
McGee-Lawrence, M.E.1
Westendorf, J.J.2
-
20
-
-
80053165908
-
Inhibitors of histone deacetylases in class I and class II suppress human osteoclasts in vitro
-
Cantley MD, Fairlie DP, Bartold PM, Rainsford KD, Le GT, Lucke AJ, Holding CA, Haynes DR 2011 Inhibitors of histone deacetylases in class I and class II suppress human osteoclasts in vitro. J Cell Physiol 226:3233-3241
-
(2011)
J Cell Physiol
, vol.226
, pp. 3233-3241
-
-
Cantley, M.D.1
Fairlie, D.P.2
Bartold, P.M.3
Rainsford, K.D.4
Le, G.T.5
Lucke, A.J.6
Holding, C.A.7
Haynes, D.R.8
-
21
-
-
84865023848
-
MS-275, a benzamide histone deacetylase inhibitor, prevents osteoclastogenesis by down-regulating c-Fos expression and suppresses bone loss in mice
-
Kim HN, Lee JH, Jin WJ, Ko S, Jung K, Ha H, Lee ZH 2012 MS-275, a benzamide histone deacetylase inhibitor, prevents osteoclastogenesis by down-regulating c-Fos expression and suppresses bone loss in mice. Eur J Pharmacol 691:69-76
-
(2012)
Eur J Pharmacol
, vol.691
, pp. 69-76
-
-
Kim, H.N.1
Lee, J.H.2
Jin, W.J.3
Ko, S.4
Jung, K.5
Ha, H.6
Lee, Z.H.7
-
22
-
-
27144487343
-
Inhibition of histone deacetylase suppresses osteoclastogenesis and bone destruction by inducing IFN-β production
-
Nakamura T, Kukita T, Shobuike T, Nagata K, Wu Z, Ogawa K, Hotokebuchi T, Kohashi O, Kukita A 2005 Inhibition of histone deacetylase suppresses osteoclastogenesis and bone destruction by inducing IFN-β production. J Immunol 175:5809-5816
-
(2005)
J Immunol
, vol.175
, pp. 5809-5816
-
-
Nakamura, T.1
Kukita, T.2
Shobuike, T.3
Nagata, K.4
Wu, Z.5
Ogawa, K.6
Hotokebuchi, T.7
Kohashi, O.8
Kukita, A.9
-
23
-
-
0038542837
-
Two histone deacetylase inhibitors, trichostatin A and sodium butyrate, suppress differentiation into osteoclasts but not into macrophages
-
Rahman MM, Kukita A, Kukita T, Shobuike T, Nakamura T, Kohashi O 2003 Two histone deacetylase inhibitors, trichostatin A and sodium butyrate, suppress differentiation into osteoclasts but not into macrophages. Blood 101:3451-3459
-
(2003)
Blood
, vol.101
, pp. 3451-3459
-
-
Rahman, M.M.1
Kukita, A.2
Kukita, T.3
Shobuike, T.4
Nakamura, T.5
Kohashi, O.6
-
24
-
-
83755225705
-
HDAC inhibitor trichostatin A suppresses osteoclastogenesis by upregulating the expression of C/EBP-β and MKP-1
-
Williams PJ, Nishu K, Rahman MM 2011 HDAC inhibitor trichostatin A suppresses osteoclastogenesis by upregulating the expression of C/EBP-β and MKP-1. Ann NY Acad Sci 1240:18-25
-
(2011)
Ann NY Acad Sci
, vol.1240
, pp. 18-25
-
-
Williams, P.J.1
Nishu, K.2
Rahman, M.M.3
-
25
-
-
0036527775
-
Histone-deacetylase inhibitors: Novel drugs for the treatment of cancer
-
Johnstone RW 2002 Histone-deacetylase inhibitors: novel drugs for the treatment of cancer. Nat Rev Drug Discov 1:287-299
-
(2002)
Nat Rev Drug Discov
, vol.1
, pp. 287-299
-
-
Johnstone, R.W.1
-
26
-
-
53249130741
-
Therapeutic application of histone deacetylase inhibitors for central nervous system disorders
-
Kazantsev AG, Thompson LM 2008 Therapeutic application of histone deacetylase inhibitors for central nervous system disorders. Nat Rev Drug Discov 7:854-868
-
(2008)
Nat Rev Drug Discov
, vol.7
, pp. 854-868
-
-
Kazantsev, A.G.1
Thompson, L.M.2
-
27
-
-
39749130325
-
Histone deacetylase 7 associates with Runx2 and represses its activity during osteoblast maturation in a deacetylation-independent manner
-
Jensen ED, Schroeder TM, Bailey J, Gopalakrishnan R, Westendorf JJ 2008 Histone deacetylase 7 associates with Runx2 and represses its activity during osteoblast maturation in a deacetylation-independent manner. J Bone Miner Res 23:361-372
-
(2008)
J Bone Miner Res
, vol.23
, pp. 361-372
-
-
Jensen, E.D.1
Schroeder, T.M.2
Bailey, J.3
Gopalakrishnan, R.4
Westendorf, J.J.5
-
28
-
-
79953330801
-
HDAC3 and HDAC7 have opposite effects on osteoclast differentiation
-
Pham L, Kaiser B, Romsa A, Schwarz T, Gopalakrishnan R, Jensen ED, Mansky KC 2011 HDAC3 and HDAC7 have opposite effects on osteoclast differentiation. J Biol Chem 286:12056-12065
-
(2011)
J Biol Chem
, vol.286
, pp. 12056-12065
-
-
Pham, L.1
Kaiser, B.2
Romsa, A.3
Schwarz, T.4
Gopalakrishnan, R.5
Jensen, E.D.6
Mansky, K.C.7
-
29
-
-
33746228132
-
Histone deacetylase 7 maintains vascular integrity by repressing matrix metalloproteinase 10
-
Chang S, Young BD, Li S, Qi X, Richardson JA, Olson EN 2006 Histone deacetylase 7 maintains vascular integrity by repressing matrix metalloproteinase 10. Cell 126:321-334
-
(2006)
Cell
, vol.126
, pp. 321-334
-
-
Chang, S.1
Young, B.D.2
Li, S.3
Qi, X.4
Richardson, J.A.5
Olson, E.N.6
-
30
-
-
53549130485
-
White fat progenitor cells reside in the adipose vasculature
-
Tang W, Zeve D, Suh JM, Bosnakovski D, Kyba M, Hammer RE, Tallquist MD, Graff JM 2008 White fat progenitor cells reside in the adipose vasculature. Science 322:583-586
-
(2008)
Science
, vol.322
, pp. 583-586
-
-
Tang, W.1
Zeve, D.2
Suh, J.M.3
Bosnakovski, D.4
Kyba, M.5
Hammer, R.E.6
Tallquist, M.D.7
Graff, J.M.8
-
31
-
-
83255186737
-
Osteoclast progenitors reside in the peroxisome proliferator-activated receptor γ-expressing bone marrow cell population
-
Wei W, Zeve D, Wang X, Du Y, Tang W, Dechow PC, Graff JM, Wan Y 2011 Osteoclast progenitors reside in the peroxisome proliferator-activated receptor γ-expressing bone marrow cell population. Mol Cell Biol 31:4692-4705
-
(2011)
Mol Cell Biol
, vol.31
, pp. 4692-4705
-
-
Wei, W.1
Zeve, D.2
Wang, X.3
Du, Y.4
Tang, W.5
Dechow, P.C.6
Graff, J.M.7
Wan, Y.8
-
32
-
-
0033177995
-
Conditional gene targeting in macrophages and granulocytes using LysMcre mice
-
Clausen BE, Burkhardt C, Reith W, Renkawitz R, Förster I 1999 Conditional gene targeting in macrophages and granulocytes using LysMcre mice. Transgenic Res 8:265-277
-
(1999)
Transgenic Res
, vol.8
, pp. 265-277
-
-
Clausen, B.E.1
Burkhardt, C.2
Reith, W.3
Renkawitz, R.4
Förster, I.5
-
33
-
-
84863116228
-
Fibroblast growth factor 21 promotes bone loss by potentiating the effects of peroxisome proliferatoractivated receptor γ
-
Wei W, Dutchak PA, Wang X, Ding X, Wang X, Bookout AL, Goetz R, Mohammadi M, Gerard RD, Dechow PC, Mangelsdorf DJ, Kliewer SA, Wan Y 2012 Fibroblast growth factor 21 promotes bone loss by potentiating the effects of peroxisome proliferatoractivated receptor γ. Proc Natl Acad Sci USA 109:3143-3148
-
(2012)
Proc Natl Acad Sci USA
, vol.109
, pp. 3143-3148
-
-
Wei, W.1
Dutchak, P.A.2
Wang, X.3
Ding, X.4
Wang, X.5
Bookout, A.L.6
Goetz, R.7
Mohammadi, M.8
Gerard, R.D.9
Dechow, P.C.10
Mangelsdorf, D.J.11
Kliewer, S.A.12
Wan, Y.13
-
34
-
-
77956408841
-
PGC1β mediates PPARγ activation of osteoclastogenesis and rosiglitazone-induced bone loss
-
Wei W, Wang X, Yang M, Smith LC, Dechow PC, Sonoda J, Evans RM, Wan Y 2010 PGC1β mediates PPARγ activation of osteoclastogenesis and rosiglitazone-induced bone loss. Cell Metab 11:503-516
-
(2010)
Cell Metab
, vol.11
, pp. 503-516
-
-
Wei, W.1
Wang, X.2
Yang, M.3
Smith, L.C.4
Dechow, P.C.5
Sonoda, J.6
Evans, R.M.7
Wan, Y.8
-
35
-
-
36849034568
-
PPAR-γ regulates osteoclastogenesis in mice
-
Wan Y, Chong LW, Evans RM 2007 PPAR-γ regulates osteoclastogenesis in mice. Nat Med 13:1496-1503
-
(2007)
Nat Med
, vol.13
, pp. 1496-1503
-
-
Wan, Y.1
Chong, L.W.2
Evans, R.M.3
-
36
-
-
42749095897
-
NOTCH1 regulates osteoclastogenesis directly in osteoclast precursors and indirectly via osteoblast lineage cells
-
Bai S, Kopan R, Zou W, Hilton MJ, Ong CT, Long F, Ross FP, Teitelbaum SL 2008 NOTCH1 regulates osteoclastogenesis directly in osteoclast precursors and indirectly via osteoblast lineage cells. J Biol Chem 283:6509-6518
-
(2008)
J Biol Chem
, vol.283
, pp. 6509-6518
-
-
Bai, S.1
Kopan, R.2
Zou, W.3
Hilton, M.J.4
Ong, C.T.5
Long, F.6
Ross, F.P.7
Teitelbaum, S.L.8
-
37
-
-
79955815135
-
Class IIa histone deacetylases are hormone-activated regulators of FOXO and mammalian glucose homeostasis
-
Mihaylova MM, Vasquez DS, Ravnskjaer K, Denechaud PD, Yu RT, Alvarez JG, Downes M, Evans RM, Montminy M, Shaw RJ 2011 Class IIa histone deacetylases are hormone-activated regulators of FOXO and mammalian glucose homeostasis. Cell 145:607-621
-
(2011)
Cell
, vol.145
, pp. 607-621
-
-
Mihaylova, M.M.1
Vasquez, D.S.2
Ravnskjaer, K.3
Denechaud, P.D.4
Yu, R.T.5
Alvarez, J.G.6
Downes, M.7
Evans, R.M.8
Montminy, M.9
Shaw, R.J.10
-
38
-
-
79955802436
-
A hormone-dependent module regulating energy balance
-
Wang B, Moya N, Niessen S, Hoover H, Mihaylova MM, Shaw RJ, Yates III JR, Fischer WH, Thomas JB, Montminy M 2011 A hormone-dependent module regulating energy balance. Cell 145:596-606
-
(2011)
Cell
, vol.145
, pp. 596-606
-
-
Wang, B.1
Moya, N.2
Niessen, S.3
Hoover, H.4
Mihaylova, M.M.5
Shaw, R.J.6
Yates III, J.R.7
Fischer, W.H.8
Thomas, J.B.9
Montminy, M.10
-
39
-
-
84857502692
-
Bone density and structure in healthy postmenopausal women treated with exemestane for the primary prevention of breast cancer: A nested substudy of the MAP. 3 randomised controlled trial
-
Cheung AM, Tile L, Cardew S, Pruthi S, Robbins J, Tomlinson G, Kapral MK, Khosla S, Majumdar S, Erlandson M, Scher J, Hu H, Demaras A, Lickley L, Bordeleau L, Elser C, Ingle J, Richardson H, Goss PE 2012 Bone density and structure in healthy postmenopausal women treated with exemestane for the primary prevention of breast cancer: a nested substudy of the MAP. 3 randomised controlled trial. Lancet Oncol 13:275-284
-
(2012)
Lancet Oncol
, vol.13
, pp. 275-284
-
-
Cheung, A.M.1
Tile, L.2
Cardew, S.3
Pruthi, S.4
Robbins, J.5
Tomlinson, G.6
Kapral, M.K.7
Khosla, S.8
Majumdar, S.9
Erlandson, M.10
Scher, J.11
Hu, H.12
Demaras, A.13
Lickley, L.14
Bordeleau, L.15
Elser, C.16
Ingle, J.17
Richardson, H.18
Goss, P.E.19
-
40
-
-
67149146438
-
Rosiglitazone evaluated for cardiovascular outcomes in oral agent combination therapy for type 2 diabetes (RECORD): A multicentre, randomised, open-label trial
-
Home PD, Pocock SJ, Beck-Nielsen H, Curtis PS, Gomis R, Hanefeld M, Jones NP, Komajda M, McMurray JJ 2009 Rosiglitazone evaluated for cardiovascular outcomes in oral agent combination therapy for type 2 diabetes (RECORD): a multicentre, randomised, open-label trial. Lancet 373:2125-2135
-
(2009)
Lancet
, vol.373
, pp. 2125-2135
-
-
Home, P.D.1
Pocock, S.J.2
Beck-Nielsen, H.3
Curtis, P.S.4
Gomis, R.5
Hanefeld, M.6
Jones, N.P.7
Komajda, M.8
McMurray, J.J.9
-
41
-
-
33845405222
-
Glycemic durability of rosiglitazone, metformin, or glyburide monotherapy
-
Kahn SE, Haffner SM, Heise MA, Herman WH, Holman RR, Jones NP, Kravitz BG, Lachin JM, O'Neill MC, Zinman B, Viberti G 2006 Glycemic durability of rosiglitazone, metformin, or glyburide monotherapy. N Engl J Med 355:2427-2443
-
(2006)
N Engl J Med
, vol.355
, pp. 2427-2443
-
-
Kahn, S.E.1
Haffner, S.M.2
Heise, M.A.3
Herman, W.H.4
Holman, R.R.5
Jones, N.P.6
Kravitz, B.G.7
Lachin, J.M.8
O'Neill, M.C.9
Zinman, B.10
Viberti, G.11
-
42
-
-
79952698455
-
Denosumab and bisphosphonates: Different mechanisms of action and effects
-
Baron R, Ferrari S, Russell RG 2011 Denosumab and bisphosphonates: different mechanisms of action and effects. Bone 48:677-692
-
(2011)
Bone
, vol.48
, pp. 677-692
-
-
Baron, R.1
Ferrari, S.2
Russell, R.G.3
|