-
2
-
-
0031334221
-
Selection of relevant features and examples in machine learning
-
PII S0004370297000635
-
A. L. Blum and P. Langley, "Selection of Relevant Features and Examples in Machine Learning," Artificial Intelligence, vol. 97, pp. 245-271, 1997. (Pubitemid 127401106)
-
(1997)
Artificial Intelligence
, vol.97
, Issue.1-2
, pp. 245-271
-
-
Blum, A.L.1
Langley, P.2
-
4
-
-
11244351524
-
Gene selection for cancer classification using wrapper approaches
-
DOI 10.1142/S0218001404003800, PII S0218001404003800
-
R. Blanco, P. Larraaga, I. Inza, and B. Sierra, "Gene selection for cancer classification using wrapper approaches," International Journal of Pattern Recognition and Artificial Intelligence, 18(8), pp. 1373-1390, 2004. (Pubitemid 40068693)
-
(2004)
International Journal of Pattern Recognition and Artificial Intelligence
, vol.18
, Issue.8
, pp. 1373-1390
-
-
Blanco, R.1
Larranaga, P.2
Inza, I.3
Sierra, B.4
-
5
-
-
84866523652
-
The generalized LASSO: A wrapper approach to gene selection for microarray data
-
Dep. Computer Science III, University of Bonn
-
V. Roth, "The Generalized LASSO: a wrapper approach to gene selection for microarray data," Tech. Report IAI-TR-2002-8, Dep. Computer Science III, University of Bonn.
-
Tech. Report IAI-TR-2002-8
-
-
Roth, V.1
-
6
-
-
0035748446
-
Selecting informative genes with parallel genetic algorithms in tissue classification
-
J. Liu, H. Iba, and M. Ishizuka, "Selecting informative genes with parallel genetic algorithms in tissue classification," Genome Informatics, 12, pp. 14-23, 2001.
-
(2001)
Genome Informatics
, vol.12
, pp. 14-23
-
-
Liu, J.1
Iba, H.2
Ishizuka, M.3
-
7
-
-
3042532685
-
Filter versus wrapper gene selection approaches in DNA microarray domains
-
DOI 10.1016/j.artmed.2004.01.007, PII S0933365704000193
-
I. Inza, P. Larraaga, R. Blanco, and A.J. Cerrolaza, "Filter versus wrapper gene selection approaches in DNA microarray domains," Artificial Intelligence in Medicine, 31(2), pp. 91-103, 2004. (Pubitemid 38823034)
-
(2004)
Artificial Intelligence in Medicine
, vol.31
, Issue.2
, pp. 91-103
-
-
Inza, I.1
Larranaga, P.2
Blanco, R.3
Cerrolaza, A.J.4
-
8
-
-
0038238080
-
Statistical methods for ranking differentially expressed genes
-
P. Broberg, "Statistical methods for ranking differentially expressed genes," Genome Biology, 4(6), pp. R41, 2003.
-
(2003)
Genome Biology
, vol.4
, Issue.6
-
-
Broberg, P.1
-
9
-
-
0035999977
-
A comparative review of statistical methods for discovering differentially expressed genes in replicated microarray experiments
-
W. Pan, "A comparative review of statistical methods for discovering differentially expressed genes in replicated microarray experiments," Bioinformatics, vol. 18, no. 4, pp. 546 - 554, 2002. (Pubitemid 34521044)
-
(2002)
Bioinformatics
, vol.18
, Issue.4
, pp. 546-554
-
-
Pan, W.1
-
10
-
-
0034730140
-
Singular value decomposition for genome-wide expression data processing and modeling
-
O. Alter, P. Brown, and D. Botstein, "Singular value decomposition for genome-wide expression data processing and modeling," in Proceedings of the National Academy Science (PNAS), 97(18):10101-10106, 2000.
-
(2000)
Proceedings of the National Academy Science (PNAS)
, vol.97
, Issue.18
, pp. 10101-10106
-
-
Alter, O.1
Brown, P.2
Botstein, D.3
-
11
-
-
0034954414
-
Classification and diagnostic prediction of cancers using gene expression profiling and artificial neural networks
-
DOI 10.1038/89044
-
J. Khan, J. S. Wei, M. Ringner, L. H. Saal, M. Ladanyi, F. Westermann, F. Berthold, M. Schwab, C. R. Antonescu, C. Peterson, and P. S. Meltzer, "Classification and diagnostic prediction of cancers using gene expression profiling and artificial neural networks," Nature Medicine, 7(6), pp. 673-679, 2001. (Pubitemid 32588022)
-
(2001)
Nature Medicine
, vol.7
, Issue.6
, pp. 673-679
-
-
Khan, J.1
Wei, J.S.2
Ringner, M.3
Saal, L.H.4
Ladanyi, M.5
Westermann, F.6
Berthold, F.7
Schwab, M.8
Antonescu, C.R.9
Peterson, C.10
Meltzer, P.S.11
-
12
-
-
0034533063
-
Computational methods for gene expression- based tumor classification
-
M. Xiong, L. Jin, W. Li, and E. Boerwinkle, "Computational methods for gene expression- based tumor classification," Biotechniques, 29(6), pp.1264-1268, 2000.
-
(2000)
Biotechniques
, vol.29
, Issue.6
, pp. 1264-1268
-
-
Xiong, M.1
Jin, L.2
Li, W.3
Boerwinkle, E.4
-
13
-
-
6344280468
-
A hybrid filter/wrapper gene sclection method for microarray classification
-
B. Ni and J. Liu, "A hybrid filter/wrapper gene sclection method for microarray classification," in Proc. 3rd Int. Conf. Machine Learning and Cybernetics, pp. 2537 - 2542, 2004.
-
(2004)
Proc. 3rd Int. Conf. Machine Learning and Cybernetics
, pp. 2537-2542
-
-
Ni, B.1
Liu, J.2
-
14
-
-
85072725799
-
A hybrid for biomarkcr discovery from microarray gene expression data for cancer classification
-
Y. Peng, W. Li, and Y. Liu, "A hybrid for biomarkcr discovery from microarray gene expression data for cancer classification," Cancer Informatics, vol.2, pp. 301 - 311, 2006.
-
(2006)
Cancer Informatics
, vol.2
, pp. 301-311
-
-
Peng, Y.1
Li, W.2
Liu, Y.3
-
15
-
-
33747424762
-
Significance of gene ranking for classification of microarray samples
-
DOI 10.1109/TCBB.2006.42, 1668029
-
C. Zhang, X. Lu, and X. Zhang, "Significance of gene ranking for classification of microarray samples," IEEE Trans, on Computational Biology and Bioinformatics, vol. 3, no.3, pp. 312 - 320, 2006. (Pubitemid 44249902)
-
(2006)
IEEE/ACM Transactions on Computational Biology and Bioinformatics
, vol.3
, Issue.3
, pp. 312-320
-
-
Zhang, C.1
Lu, X.2
Zhang, X.3
-
16
-
-
33645157313
-
Gene selection algorithm for microarray data based on least squares support vector machine
-
E. K. Tang, PN. Suganthan, and X. Yao, "Gene selection algorithm for microarray data based on least squares support vector machine," BMC Bioinformatics, 7: 95, 2006.
-
(2006)
BMC Bioinformatics
, vol.7
, pp. 95
-
-
Tang, E.K.1
Suganthan, P.N.2
Yao, X.3
-
17
-
-
0033636139
-
Support vector machine classification and validation of cancer tissue samples using microarray expression data
-
T. S. Furey, N. Cristianini, N. Duffy, D. W. Bednarski, M. Schummer, and D. Haussler, "Support vector machine classification and validation of cancer tissue samples using microarray expression data," Bioinformatics, 16(10), pp. 906 - 914, 2000.
-
(2000)
Bioinformatics
, vol.16
, Issue.10
, pp. 906-914
-
-
Furey, T.S.1
Cristianini, N.2
Duffy, N.3
Bednarski, D.W.4
Schummer, M.5
Haussler, D.6
-
18
-
-
0036161259
-
Gene selection for cancer classification using support vector machines
-
DOI 10.1023/A:1012487302797
-
I. Guyon, J. Weston, S. Barnhill, and V. Vapnik, "Gene selection for cancer classification using support vector machines," Machine Learning, vol. 46, pp. 389 - 422, 2002. (Pubitemid 34129977)
-
(2002)
Machine Learning
, vol.46
, Issue.1-3
, pp. 389-422
-
-
Guyon, I.1
Weston, J.2
Barnhill, S.3
Vapnik, V.4
-
20
-
-
78650299589
-
Support vector machine classification for microarray expression data set
-
J. Zhang, R. Lee, and Y. J. Wang, "Support vector machine classification for microarray expression data set," in Proc. 5th Int. Cont. Computational Intelligence and Multimedia Applications (IC- CIMA'03), pp. 67-71, 2003.
-
(2003)
Proc. 5th Int. Cont. Computational Intelligence and Multimedia Applications (IC- CIMA'03)
, pp. 67-71
-
-
Zhang, J.1
Lee, R.2
Wang, Y.J.3
-
21
-
-
17044412032
-
Model and feature selection in microarray classification
-
Proceedings of the 2004 IEEE Symposium on Computational Intelligence in Bioinformatics and Computational Biology, CIBCB'04
-
D. A. Peterson, and M. H. Thaut, "Model and feature selection in microarray classification," in Prof, of IEEE Computational Intelligence in Bioinformatics and Computational Biology (CIBCB '04), pp. 56 - 60, 2004. (Pubitemid 40497983)
-
(2004)
Proceedings of the 2004 IEEE Symposium on Computational Intelligence in Bioinformatics and Computational Biology, CIBCB'04
, pp. 56-60
-
-
Peterson, D.A.1
Thaut, M.H.2
-
23
-
-
0141459848
-
Bagged ensembles of support vector machines for gene expression data analysis
-
G. Valentini, M. Muselli, and F. Ruffino, "Bagged ensembles of Support Vector Machines for gene expression data analysis," in Proc. Of Int. Joint Conf. Neural Networks (IJCNN'03), pp. 1844-1849, 2003.
-
(2003)
Proc. of Int. Joint Conf. Neural Networks (IJCNN'03)
, pp. 1844-1849
-
-
Valentini, G.1
Muselli, M.2
Ruffino, F.3
-
24
-
-
0036851381
-
Gene expression data analysis of human lymphoma using support vector machines and output coding ensembles
-
G. Valentini, "Gene expression data analysis of human lymphoma using Support Vector Machines and Output Coding ensembles," Artificial Intelligence in Medicine, 26 (3), pp. 283 - 306, 2002.
-
(2002)
Artificial Intelligence in Medicine
, vol.26
, Issue.3
, pp. 283-306
-
-
Valentini, G.1
-
25
-
-
4344698991
-
GA for optimal ensemble classifiers in DNA microarray classification
-
S. B. Cho and C. Park, "GA for optimal ensemble classifiers in DNA microarray classification," in Prof. Congress on Evolutionary Computation, pp. 590 - 597, 2004.
-
(2004)
Prof. Congress on Evolutionary Computation
, pp. 590-597
-
-
Cho, S.B.1
Park, C.2
-
26
-
-
0011187879
-
Multiple classifier combination: Lessons and next steps
-
World Scientific
-
T. K. Ho, "Multiple Classifier Combination: Lessons and Next Steps," Hybrid Methods in Pattern Recognition, World Scientific, pp. 171-198, 2002.
-
(2002)
Hybrid Methods in Pattern Recognition
, pp. 171-198
-
-
Ho, T.K.1
-
28
-
-
33947231519
-
A comparison of decision tree ensemble creation techniques
-
R. E. Banfield, L. O. Hall, K. W. Bowyer, and W. P. Kegelmeyer, "A Comparison of Decision Tree Ensemble Creation Techniques," IEEE Trans, on Pattern Analysis and Machine Intelligence, vol. 29, no. 1, pp. 1-8, 2007.
-
(2007)
IEEE Trans, on Pattern Analysis and Machine Intelligence
, vol.29
, Issue.1
, pp. 1-8
-
-
Banfield, R.E.1
Hall, L.O.2
Bowyer, K.W.3
Kegelmeyer, W.P.4
-
29
-
-
0032139235
-
The random subspace method for constructing decision forests
-
T. K. Ho, "The random subspace method for constructing decision forests," IEEE Trans, on Pattern Analysis and Machine Intelligence, vol. 20, no. 8, pp. 832-844, 1998. (Pubitemid 128741345)
-
(1998)
IEEE Transactions on Pattern Analysis and Machine Intelligence
, vol.20
, Issue.8
, pp. 832-844
-
-
Ho, T.K.1
-
30
-
-
0025448521
-
The strength of weak learnability
-
R. E. Schapire, "The strength of weak learnability," Machine Learninge, 5, pp. 197-227, 1990.
-
(1990)
Machine Learninge
, vol.5
, pp. 197-227
-
-
Schapire, R.E.1
-
31
-
-
0003408420
-
-
MIT press
-
B. Scholkopf and A. J. Smola, Learning with kernels, support vector machines, regularization, optimization, and beyond, MIT press, 2002.
-
(2002)
Learning with Kernels, Support Vector Machines, Regularization, Optimization, and Beyond
-
-
Scholkopf, B.1
Smola, A.J.2
-
35
-
-
84874652542
-
-
Bio-medical Data Analysis, [Online], Available: http://sdmc.lit.org.sg/ GEDatasets/index.html
-
Bio-medical Data Analysis
-
-
|