-
1
-
-
0033693584
-
The properties of ferroelectric films at small dimensions
-
Shaw, T M, Trolier-McKinstry, S and McIntyre, P C. 2000. The properties of ferroelectric films at small dimensions. Annu. Rev. Mater. Sci., 30: 263-298. doi:10.1146/annurev.matsci.30.1.263
-
(2000)
Annu. Rev. Mater. Sci.
, vol.30
, pp. 263-298
-
-
Shaw, T.M.1
Trolier-McKinstry, S.2
McIntyre, P.C.3
-
2
-
-
27644501560
-
Recent materials characterizations of [2D] and [3D] thin film ferroelectric structures
-
Scott, J F, Morrison, F D, Miyake, M, Zubko, P, Lou, X, Kugler, V M, Rios, S, Zhang, M, Tatsuta, T, Tsuji, O and Leedham, T J. 2005. Recent materials characterizations of [2D] and [3D] thin film ferroelectric structures. J. Am. Ceram. Soc., 88: 1691-1701. doi:10.1111/j.1551-2916.2005.00486.x
-
(2005)
J. Am. Ceram. Soc.
, vol.88
, pp. 1691-1701
-
-
Scott, J.F.1
Morrison, F.D.2
Miyake, M.3
Zubko, P.4
Lou, X.5
Kugler, V.M.6
Rios, S.7
Zhang, M.8
Tatsuta, T.9
Tsuji, O.10
Leedham, T.J.11
-
3
-
-
16244420787
-
Nanosize ferroelectric oxides - Tracking down the superparaelectric limit
-
Rüdiger, A, Schneller, T, Roelofs, A, Tiedke, S, Schmitz, T and Waser, R. 2005. Nanosize ferroelectric oxides-Tracking down the superparaelectric limit. Appl. Phys. A, 80: 1247-1255. doi:10.1007/s00339-004-3167-z
-
(2005)
Appl. Phys. A
, vol.80
, pp. 1247-1255
-
-
Rüdiger, A.1
Schneller, T.2
Roelofs, A.3
Tiedke, S.4
Schmitz, T.5
Waser, R.6
-
4
-
-
0035953790
-
Size-driven phase transition in stress-induced ferroelectric thin films
-
Zhang, J, Yin, Z, Zhang, M-S and Scott, J F. 2001. Size-driven phase transition in stress-induced ferroelectric thin films. Solid State Commun., 118: 241-246. doi:10.1016/S0038-1098(01)00085-0
-
(2001)
Solid State Commun.
, vol.118
, pp. 241-246
-
-
Zhang, J.1
Yin, Z.2
Zhang, M.-S.3
Scott, J.F.4
-
5
-
-
0038574011
-
Depolarization corrections to the coercive field in thin-film ferroelectrics
-
Dawber, M, Chandra, P, Littlewood, P B and Scott, J F. 2003. Depolarization corrections to the coercive field in thin-film ferroelectrics. J. Phys. Condens. Matter, 15: L393-L398. doi:10.1088/0953-8984/15/24/106
-
(2003)
J. Phys. Condens. Matter
, vol.15
-
-
Dawber, M.1
Chandra, P.2
Littlewood, P.B.3
Scott, J.F.4
-
6
-
-
0842321948
-
Impact of misfit dislocations on the polarization instability of epitaxial nanostructured ferroelectric perovskites
-
Chu, M-W, Szafraniak, I, Scholz, R, Harnagea, C, Hesse, D, Alexe, M and Gösele, U. 2004. Impact of misfit dislocations on the polarization instability of epitaxial nanostructured ferroelectric perovskites. Nat. Mater., 3: 87-90. doi:10.1038/nmat1057
-
(2004)
Nat. Mater.
, vol.3
, pp. 87-90
-
-
Chu, M.-W.1
Szafraniak, I.2
Scholz, R.3
Harnagea, C.4
Hesse, D.5
Alexe, M.6
Gösele, U.7
-
7
-
-
0021626298
-
Ceramic sensors and transducers
-
Kulwicki, B M. 1984. Ceramic sensors and transducers. J. Phys. Chem. Solids, 45: 1015-1031. doi:10.1016/0022-3697(84)90046-5
-
(1984)
J. Phys. Chem. Solids
, vol.45
, pp. 1015-1031
-
-
Kulwicki, B.M.1
-
8
-
-
0021422448
-
Fabrication and performance evaluation of a Titania automotive exhaust gas sensor
-
Micheli, A L. 1984. Fabrication and performance evaluation of a Titania automotive exhaust gas sensor. Am. Ceram. Soc. Bull., 63: 694-698.
-
(1984)
Am. Ceram. Soc. Bull.
, vol.63
, pp. 694-698
-
-
Micheli, A.L.1
-
9
-
-
0002775478
-
Photochemistry of nanostructured materials for energy applications
-
Levy, B. 1997. Photochemistry of nanostructured materials for energy applications. J. Electoceram., 1: 239-272. doi:10.1023/A:1009983710819
-
(1997)
J. Electoceram.
, vol.1
, pp. 239-272
-
-
Levy, B.1
-
10
-
-
0031360813
-
Nanocrystalline. Titanium oxide electrodes for photovoltaic applications
-
Barbe, C J, Arendse, F, Comte, P, Jirousek, M, Lenzmann, F, Shklover, V and Gratzel, M. 1997. Nanocrystalline. Titanium oxide electrodes for photovoltaic applications. J. Am. Ceram. Soc., 80: 3157-3171. doi:10.1111/j.1151-2916.1997.tb03245.x
-
(1997)
J. Am. Ceram. Soc.
, vol.80
, pp. 3157-3171
-
-
Barbe, C.J.1
Arendse, F.2
Comte, P.3
Jirousek, M.4
Lenzmann, F.5
Shklover, V.6
Gratzel, M.7
-
12
-
-
0037232017
-
A novel processing route to develop a dense nanocrystalline alumina matrix (<100 nm) nanocomposite material
-
Zhan, G D, Kuntz, J, Wan, J, Garay, J and Mukherjee, A K. 2003. A novel processing route to develop a dense nanocrystalline alumina matrix (<100 nm) nanocomposite material. J. Am. Ceram. Soc., 86: 200-2002. doi:10.1111/j.1151-2916.2003.tb03306.x
-
(2003)
J. Am. Ceram. Soc.
, vol.86
, pp. 200-2002
-
-
Zhan, G.D.1
Kuntz, J.2
Wan, J.3
Garay, J.4
Mukherjee, A.K.5
-
14
-
-
0036545251
-
Preparation and electric properties of dense nanocrystalline zinc oxide ceramics
-
Gao, L, Li, Q and Luan, W. 2002. Preparation and electric properties of dense nanocrystalline zinc oxide ceramics. J. Am. Ceram. Soc., 85: 1016-1018. doi:10.1111/j.1151-2916.2002.tb00214.x
-
(2002)
J. Am. Ceram. Soc.
, vol.85
, pp. 1016-1018
-
-
Gao, L.1
Li, Q.2
Luan, W.3
-
16
-
-
0001162210
-
The Scherrer formula for X-ray particle size determination
-
Patterson, A L. 1939. The Scherrer formula for X-ray particle size determination. Phys. Rev., 56: 978-982. doi:10.1103/PhysRev.56.978
-
(1939)
Phys. Rev.
, vol.56
, pp. 978-982
-
-
Patterson, A.L.1
-
19
-
-
23744450895
-
2 nanometer sized material synthesized using a solvothermal method
-
2 nanometer sized material synthesized using a solvothermal method. Mater. Lett., 59: 3122-3127. doi:10.1016/j.matlet.2005.05.032
-
(2005)
Mater. Lett.
, vol.59
, pp. 3122-3127
-
-
Kang, M.1
-
21
-
-
0036332328
-
Photocatalytic degradation of cyanide using titanium dioxide modified with copper oxide
-
Chiang, K, Amal, R and Tran, T. 2002. Photocatalytic degradation of cyanide using titanium dioxide modified with copper oxide. Adv. Environ. Res., 6: 471-485. doi:10.1016/S1093-0191(01)00074-0
-
(2002)
Adv. Environ. Res.
, vol.6
, pp. 471-485
-
-
Chiang, K.1
Amal, R.2
Tran, T.3
-
22
-
-
0141992848
-
2 thin films
-
2 thin films. J. Colloid Interf. Sci., 267(1): 127-131. doi:10.1016/S0021-9797(03)00603-9
-
(2003)
J. Colloid Interf. Sci.
, vol.267
, Issue.1
, pp. 127-131
-
-
Lee, Y.C.1
Hong, Y.P.2
Lee, H.Y.3
Kim, H.4
Jung, Y.J.5
Ko, K.H.6
Jung, H.S.7
Hong, K.S.8
-
23
-
-
0037472281
-
Enhancing the UV inducing hydrophilicity of TiO2 thin film by doping Fe ions
-
Jiang, H and Gao, L. 2002. Enhancing the UV inducing hydrophilicity of TiO2 thin film by doping Fe ions. Mater. Chem. Phys., 77: 878-881. doi:10.1016/S0254-0584(02)00206-7
-
(2002)
Mater. Chem. Phys.
, vol.77
, pp. 878-881
-
-
Jiang, H.1
Gao, L.2
-
25
-
-
33646218926
-
2 (rutile) at low frequencies
-
2 (rutile) at low frequencies. Phys. Rev., 120(5): 1631-1637. doi:10.1103/PhysRev.120.1631
-
(1960)
Phys. Rev.
, vol.120
, Issue.5
, pp. 1631-1637
-
-
Parker, R.A.1
Wasilik, J.H.2
-
26
-
-
0037879437
-
Defect chemistry and semiconducting properties of titanium dioxide: III. Mobility of electronic charge carriers
-
Bak, T, Nowotny, J, Rekas, M and Sorrell, C C. 2003. Defect chemistry and semiconducting properties of titanium dioxide: III. Mobility of electronic charge carriers. J. Phys. Chem. Solids, 64: 1069-1087. doi:10.1016/S0022-3697(02)00481-X
-
(2003)
J. Phys. Chem. Solids
, vol.64
, pp. 1069-1087
-
-
Bak, T.1
Nowotny, J.2
Rekas, M.3
Sorrell, C.C.4
-
29
-
-
33751215840
-
Electrical properties of Niobium-doped titanium dioxide. 1. Defect disorder
-
Sheppard, L R, Bak, T and Nowotny, J. 2006. Electrical properties of Niobium-doped titanium dioxide. 1. Defect disorder. J. Phys. Chem. B, 110: 22447-22454. doi:10.1021/jp0637025
-
(2006)
J. Phys. Chem. B
, vol.110
, pp. 22447-22454
-
-
Sheppard, L.R.1
Bak, T.2
Nowotny, J.3
-
30
-
-
0024861020
-
Point defects and charge transport in pure and chromium-doped rutile at 1273 K
-
Carpentier, J L, Lebrun, A and Perdu, F. 1989. Point defects and charge transport in pure and chromium-doped rutile at 1273 K. J. Phys. Chem. Solids, 50: 145-151. doi:10.1016/0022-3697(89)90411-3
-
(1989)
J. Phys. Chem. Solids
, vol.50
, pp. 145-151
-
-
Carpentier, J.L.1
Lebrun, A.2
Perdu, F.3
|