-
1
-
-
0026966646
-
A Training Algorithm for Optimal Margin Classifiers
-
ACM Press, Pittsburgh, PA
-
Boser B.E., Guyon I.M., Vapnik V.N. A Training Algorithm for Optimal Margin Classifiers. 5th Annual ACM Workshop on COLT 1992, 144. ACM Press, Pittsburgh, PA.
-
(1992)
5th Annual ACM Workshop on COLT
, pp. 144
-
-
Boser, B.E.1
Guyon, I.M.2
Vapnik, V.N.3
-
2
-
-
0035478854
-
Random forests
-
Breiman L. Random forests. Mach. Learn. 2001, 45:5.
-
(2001)
Mach. Learn.
, vol.45
, pp. 5
-
-
Breiman, L.1
-
4
-
-
77958576252
-
An integrated approach to epitope analysis I: dimensional reduction, visualization and prediction of MHC binding using amino acid principal components and regression approaches
-
Bremel R.D., Homan E.J. An integrated approach to epitope analysis I: dimensional reduction, visualization and prediction of MHC binding using amino acid principal components and regression approaches. Immunome Res. 2010, 6:7.
-
(2010)
Immunome Res.
, vol.6
, pp. 7
-
-
Bremel, R.D.1
Homan, E.J.2
-
5
-
-
0031825709
-
Prediction of MHC class II-binding peptides using an evolutionary algorithm and artificial neural network
-
Brusic V., Rudy G., Honeyman G., Hammer J., Harrison L. Prediction of MHC class II-binding peptides using an evolutionary algorithm and artificial neural network. Bioinformatics 1998, 14:121.
-
(1998)
Bioinformatics
, vol.14
, pp. 121
-
-
Brusic, V.1
Rudy, G.2
Honeyman, G.3
Hammer, J.4
Harrison, L.5
-
6
-
-
7944223046
-
Computational methods for prediction of T-cell epitopes - a framework for modelling, testing, and applications
-
Brusic V., Bajic V.B., Petrovsky N. Computational methods for prediction of T-cell epitopes - a framework for modelling, testing, and applications. Methods 2004, 34:436.
-
(2004)
Methods
, vol.34
, pp. 436
-
-
Brusic, V.1
Bajic, V.B.2
Petrovsky, N.3
-
8
-
-
84871429824
-
-
CoEPrA
-
CoEPrA http://www.coepra.org/.
-
-
-
-
10
-
-
34249042875
-
Prediction of immunogenicity for therapeutic proteins: state of the art
-
De Groot A.S., Moise L. Prediction of immunogenicity for therapeutic proteins: state of the art. Curr. Opin. Drug Discov. Devel. 2007, 10:332.
-
(2007)
Curr. Opin. Drug Discov. Devel.
, vol.10
, pp. 332
-
-
De Groot, A.S.1
Moise, L.2
-
11
-
-
2942519065
-
-
Dimitriadou E., Hornik K., Leisch F., Meyer D., Weingessel A. e1071: Misc Functions of the Department of Statistics (e1071), TU Wien, R package version 1.5-18 2010.
-
(2010)
e1071: Misc Functions of the Department of Statistics (e1071), TU Wien, R package version 1.5-18
-
-
Dimitriadou, E.1
Hornik, K.2
Leisch, F.3
Meyer, D.4
Weingessel, A.5
-
12
-
-
0035950043
-
Toward the quantitative prediction of T-cell epitopes: coMFA and coMSIA studies of peptides with affinity for the class I MHC molecule HLA-A*0201
-
Doytchinova I.A., Flower D.R. Toward the quantitative prediction of T-cell epitopes: coMFA and coMSIA studies of peptides with affinity for the class I MHC molecule HLA-A*0201. J. Med. Chem. 2001, 44:3572.
-
(2001)
J. Med. Chem.
, vol.44
, pp. 3572
-
-
Doytchinova, I.A.1
Flower, D.R.2
-
13
-
-
0037102953
-
Physicochemical explanation of peptide binding to HLA-A*0201 major histocompatibility complex: a three-dimensional quantitative structure-activity relationship study
-
Doytchinova I.A., Flower D.R. Physicochemical explanation of peptide binding to HLA-A*0201 major histocompatibility complex: a three-dimensional quantitative structure-activity relationship study. Proteins 2002, 48:505.
-
(2002)
Proteins
, vol.48
, pp. 505
-
-
Doytchinova, I.A.1
Flower, D.R.2
-
14
-
-
33645677701
-
Modeling the peptide-T cell receptor interaction by the comparative molecular similarity indices analysis-soft independent modeling of class analogy technique
-
Doytchinova I.A., Flower D. Modeling the peptide-T cell receptor interaction by the comparative molecular similarity indices analysis-soft independent modeling of class analogy technique. J. Med. Chem. 2006, 49:2193.
-
(2006)
J. Med. Chem.
, vol.49
, pp. 2193
-
-
Doytchinova, I.A.1
Flower, D.2
-
15
-
-
22144474037
-
Towards the chemometric dissection of peptide-HLA-A*0201 binding affinity: comparison of local and global QSAR models
-
Doytchinova I.A., Walshe V., Borrow P., Flower D.R. Towards the chemometric dissection of peptide-HLA-A*0201 binding affinity: comparison of local and global QSAR models. J. Comput. Aided Mol. Des. 2005, 19:203.
-
(2005)
J. Comput. Aided Mol. Des.
, vol.19
, pp. 203
-
-
Doytchinova, I.A.1
Walshe, V.2
Borrow, P.3
Flower, D.R.4
-
16
-
-
78149293634
-
Recent advances in B-cell epitope prediction methods
-
EL-Manzalawy Y., Honavar V. Recent advances in B-cell epitope prediction methods. Immunome Res. 2010, 6(Suppl. 2):S2.
-
(2010)
Immunome Res.
, vol.6
, Issue.SUPPL. 2
-
-
El-Manzalawy, Y.1
Honavar, V.2
-
17
-
-
85196448952
-
Feature selection for cancer classification using ant colony optimization and support vector machines
-
World Scientific, Singapore, S. Bandyopadhyay, U. Maulik, J.T.L. Wang (Eds.)
-
Gupta A., Jayaraman V.K., Kulkarni B.D. Feature selection for cancer classification using ant colony optimization and support vector machines. Analysis of Biological Data: A Soft Computing Approach 2006, 259. World Scientific, Singapore. S. Bandyopadhyay, U. Maulik, J.T.L. Wang (Eds.).
-
(2006)
Analysis of Biological Data: A Soft Computing Approach
, pp. 259
-
-
Gupta, A.1
Jayaraman, V.K.2
Kulkarni, B.D.3
-
18
-
-
76749092270
-
The Weka data mining software: an update
-
Hall M., Frank E., Holmes G., Pfahringer B., Reutemann P., Witten I.H. The Weka data mining software: an update. SIGKDD Explor. 2009, 11:130.
-
(2009)
SIGKDD Explor.
, vol.11
, pp. 130
-
-
Hall, M.1
Frank, E.2
Holmes, G.3
Pfahringer, B.4
Reutemann, P.5
Witten, I.H.6
-
20
-
-
66849131414
-
Controlling feature selection in random forests of decision trees using a genetic algorithm: classification of class I MHC peptides
-
Hansen L., Lee E.A., Hestir K., Williams L.T., Farrelly D. Controlling feature selection in random forests of decision trees using a genetic algorithm: classification of class I MHC peptides. Comb. Chem. High Throughput Screen. 2009, 12:514.
-
(2009)
Comb. Chem. High Throughput Screen.
, vol.12
, pp. 514
-
-
Hansen, L.1
Lee, E.A.2
Hestir, K.3
Williams, L.T.4
Farrelly, D.5
-
21
-
-
26944502742
-
In silico prediction of peptide binding affinity to class I mouse major histocompatibility complexes: a comparative molecular similarity index analysis (CoMSIA) study
-
Hattotuwagama C.K., Doytchinova I.A., Flower D.R. In silico prediction of peptide binding affinity to class I mouse major histocompatibility complexes: a comparative molecular similarity index analysis (CoMSIA) study. J. Chem. Inf. Model. 2005, 45:1415.
-
(2005)
J. Chem. Inf. Model.
, vol.45
, pp. 1415
-
-
Hattotuwagama, C.K.1
Doytchinova, I.A.2
Flower, D.R.3
-
22
-
-
81255197618
-
Ensemble approaches for improving HLA Class I-peptide binding prediction
-
Hu X., Mamitsuka H., Zhu S. Ensemble approaches for improving HLA Class I-peptide binding prediction. J. Immunol. Methods 2011, 374:47.
-
(2011)
J. Immunol. Methods
, vol.374
, pp. 47
-
-
Hu, X.1
Mamitsuka, H.2
Zhu, S.3
-
23
-
-
77949879189
-
Exploring classification strategies with the CoEPrA 2006 contest
-
Kavuk O.D., Riedesel H., Knapp E.W. Exploring classification strategies with the CoEPrA 2006 contest. Bioinformatics 2010, 26:603.
-
(2010)
Bioinformatics
, vol.26
, pp. 603
-
-
Kavuk, O.D.1
Riedesel, H.2
Knapp, E.W.3
-
24
-
-
80054853889
-
Prediction using step-wise L1, L2 regularization and feature selection for small data sets with large number of features
-
Kavuk O.D., Kamada M., Akutsu T., Knapp E.W. Prediction using step-wise L1, L2 regularization and feature selection for small data sets with large number of features. BMC Bioinformatics 2011, 12:1.
-
(2011)
BMC Bioinformatics
, vol.12
, pp. 1
-
-
Kavuk, O.D.1
Kamada, M.2
Akutsu, T.3
Knapp, E.W.4
-
25
-
-
77957258599
-
PDOCK: a new technique for rapid and accurate docking of peptide ligands to Major Histocompatibility Complexes
-
Khan J.M., Ranganathan S. pDOCK: a new technique for rapid and accurate docking of peptide ligands to Major Histocompatibility Complexes. Immunome Res. 2010, 6:S2.
-
(2010)
Immunome Res.
, vol.6
-
-
Khan, J.M.1
Ranganathan, S.2
-
27
-
-
0345040873
-
Classification and Regression by randomForest
-
Liaw A., Wiener M. Classification and Regression by randomForest. R News 2002, 2:18.
-
(2002)
R News
, vol.2
, pp. 18
-
-
Liaw, A.1
Wiener, M.2
-
28
-
-
42549105195
-
Evaluation of MHC class I peptide binding prediction servers: applications for vaccine research
-
Lin H.H., Ray S., Tongchusak S., Reinherz E.L., Brusic V. Evaluation of MHC class I peptide binding prediction servers: applications for vaccine research. BMC Immunol. 2008, 9:8.
-
(2008)
BMC Immunol.
, vol.9
, pp. 8
-
-
Lin, H.H.1
Ray, S.2
Tongchusak, S.3
Reinherz, E.L.4
Brusic, V.5
-
29
-
-
57649174707
-
Evaluation of MHC-II peptide binding prediction servers: applications for vaccine research
-
Lin H.H., Zhang G.L., Tongchusak S., Reinherz E.L., Brusic V. Evaluation of MHC-II peptide binding prediction servers: applications for vaccine research. BMC Bioinformatics 2008, 9:S22.
-
(2008)
BMC Bioinformatics
, vol.9
-
-
Lin, H.H.1
Zhang, G.L.2
Tongchusak, S.3
Reinherz, E.L.4
Brusic, V.5
-
30
-
-
81255198783
-
Prediction of epitopes using neural network based methods
-
Lundegaard C., Lund O., Nielsen M. Prediction of epitopes using neural network based methods. J. Immunol. Methods 2011, 374:26.
-
(2011)
J. Immunol. Methods
, vol.374
, pp. 26
-
-
Lundegaard, C.1
Lund, O.2
Nielsen, M.3
-
31
-
-
79951956537
-
Blended biogeography-based optimization for constrained optimization
-
Ma H., Simon D. Blended biogeography-based optimization for constrained optimization. Eng. Appl. Artif. Intell. 2011, 24:517.
-
(2011)
Eng. Appl. Artif. Intell.
, vol.24
, pp. 517
-
-
Ma, H.1
Simon, D.2
-
33
-
-
34249042613
-
The pan-genome: towards a knowledge-based discovery of novel targets for vaccines and antibacterials
-
Muzzi A., Masignani V., Rappuoli R. The pan-genome: towards a knowledge-based discovery of novel targets for vaccines and antibacterials. Drug Discov. Today 2007, 12:429.
-
(2007)
Drug Discov. Today
, vol.12
, pp. 429
-
-
Muzzi, A.1
Masignani, V.2
Rappuoli, R.3
-
35
-
-
33947219434
-
KScore: a novel machine learning approach that is not dependent on the data structure of the training set
-
Oloff S., Muegge I. kScore: a novel machine learning approach that is not dependent on the data structure of the training set. J. Comput. Aided Mol. Des. 2007, 21:87.
-
(2007)
J. Comput. Aided Mol. Des.
, vol.21
, pp. 87
-
-
Oloff, S.1
Muegge, I.2
-
36
-
-
77955904517
-
Biogeography based satellite image classification
-
Panchal V.K., Singh P., Kaur N., Kundra H. Biogeography based satellite image classification. Int. J. Comput. Sci. Inf. Secur. 2009, 6:269.
-
(2009)
Int. J. Comput. Sci. Inf. Secur.
, vol.6
, pp. 269
-
-
Panchal, V.K.1
Singh, P.2
Kaur, N.3
Kundra, H.4
-
37
-
-
65549157113
-
ImmunoGrid, an integrative environment for large-scale simulation of the immune system for vaccine discovery, design and optimization
-
Pappalardo F., Halling-Brown M.D., Rapin N., et al. ImmunoGrid, an integrative environment for large-scale simulation of the immune system for vaccine discovery, design and optimization. Brief. Bioinform. 2009, 10:330.
-
(2009)
Brief. Bioinform.
, vol.10
, pp. 330
-
-
Pappalardo, F.1
Halling-Brown, M.D.2
Rapin, N.3
-
38
-
-
66849115454
-
Feature selection and classification employing hybrid ant colony optimization-random forest methodology
-
Patil D., Raj R., Shingade P., Kulkarni B., Jayaraman V.K. Feature selection and classification employing hybrid ant colony optimization-random forest methodology. Comb. Chem. High Throughput Screen. 2009, 12:507.
-
(2009)
Comb. Chem. High Throughput Screen.
, vol.12
, pp. 507
-
-
Patil, D.1
Raj, R.2
Shingade, P.3
Kulkarni, B.4
Jayaraman, V.K.5
-
39
-
-
33745584371
-
A community resource benchmarking predictions of peptide binding to MHC-I molecules
-
Peters B., Bui H.H., Frankild S., Nielson M., Lundegaard C., Kostem E., Basch D., Lamberth K., Harndahl M., Fleri W., et al. A community resource benchmarking predictions of peptide binding to MHC-I molecules. PLoS Comput. Biol. 2002, 2:e65.
-
(2002)
PLoS Comput. Biol.
, vol.2
-
-
Peters, B.1
Bui, H.H.2
Frankild, S.3
Nielson, M.4
Lundegaard, C.5
Kostem, E.6
Basch, D.7
Lamberth, K.8
Harndahl, M.9
Fleri, W.10
-
40
-
-
34247891741
-
More than one reason to rethink the use of peptides in vaccine design
-
Purcell A.W., McCluskey J., Rossjohn J. More than one reason to rethink the use of peptides in vaccine design. Nat. Rev. Drug Discov. 2007, 6:404.
-
(2007)
Nat. Rev. Drug Discov.
, vol.6
, pp. 404
-
-
Purcell, A.W.1
McCluskey, J.2
Rossjohn, J.3
-
41
-
-
38549105061
-
Predicting peptides binding to MHC class II molecules using multi-objective evolutionary algorithms
-
Rajapakse M., Schmidt B., Feng L., Brusic V. Predicting peptides binding to MHC class II molecules using multi-objective evolutionary algorithms. BMC Bioinformatics 2007, 8:459.
-
(2007)
BMC Bioinformatics
, vol.8
, pp. 459
-
-
Rajapakse, M.1
Schmidt, B.2
Feng, L.3
Brusic, V.4
-
42
-
-
84866881826
-
Simultaneous informative gene extraction and cancer classification using aco-antminer and aco-random forests
-
Springer
-
Sharma S., Ghosh S., Anantharaman N., Jayaraman V.K. Simultaneous informative gene extraction and cancer classification using aco-antminer and aco-random forests. Advances in Intelligent and Soft Computing 2012, 132:755. Springer.
-
(2012)
Advances in Intelligent and Soft Computing
, vol.132
, pp. 755
-
-
Sharma, S.1
Ghosh, S.2
Anantharaman, N.3
Jayaraman, V.K.4
-
43
-
-
57249115093
-
Biogeography-Based Optimization
-
Simon D. Biogeography-Based Optimization. IEEE Trans. Evol. Comput. 2008, 12:702.
-
(2008)
IEEE Trans. Evol. Comput.
, vol.12
, pp. 702
-
-
Simon, D.1
-
45
-
-
35348946351
-
In silico characterization of immunogenic epitopes presented by HLA-Cw*0401
-
Tong J.C., Zhang Z.H., August J.T., Brusic V., Tan T.W., Ranganathan S. In silico characterization of immunogenic epitopes presented by HLA-Cw*0401. Immunome Res. 2007, 3:7.
-
(2007)
Immunome Res.
, vol.3
, pp. 7
-
-
Tong, J.C.1
Zhang, Z.H.2
August, J.T.3
Brusic, V.4
Tan, T.W.5
Ranganathan, S.6
-
46
-
-
34250635170
-
Methods and protocols for predicting immunogenic epitopes
-
Tong J.C., Tan T.W., Ranganathan S. Methods and protocols for predicting immunogenic epitopes. Brief. Bioinform. 2007, 8:96.
-
(2007)
Brief. Bioinform.
, vol.8
, pp. 96
-
-
Tong, J.C.1
Tan, T.W.2
Ranganathan, S.3
-
47
-
-
34250196006
-
Strength in numbers: achieving greater accuracy in MHC-I binding prediction by combining the results from multiple prediction tools
-
Trost B., Bickis M., Kusalik A. Strength in numbers: achieving greater accuracy in MHC-I binding prediction by combining the results from multiple prediction tools. Immunome Res. 2007, 3:5.
-
(2007)
Immunome Res.
, vol.3
, pp. 5
-
-
Trost, B.1
Bickis, M.2
Kusalik, A.3
-
48
-
-
0036042580
-
Methods for prediction of peptide binding to MHC molecules: a comparative study
-
Yu K., Petrovsky N., Schonbach C., Koh J.Y., Brusic V. Methods for prediction of peptide binding to MHC molecules: a comparative study. Mol. Med. 2002, 8:137.
-
(2002)
Mol. Med.
, vol.8
, pp. 137
-
-
Yu, K.1
Petrovsky, N.2
Schonbach, C.3
Koh, J.Y.4
Brusic, V.5
-
49
-
-
33847710294
-
Prediction of supertype-specific HLA class I binding peptides using support vector machines
-
Zhang G.L., Bozic I., Kwoh C.K., August J.T., Brusic V. Prediction of supertype-specific HLA class I binding peptides using support vector machines. J. Immunol. Methods 2007, 320:143.
-
(2007)
J. Immunol. Methods
, vol.320
, pp. 143
-
-
Zhang, G.L.1
Bozic, I.2
Kwoh, C.K.3
August, J.T.4
Brusic, V.5
-
50
-
-
81255157774
-
Machine learning competition in immunology - prediction of HLA class I binding peptides
-
Zhang G.L., Ansari H.R., Bradley P., et al. Machine learning competition in immunology - prediction of HLA class I binding peptides. J. Immunol. Methods 2011, 374:1.
-
(2011)
J. Immunol. Methods
, vol.374
, pp. 1
-
-
Zhang, G.L.1
Ansari, H.R.2
Bradley, P.3
-
51
-
-
81255134467
-
MULTIPRED2: a computational system for large-scale identification of peptides predicted to bind to HLA supertypes and alleles
-
Zhang G.L., Deluca D.S., Keskin D.B., Chitkushev L., Zlateva T., Lund O., Reinherz E.L., Brusic V. MULTIPRED2: a computational system for large-scale identification of peptides predicted to bind to HLA supertypes and alleles. J. Immunol. Methods 2011, 374:53.
-
(2011)
J. Immunol. Methods
, vol.374
, pp. 53
-
-
Zhang, G.L.1
Deluca, D.S.2
Keskin, D.B.3
Chitkushev, L.4
Zlateva, T.5
Lund, O.6
Reinherz, E.L.7
Brusic, V.8
|