메뉴 건너뛰기




Volumn 27, Issue 11, 2001, Pages 999-1013

Analyzing data sets with missing data: An empirical evaluation of imputation methods and likelihood-based methods

Author keywords

Cost estimation; ERP; Full information maximum likelihood; Imputation methods; Listwise deletion; Log log regression; Mean imputation; Missing data; Similar response pattern imputation; Software effort prediction

Indexed keywords

COST ESTIMATION; IMPUTATION METHOD; LISTWISE DELETION; LOG-LOG REGRESSION; MEAN IMPUTATION; MISSING DATA; SIMILAR RESPONSE PATTERN IMPUTATION; SOFTWARE EFFORT PREDICTION;

EID: 0035506257     PISSN: 00985589     EISSN: None     Source Type: Journal    
DOI: 10.1109/32.965340     Document Type: Article
Times cited : (203)

References (38)
  • 3
    • 34147096911 scopus 로고
    • The effects of sampling error on convergence, improper solutions, and goodness-of-fit indices for maximum likelihood confirmatory factor analysis
    • (1984) Psychometrika , vol.49 , pp. 155-173
    • Anderson, J.1    Gerbing, D.W.2
  • 8
    • 0001326815 scopus 로고
    • Asymptotic comparison of missing data procedures for estimating factor loadings
    • (1983) Psychometrika , vol.48 , Issue.2 , pp. 269-291
    • Browne, C.H.1
  • 9
    • 0000783293 scopus 로고
    • Efficacy of the indirect approach for estimating structural equation models with missing data: A comparison of five methods
    • (1994) Structural Equation Modeling , vol.1 , Issue.4 , pp. 287-316
    • Brown, R.L.1
  • 24
    • 2942611661 scopus 로고
    • Measures of multivariate skewness and kurtosis with applications
    • (1970) Biometrika , vol.57 , Issue.3 , pp. 519
    • Mardia, K.V.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.