메뉴 건너뛰기




Volumn 387, Issue 1-2, 2013, Pages 284-292

Hybrid biogeography based simultaneous feature selection and MHC class I peptide binding prediction using support vector machines and random forests

Author keywords

Biogeography based optimization; CoEPrA classification and regression; Feature selection; MHC class I peptide binding prediction; SVM and random forests; Weighted heuristics

Indexed keywords

MAJOR HISTOCOMPATIBILITY ANTIGEN CLASS 1;

EID: 84871445050     PISSN: 00221759     EISSN: 18727905     Source Type: Journal    
DOI: 10.1016/j.jim.2012.09.013     Document Type: Article
Times cited : (15)

References (51)
  • 1
    • 0026966646 scopus 로고
    • A Training Algorithm for Optimal Margin Classifiers
    • ACM Press, Pittsburgh, PA
    • Boser B.E., Guyon I.M., Vapnik V.N. A Training Algorithm for Optimal Margin Classifiers. 5th Annual ACM Workshop on COLT 1992, 144. ACM Press, Pittsburgh, PA.
    • (1992) 5th Annual ACM Workshop on COLT , pp. 144
    • Boser, B.E.1    Guyon, I.M.2    Vapnik, V.N.3
  • 2
    • 0035478854 scopus 로고    scopus 로고
    • Random forests
    • Breiman L. Random forests. Mach. Learn. 2001, 45:5.
    • (2001) Mach. Learn. , vol.45 , pp. 5
    • Breiman, L.1
  • 4
    • 77958576252 scopus 로고    scopus 로고
    • An integrated approach to epitope analysis I: dimensional reduction, visualization and prediction of MHC binding using amino acid principal components and regression approaches
    • Bremel R.D., Homan E.J. An integrated approach to epitope analysis I: dimensional reduction, visualization and prediction of MHC binding using amino acid principal components and regression approaches. Immunome Res. 2010, 6:7.
    • (2010) Immunome Res. , vol.6 , pp. 7
    • Bremel, R.D.1    Homan, E.J.2
  • 5
    • 0031825709 scopus 로고    scopus 로고
    • Prediction of MHC class II-binding peptides using an evolutionary algorithm and artificial neural network
    • Brusic V., Rudy G., Honeyman G., Hammer J., Harrison L. Prediction of MHC class II-binding peptides using an evolutionary algorithm and artificial neural network. Bioinformatics 1998, 14:121.
    • (1998) Bioinformatics , vol.14 , pp. 121
    • Brusic, V.1    Rudy, G.2    Honeyman, G.3    Hammer, J.4    Harrison, L.5
  • 6
    • 7944223046 scopus 로고    scopus 로고
    • Computational methods for prediction of T-cell epitopes - a framework for modelling, testing, and applications
    • Brusic V., Bajic V.B., Petrovsky N. Computational methods for prediction of T-cell epitopes - a framework for modelling, testing, and applications. Methods 2004, 34:436.
    • (2004) Methods , vol.34 , pp. 436
    • Brusic, V.1    Bajic, V.B.2    Petrovsky, N.3
  • 8
    • 84871429824 scopus 로고    scopus 로고
    • CoEPrA
    • CoEPrA http://www.coepra.org/.
  • 10
    • 34249042875 scopus 로고    scopus 로고
    • Prediction of immunogenicity for therapeutic proteins: state of the art
    • De Groot A.S., Moise L. Prediction of immunogenicity for therapeutic proteins: state of the art. Curr. Opin. Drug Discov. Devel. 2007, 10:332.
    • (2007) Curr. Opin. Drug Discov. Devel. , vol.10 , pp. 332
    • De Groot, A.S.1    Moise, L.2
  • 12
    • 0035950043 scopus 로고    scopus 로고
    • Toward the quantitative prediction of T-cell epitopes: coMFA and coMSIA studies of peptides with affinity for the class I MHC molecule HLA-A*0201
    • Doytchinova I.A., Flower D.R. Toward the quantitative prediction of T-cell epitopes: coMFA and coMSIA studies of peptides with affinity for the class I MHC molecule HLA-A*0201. J. Med. Chem. 2001, 44:3572.
    • (2001) J. Med. Chem. , vol.44 , pp. 3572
    • Doytchinova, I.A.1    Flower, D.R.2
  • 13
    • 0037102953 scopus 로고    scopus 로고
    • Physicochemical explanation of peptide binding to HLA-A*0201 major histocompatibility complex: a three-dimensional quantitative structure-activity relationship study
    • Doytchinova I.A., Flower D.R. Physicochemical explanation of peptide binding to HLA-A*0201 major histocompatibility complex: a three-dimensional quantitative structure-activity relationship study. Proteins 2002, 48:505.
    • (2002) Proteins , vol.48 , pp. 505
    • Doytchinova, I.A.1    Flower, D.R.2
  • 14
    • 33645677701 scopus 로고    scopus 로고
    • Modeling the peptide-T cell receptor interaction by the comparative molecular similarity indices analysis-soft independent modeling of class analogy technique
    • Doytchinova I.A., Flower D. Modeling the peptide-T cell receptor interaction by the comparative molecular similarity indices analysis-soft independent modeling of class analogy technique. J. Med. Chem. 2006, 49:2193.
    • (2006) J. Med. Chem. , vol.49 , pp. 2193
    • Doytchinova, I.A.1    Flower, D.2
  • 15
    • 22144474037 scopus 로고    scopus 로고
    • Towards the chemometric dissection of peptide-HLA-A*0201 binding affinity: comparison of local and global QSAR models
    • Doytchinova I.A., Walshe V., Borrow P., Flower D.R. Towards the chemometric dissection of peptide-HLA-A*0201 binding affinity: comparison of local and global QSAR models. J. Comput. Aided Mol. Des. 2005, 19:203.
    • (2005) J. Comput. Aided Mol. Des. , vol.19 , pp. 203
    • Doytchinova, I.A.1    Walshe, V.2    Borrow, P.3    Flower, D.R.4
  • 16
    • 78149293634 scopus 로고    scopus 로고
    • Recent advances in B-cell epitope prediction methods
    • EL-Manzalawy Y., Honavar V. Recent advances in B-cell epitope prediction methods. Immunome Res. 2010, 6(Suppl. 2):S2.
    • (2010) Immunome Res. , vol.6 , Issue.SUPPL. 2
    • El-Manzalawy, Y.1    Honavar, V.2
  • 17
    • 85196448952 scopus 로고    scopus 로고
    • Feature selection for cancer classification using ant colony optimization and support vector machines
    • World Scientific, Singapore, S. Bandyopadhyay, U. Maulik, J.T.L. Wang (Eds.)
    • Gupta A., Jayaraman V.K., Kulkarni B.D. Feature selection for cancer classification using ant colony optimization and support vector machines. Analysis of Biological Data: A Soft Computing Approach 2006, 259. World Scientific, Singapore. S. Bandyopadhyay, U. Maulik, J.T.L. Wang (Eds.).
    • (2006) Analysis of Biological Data: A Soft Computing Approach , pp. 259
    • Gupta, A.1    Jayaraman, V.K.2    Kulkarni, B.D.3
  • 20
    • 66849131414 scopus 로고    scopus 로고
    • Controlling feature selection in random forests of decision trees using a genetic algorithm: classification of class I MHC peptides
    • Hansen L., Lee E.A., Hestir K., Williams L.T., Farrelly D. Controlling feature selection in random forests of decision trees using a genetic algorithm: classification of class I MHC peptides. Comb. Chem. High Throughput Screen. 2009, 12:514.
    • (2009) Comb. Chem. High Throughput Screen. , vol.12 , pp. 514
    • Hansen, L.1    Lee, E.A.2    Hestir, K.3    Williams, L.T.4    Farrelly, D.5
  • 21
    • 26944502742 scopus 로고    scopus 로고
    • In silico prediction of peptide binding affinity to class I mouse major histocompatibility complexes: a comparative molecular similarity index analysis (CoMSIA) study
    • Hattotuwagama C.K., Doytchinova I.A., Flower D.R. In silico prediction of peptide binding affinity to class I mouse major histocompatibility complexes: a comparative molecular similarity index analysis (CoMSIA) study. J. Chem. Inf. Model. 2005, 45:1415.
    • (2005) J. Chem. Inf. Model. , vol.45 , pp. 1415
    • Hattotuwagama, C.K.1    Doytchinova, I.A.2    Flower, D.R.3
  • 22
    • 81255197618 scopus 로고    scopus 로고
    • Ensemble approaches for improving HLA Class I-peptide binding prediction
    • Hu X., Mamitsuka H., Zhu S. Ensemble approaches for improving HLA Class I-peptide binding prediction. J. Immunol. Methods 2011, 374:47.
    • (2011) J. Immunol. Methods , vol.374 , pp. 47
    • Hu, X.1    Mamitsuka, H.2    Zhu, S.3
  • 23
    • 77949879189 scopus 로고    scopus 로고
    • Exploring classification strategies with the CoEPrA 2006 contest
    • Kavuk O.D., Riedesel H., Knapp E.W. Exploring classification strategies with the CoEPrA 2006 contest. Bioinformatics 2010, 26:603.
    • (2010) Bioinformatics , vol.26 , pp. 603
    • Kavuk, O.D.1    Riedesel, H.2    Knapp, E.W.3
  • 24
    • 80054853889 scopus 로고    scopus 로고
    • Prediction using step-wise L1, L2 regularization and feature selection for small data sets with large number of features
    • Kavuk O.D., Kamada M., Akutsu T., Knapp E.W. Prediction using step-wise L1, L2 regularization and feature selection for small data sets with large number of features. BMC Bioinformatics 2011, 12:1.
    • (2011) BMC Bioinformatics , vol.12 , pp. 1
    • Kavuk, O.D.1    Kamada, M.2    Akutsu, T.3    Knapp, E.W.4
  • 25
    • 77957258599 scopus 로고    scopus 로고
    • PDOCK: a new technique for rapid and accurate docking of peptide ligands to Major Histocompatibility Complexes
    • Khan J.M., Ranganathan S. pDOCK: a new technique for rapid and accurate docking of peptide ligands to Major Histocompatibility Complexes. Immunome Res. 2010, 6:S2.
    • (2010) Immunome Res. , vol.6
    • Khan, J.M.1    Ranganathan, S.2
  • 27
    • 0345040873 scopus 로고    scopus 로고
    • Classification and Regression by randomForest
    • Liaw A., Wiener M. Classification and Regression by randomForest. R News 2002, 2:18.
    • (2002) R News , vol.2 , pp. 18
    • Liaw, A.1    Wiener, M.2
  • 28
    • 42549105195 scopus 로고    scopus 로고
    • Evaluation of MHC class I peptide binding prediction servers: applications for vaccine research
    • Lin H.H., Ray S., Tongchusak S., Reinherz E.L., Brusic V. Evaluation of MHC class I peptide binding prediction servers: applications for vaccine research. BMC Immunol. 2008, 9:8.
    • (2008) BMC Immunol. , vol.9 , pp. 8
    • Lin, H.H.1    Ray, S.2    Tongchusak, S.3    Reinherz, E.L.4    Brusic, V.5
  • 29
    • 57649174707 scopus 로고    scopus 로고
    • Evaluation of MHC-II peptide binding prediction servers: applications for vaccine research
    • Lin H.H., Zhang G.L., Tongchusak S., Reinherz E.L., Brusic V. Evaluation of MHC-II peptide binding prediction servers: applications for vaccine research. BMC Bioinformatics 2008, 9:S22.
    • (2008) BMC Bioinformatics , vol.9
    • Lin, H.H.1    Zhang, G.L.2    Tongchusak, S.3    Reinherz, E.L.4    Brusic, V.5
  • 30
    • 81255198783 scopus 로고    scopus 로고
    • Prediction of epitopes using neural network based methods
    • Lundegaard C., Lund O., Nielsen M. Prediction of epitopes using neural network based methods. J. Immunol. Methods 2011, 374:26.
    • (2011) J. Immunol. Methods , vol.374 , pp. 26
    • Lundegaard, C.1    Lund, O.2    Nielsen, M.3
  • 31
    • 79951956537 scopus 로고    scopus 로고
    • Blended biogeography-based optimization for constrained optimization
    • Ma H., Simon D. Blended biogeography-based optimization for constrained optimization. Eng. Appl. Artif. Intell. 2011, 24:517.
    • (2011) Eng. Appl. Artif. Intell. , vol.24 , pp. 517
    • Ma, H.1    Simon, D.2
  • 33
    • 34249042613 scopus 로고    scopus 로고
    • The pan-genome: towards a knowledge-based discovery of novel targets for vaccines and antibacterials
    • Muzzi A., Masignani V., Rappuoli R. The pan-genome: towards a knowledge-based discovery of novel targets for vaccines and antibacterials. Drug Discov. Today 2007, 12:429.
    • (2007) Drug Discov. Today , vol.12 , pp. 429
    • Muzzi, A.1    Masignani, V.2    Rappuoli, R.3
  • 35
    • 33947219434 scopus 로고    scopus 로고
    • KScore: a novel machine learning approach that is not dependent on the data structure of the training set
    • Oloff S., Muegge I. kScore: a novel machine learning approach that is not dependent on the data structure of the training set. J. Comput. Aided Mol. Des. 2007, 21:87.
    • (2007) J. Comput. Aided Mol. Des. , vol.21 , pp. 87
    • Oloff, S.1    Muegge, I.2
  • 37
    • 65549157113 scopus 로고    scopus 로고
    • ImmunoGrid, an integrative environment for large-scale simulation of the immune system for vaccine discovery, design and optimization
    • Pappalardo F., Halling-Brown M.D., Rapin N., et al. ImmunoGrid, an integrative environment for large-scale simulation of the immune system for vaccine discovery, design and optimization. Brief. Bioinform. 2009, 10:330.
    • (2009) Brief. Bioinform. , vol.10 , pp. 330
    • Pappalardo, F.1    Halling-Brown, M.D.2    Rapin, N.3
  • 38
  • 40
    • 34247891741 scopus 로고    scopus 로고
    • More than one reason to rethink the use of peptides in vaccine design
    • Purcell A.W., McCluskey J., Rossjohn J. More than one reason to rethink the use of peptides in vaccine design. Nat. Rev. Drug Discov. 2007, 6:404.
    • (2007) Nat. Rev. Drug Discov. , vol.6 , pp. 404
    • Purcell, A.W.1    McCluskey, J.2    Rossjohn, J.3
  • 41
    • 38549105061 scopus 로고    scopus 로고
    • Predicting peptides binding to MHC class II molecules using multi-objective evolutionary algorithms
    • Rajapakse M., Schmidt B., Feng L., Brusic V. Predicting peptides binding to MHC class II molecules using multi-objective evolutionary algorithms. BMC Bioinformatics 2007, 8:459.
    • (2007) BMC Bioinformatics , vol.8 , pp. 459
    • Rajapakse, M.1    Schmidt, B.2    Feng, L.3    Brusic, V.4
  • 42
    • 84866881826 scopus 로고    scopus 로고
    • Simultaneous informative gene extraction and cancer classification using aco-antminer and aco-random forests
    • Springer
    • Sharma S., Ghosh S., Anantharaman N., Jayaraman V.K. Simultaneous informative gene extraction and cancer classification using aco-antminer and aco-random forests. Advances in Intelligent and Soft Computing 2012, 132:755. Springer.
    • (2012) Advances in Intelligent and Soft Computing , vol.132 , pp. 755
    • Sharma, S.1    Ghosh, S.2    Anantharaman, N.3    Jayaraman, V.K.4
  • 43
    • 57249115093 scopus 로고    scopus 로고
    • Biogeography-Based Optimization
    • Simon D. Biogeography-Based Optimization. IEEE Trans. Evol. Comput. 2008, 12:702.
    • (2008) IEEE Trans. Evol. Comput. , vol.12 , pp. 702
    • Simon, D.1
  • 46
    • 34250635170 scopus 로고    scopus 로고
    • Methods and protocols for predicting immunogenic epitopes
    • Tong J.C., Tan T.W., Ranganathan S. Methods and protocols for predicting immunogenic epitopes. Brief. Bioinform. 2007, 8:96.
    • (2007) Brief. Bioinform. , vol.8 , pp. 96
    • Tong, J.C.1    Tan, T.W.2    Ranganathan, S.3
  • 47
    • 34250196006 scopus 로고    scopus 로고
    • Strength in numbers: achieving greater accuracy in MHC-I binding prediction by combining the results from multiple prediction tools
    • Trost B., Bickis M., Kusalik A. Strength in numbers: achieving greater accuracy in MHC-I binding prediction by combining the results from multiple prediction tools. Immunome Res. 2007, 3:5.
    • (2007) Immunome Res. , vol.3 , pp. 5
    • Trost, B.1    Bickis, M.2    Kusalik, A.3
  • 48
    • 0036042580 scopus 로고    scopus 로고
    • Methods for prediction of peptide binding to MHC molecules: a comparative study
    • Yu K., Petrovsky N., Schonbach C., Koh J.Y., Brusic V. Methods for prediction of peptide binding to MHC molecules: a comparative study. Mol. Med. 2002, 8:137.
    • (2002) Mol. Med. , vol.8 , pp. 137
    • Yu, K.1    Petrovsky, N.2    Schonbach, C.3    Koh, J.Y.4    Brusic, V.5
  • 49
    • 33847710294 scopus 로고    scopus 로고
    • Prediction of supertype-specific HLA class I binding peptides using support vector machines
    • Zhang G.L., Bozic I., Kwoh C.K., August J.T., Brusic V. Prediction of supertype-specific HLA class I binding peptides using support vector machines. J. Immunol. Methods 2007, 320:143.
    • (2007) J. Immunol. Methods , vol.320 , pp. 143
    • Zhang, G.L.1    Bozic, I.2    Kwoh, C.K.3    August, J.T.4    Brusic, V.5
  • 50
    • 81255157774 scopus 로고    scopus 로고
    • Machine learning competition in immunology - prediction of HLA class I binding peptides
    • Zhang G.L., Ansari H.R., Bradley P., et al. Machine learning competition in immunology - prediction of HLA class I binding peptides. J. Immunol. Methods 2011, 374:1.
    • (2011) J. Immunol. Methods , vol.374 , pp. 1
    • Zhang, G.L.1    Ansari, H.R.2    Bradley, P.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.