메뉴 건너뛰기




Volumn 13, Issue 1, 2012, Pages

Network-enabled gene expression analysis

Author keywords

[No Author keywords available]

Indexed keywords

BIOMEDICAL RESEARCH; CONVENTIONAL APPROACH; DEPENDENCE STRUCTURES; DIRECTED ACYCLIC GRAPH (DAG); EXPRESSION LEVELS; EXTERNAL RESOURCES; GENE EXPRESSION ANALYSIS; GENE EXPRESSION DATA; GENE EXPRESSION LEVELS; HEPATOTOXICITY; METHODS OF ANALYSIS; POWER GAINS; TRANSCRIPTOMES; TREATMENT GROUP;

EID: 84871733987     PISSN: None     EISSN: 14712105     Source Type: Journal    
DOI: 10.1186/1471-2105-13-167     Document Type: Article
Times cited : (13)

References (41)
  • 2
    • 63449107173 scopus 로고    scopus 로고
    • A general modular framework for gene set enrichment analysis
    • Ackermann M, Strimmer K. A general modular framework for gene set enrichment analysis. BMC Bioinf 2009, 10:47., http://www.biomedcentral.com/1471-2105/10/47
    • (2009) BMC Bioinf , vol.10 , pp. 47
    • Ackermann, M.1    Strimmer, K.2
  • 4
    • 79958152651 scopus 로고    scopus 로고
    • Pathway analysis of expression data: deciphering functional building blocks of complex diseases
    • 10.1371/journal.pcbi.1002053, 3102754, 21637797
    • Emmert-Streib F, Glazko GV. Pathway analysis of expression data: deciphering functional building blocks of complex diseases. PLoS Comput Biol 2011, 7(5):e1002053. 10.1371/journal.pcbi.1002053, 3102754, 21637797., http://dx.doi.org/10.1371%2Fjournal.pcbi.1002053
    • (2011) PLoS Comput Biol , vol.7 , Issue.5
    • Emmert-Streib, F.1    Glazko, G.V.2
  • 5
    • 0033982936 scopus 로고    scopus 로고
    • KEGG: Kyoto Encyclopedia of Genes and Genomes
    • 10.1093/nar/28.1.27, 102409, 10592173
    • Kanehisa M, Goto S. KEGG: Kyoto Encyclopedia of Genes and Genomes. Nucleic Acids Res 2000, 28:27-30. 10.1093/nar/28.1.27, 102409, 10592173.
    • (2000) Nucleic Acids Res , vol.28 , pp. 27-30
    • Kanehisa, M.1    Goto, S.2
  • 6
    • 14644430468 scopus 로고    scopus 로고
    • Calculating the statistical significance of changes in pathway activity from gene expression data
    • Article 16
    • Rahnenfuhrer J, Domingues F, Maydt J, Lengauer T. Calculating the statistical significance of changes in pathway activity from gene expression data. Stat Appl in Genet and Mol Biol 2004, 3:Article 16.
    • (2004) Stat Appl in Genet and Mol Biol , vol.3
    • Rahnenfuhrer, J.1    Domingues, F.2    Maydt, J.3    Lengauer, T.4
  • 8
    • 79959410946 scopus 로고    scopus 로고
    • From sets to graphs: towards a realistic enrichment analysis of transcriptomic systems
    • Geistlinger L, Csaba G, Küffner R, Mulder N, Zimmer R. From sets to graphs: towards a realistic enrichment analysis of transcriptomic systems. Bioinf 2011, 27:i366-i373.
    • (2011) Bioinf , vol.27
    • Geistlinger, L.1    Csaba, G.2    Küffner, R.3    Mulder, N.4    Zimmer, R.5
  • 9
    • 34547844074 scopus 로고    scopus 로고
    • A Markov random field model for network-based analysis of genomic data
    • 10.1093/bioinformatics/btm129, 17483504
    • Wei Z, Li H. A Markov random field model for network-based analysis of genomic data. Bioinformatics 2007, 23(12):1537-1544. 10.1093/bioinformatics/btm129, 17483504., http://bioinformatics.oxfordjournals.org/content/23/12/1537.abstract
    • (2007) Bioinformatics , vol.23 , Issue.12 , pp. 1537-1544
    • Wei, Z.1    Li, H.2
  • 10
    • 79955573495 scopus 로고    scopus 로고
    • Incorporating biological pathways via a markov random field model in genome-wide association studies
    • 10.1371/journal.pgen.1001353, 3072362, 21490723
    • Chen M, Cho J, Zhao H. Incorporating biological pathways via a markov random field model in genome-wide association studies. PLoS Genet 2011, 7(4):e1001353. 10.1371/journal.pgen.1001353, 3072362, 21490723., http://dx.doi.org/10.1371%2Fjournal.pgen.1001353
    • (2011) PLoS Genet , vol.7 , Issue.4
    • Chen, M.1    Cho, J.2    Zhao, H.3
  • 11
    • 34249761849 scopus 로고
    • Learning bayesian networks: The combination of knowledge and statistical data
    • Heckerman D, Geiger D, Chickering DM. Learning bayesian networks: The combination of knowledge and statistical data. Machine Learning 1995, 20:197-243.
    • (1995) Machine Learning , vol.20 , pp. 197-243
    • Heckerman, D.1    Geiger, D.2    Chickering, D.M.3
  • 12
    • 79958155496 scopus 로고    scopus 로고
    • Pathway analysis of high-throughput biological data within a Bayesian network framework
    • Isci S, Ozturk C, Jones J, Otu HH. Pathway analysis of high-throughput biological data within a Bayesian network framework. Bioinf 2011, 27(12):1667-1674., http://bioinformatics.oxfordjournals.org/content/27/12/1667.abstract
    • (2011) Bioinf , vol.27 , Issue.12 , pp. 1667-1674
    • Isci, S.1    Ozturk, C.2    Jones, J.3    Otu, H.H.4
  • 13
    • 61749083981 scopus 로고    scopus 로고
    • Analysis of gene sets based on the underlying regulatory network
    • 10.1089/cmb.2008.0081, 3131840, 19254181
    • Shojaie A, Michailidis G. Analysis of gene sets based on the underlying regulatory network. J Comput Biol 2009, 16:407-426. 10.1089/cmb.2008.0081, 3131840, 19254181.
    • (2009) J Comput Biol , vol.16 , pp. 407-426
    • Shojaie, A.1    Michailidis, G.2
  • 14
    • 33847162049 scopus 로고    scopus 로고
    • Classification of microarray data using gene networks
    • Rapaport F, Zinovyev A, Dutreix M, Barillot E, Vert JP. Classification of microarray data using gene networks. BMC Bioinf 2007, 8:35., http://www.biomedcentral.com/1471-2105/8/35
    • (2007) BMC Bioinf , vol.8 , pp. 35
    • Rapaport, F.1    Zinovyev, A.2    Dutreix, M.3    Barillot, E.4    Vert, J.P.5
  • 15
    • 42649140560 scopus 로고    scopus 로고
    • Network-constrained regularization and variable selection for analysis of genomic data
    • Li C, Li H. Network-constrained regularization and variable selection for analysis of genomic data. Bioinf 2008, 24(9):1175-1182.
    • (2008) Bioinf , vol.24 , Issue.9 , pp. 1175-1182
    • Li, C.1    Li, H.2
  • 16
    • 61449157892 scopus 로고    scopus 로고
    • Incorporating pathway information into boosting estimation of high-dimensional risk prediction models
    • Binder H, Schumacher M. Incorporating pathway information into boosting estimation of high-dimensional risk prediction models. BMC Bioinf 2009, 10:18., http://www.biomedcentral.com/1471-2105/10/18
    • (2009) BMC Bioinf , vol.10 , pp. 18
    • Binder, H.1    Schumacher, M.2
  • 17
    • 84870284276 scopus 로고    scopus 로고
    • Causal graphical models in systems genetics: a unified framework for joint inference of causal network and genetics architecture for correlated phenotypes
    • 3017382, 21218138
    • Neto EC, Keller MP, Attie AD, Yandell BS. Causal graphical models in systems genetics: a unified framework for joint inference of causal network and genetics architecture for correlated phenotypes. Ann Appl Stat 2010, 4:320-339. 3017382, 21218138.
    • (2010) Ann Appl Stat , vol.4 , pp. 320-339
    • Neto, E.C.1    Keller, M.P.2    Attie, A.D.3    Yandell, B.S.4
  • 18
    • 79351469200 scopus 로고    scopus 로고
    • Multivariate analysis of microarray data: differential expression and differential connection
    • Kiiveri H. Multivariate analysis of microarray data: differential expression and differential connection. BMC Bioinf 2011, 12:42., http://www.biomedcentral.com/1471-2105/12/42
    • (2011) BMC Bioinf , vol.12 , pp. 42
    • Kiiveri, H.1
  • 19
    • 33746334456 scopus 로고    scopus 로고
    • Supervised classification with conditional gaussian networks: increasing the structure complexity from naive bayes
    • Pérez A, Larrañaga P, Inza I. Supervised classification with conditional gaussian networks: increasing the structure complexity from naive bayes. Int J Approximate Reasoning 2006, 43:1-25., http://www.sciencedirect.com/science/article/pii/S0888613X0600003X
    • (2006) Int J Approximate Reasoning , vol.43 , pp. 1-25
    • Pérez, A.1    Larrañaga, P.2    Inza, I.3
  • 20
    • 76949106424 scopus 로고    scopus 로고
    • Selecting high-dimensional mixed graphical models using minimal AIC or BIC forests
    • Edwards D, de Abreu GCG, Labouriau R. Selecting high-dimensional mixed graphical models using minimal AIC or BIC forests. BMC Bioinf 2010, 11:18.
    • (2010) BMC Bioinf , vol.11 , pp. 18
    • Edwards, D.1    de Abreu, G.C.G.2    Labouriau, R.3
  • 22
  • 23
    • 0042420030 scopus 로고    scopus 로고
    • Hybrid bayesian networks for reasoning about complex systems
    • Stanford University
    • Lerner UN. Hybrid bayesian networks for reasoning about complex systems. Tech. rep 2002, Stanford University.
    • (2002) Tech. rep
    • Lerner, U.N.1
  • 26
    • 84872841485 scopus 로고    scopus 로고
    • Simple estimators of false discovery rates given as few as one or two p-values without strong parametric assumptions
    • Bickel DR. Simple estimators of false discovery rates given as few as one or two p-values without strong parametric assumptions. ArXiv 2011, 1106:4490.
    • (2011) ArXiv , vol.1106 , pp. 4490
    • Bickel, D.R.1
  • 27
    • 84872831125 scopus 로고    scopus 로고
    • Small-scale inference: Empirical Bayes and confidence methods for as few as a single comparison
    • Bickel DR. Small-scale inference: Empirical Bayes and confidence methods for as few as a single comparison. ArXiv 2011, 1104:0341.
    • (2011) ArXiv , vol.1104 , pp. 0341
    • Bickel, D.R.1
  • 28
    • 0002294347 scopus 로고
    • A simple sequentially rejective multiple test procedure
    • Holm S. A simple sequentially rejective multiple test procedure. Scand J Stat 1979, 6:65-70.
    • (1979) Scand J Stat , vol.6 , pp. 65-70
    • Holm, S.1
  • 29
    • 0036081355 scopus 로고    scopus 로고
    • Gene Expression Omnibus: NCBI gene expression and hybridization array data repository
    • 10.1093/nar/30.1.207, 99122, 11752295
    • Edgar R, Domrachev M, Lash AE. Gene Expression Omnibus: NCBI gene expression and hybridization array data repository. Nucleic Acids Res 2002, 30:207-210. 10.1093/nar/30.1.207, 99122, 11752295.
    • (2002) Nucleic Acids Res , vol.30 , pp. 207-210
    • Edgar, R.1    Domrachev, M.2    Lash, A.E.3
  • 30
    • 84872871059 scopus 로고    scopus 로고
    • Bioconductor's SPIA package
    • Tarca AL, Khatri P, Draghici S. Bioconductor's SPIA package. 2010, , http://bioconductor.org/packages/2.6/bioc/vignettes/SPIA/inst/doc/SPIA.pdf
    • (2010)
    • Tarca, A.L.1    Khatri, P.2    Draghici, S.3
  • 31
    • 37249059395 scopus 로고    scopus 로고
    • A SINful approach to Gaussian graphical model selection
    • Drton M, Perlman MD. A SINful approach to Gaussian graphical model selection. J Stat Plan Inf 2008, 138:1179-1200.
    • (2008) J Stat Plan Inf , vol.138 , pp. 1179-1200
    • Drton, M.1    Perlman, M.D.2
  • 35
    • 0001677717 scopus 로고
    • Controlling the false discovery rate: A practical and powerful approach to multiple testing
    • Benjamini Y, Hochberg Y. Controlling the false discovery rate: A practical and powerful approach to multiple testing. J R Stat Soc Ser B (Methodological) 1995, 57:289-300., http://www.jstor.org/stable/2346101
    • (1995) J R Stat Soc Ser B (Methodological) , vol.57 , pp. 289-300
    • Benjamini, Y.1    Hochberg, Y.2
  • 36
    • 33947491309 scopus 로고    scopus 로고
    • Genetical Genomics: use all data
    • 1780048, 17210083
    • Perez-Enciso M, Quevedo J, Bahamonde A. Genetical Genomics: use all data. BMC genomics 2007, 8(69):8-69. 1780048, 17210083.
    • (2007) BMC genomics , vol.8 , Issue.69 , pp. 8-69
    • Perez-Enciso, M.1    Quevedo, J.2    Bahamonde, A.3
  • 37
    • 29244448340 scopus 로고    scopus 로고
    • Microarray data analysis: from disarray to consolidation and consensus
    • Allison DB, Cui X, Page GP. Microarray data analysis: from disarray to consolidation and consensus. Nat Rev Genet 2006, 7:1471-0056.
    • (2006) Nat Rev Genet , vol.7 , pp. 1471-10056
    • Allison, D.B.1    Cui, X.2    Page, G.P.3
  • 38
    • 4544341015 scopus 로고    scopus 로고
    • Linear models and empirical Bayes for assessing differential expression in microarry experiments
    • Smyth G. Linear models and empirical Bayes for assessing differential expression in microarry experiments. Stat Appl Genet Mol Biol 2004, 3.
    • (2004) Stat Appl Genet Mol Biol , vol.3
    • Smyth, G.1
  • 39
    • 78650539308 scopus 로고    scopus 로고
    • From RNA-seq reads to differential expression results
    • 10.1186/gb-2010-11-12-220, 3046478, 21176179
    • Oshlack A, Robinson MD, Young MD. From RNA-seq reads to differential expression results. Genome Biol 2010, 11:220. 10.1186/gb-2010-11-12-220, 3046478, 21176179.
    • (2010) Genome Biol , vol.11 , pp. 220
    • Oshlack, A.1    Robinson, M.D.2    Young, M.D.3
  • 41
    • 0036138322 scopus 로고    scopus 로고
    • How to reconstruct a large genetic network from n gene perturbations in fewer than n(2) easy steps
    • 10.1093/bioinformatics/17.12.1183, 11751227
    • Wagner A. How to reconstruct a large genetic network from n gene perturbations in fewer than n(2) easy steps. Bioinformatics 2001, 17(12):1183-1197. 10.1093/bioinformatics/17.12.1183, 11751227.
    • (2001) Bioinformatics , vol.17 , Issue.12 , pp. 1183-1197
    • Wagner, A.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.