|
Volumn 5, Issue 3, 2013, Pages 641-647
|
Composition-activity relationship modeling to predict the antitumor activity for quality control of curcuminoids from Curcuma longa L. (turmeric)
|
Author keywords
[No Author keywords available]
|
Indexed keywords
MEAN SQUARE ERROR;
PARTICLE SWARM OPTIMIZATION (PSO);
QUALITY CONTROL;
ANTI-TUMOR ACTIVITIES;
BEST MODEL;
CHEMICAL CONSTITUENTS;
CORRELATION COEFFICIENT;
CURCUMA LONGA;
CURCUMINOIDS;
GA (GENETIC ALGORITHM);
GRID-SEARCH ALGORITHM;
HELA CELL;
HIGH DEGREE OF ACCURACY;
KERNEL FUNCTION;
LINEAR KERNEL FUNCTIONS;
OPTIMAL PARAMETER;
POLYNOMIAL KERNELS;
PSO(PARTICLE SWARM OPTIMIZATION);
RADIAL BASIS;
SUPPORT VECTOR REGRESSION (SVR);
TRADITIONAL CHINESE MEDICINE;
GENETIC ALGORITHMS;
|
EID: 84872582644
PISSN: 17599660
EISSN: 17599679
Source Type: Journal
DOI: 10.1039/c2ay26192h Document Type: Article |
Times cited : (12)
|
References (33)
|