메뉴 건너뛰기




Volumn 10, Issue 3, 2009, Pages 330-340

ImmunoGrid, an integrative environment for large-scale simulation of the immune system for vaccine discovery, design and optimization

(23)  Pappalardo, Francesco a   Halling Brown, Mark D b   Rapin, Nicolas c   Zhang, Ping d   Alemani, Davide e   Emerson, Andrew e   Paci, Paola f   Duroux, Patrice g   Pennisi, Marzio a   Palladini, Arianna h   Miotto, Olivo i   Churchill, Daniel j   Rossi, Elda k   Shepherd, Adrian J l   Moss, David S l   Castiglione, Filippo f   Bernaschi, Massimo m   Lefranc, Marie Paule n   Brunak, Søren o,p   Motta, Santo a   more..

f CNR   (Italy)

Author keywords

Computational modeling; Grid computing; Immunoinformatics; Simulations; Vaccine discovery

Indexed keywords

VACCINE;

EID: 65549157113     PISSN: 14675463     EISSN: 14774054     Source Type: Journal    
DOI: 10.1093/bib/bbp014     Document Type: Article
Times cited : (38)

References (84)
  • 1
    • 0037472440 scopus 로고    scopus 로고
    • Vaccinology: Past achievements, present road-blocks and future promises
    • Andre FE. Vaccinology: Past achievements, present road-blocks and future promises, Vaccine 2003;21:593-5.
    • (2003) Vaccine , vol.21 , pp. 593-595
    • Andre, F.E.1
  • 2
    • 13944279588 scopus 로고    scopus 로고
    • Six revolutions in vaccinology
    • Plotkin SA. Six revolutions in vaccinology. Pediatr Infect Dis J 2005;24:1-9.
    • (2005) Pediatr Infect Dis J , vol.24 , pp. 1-9
    • Plotkin, S.A.1
  • 3
    • 0037472450 scopus 로고    scopus 로고
    • Towards the new global vaccinology era in prevention and control of diseases
    • Kurstak E. Towards the new global vaccinology era in prevention and control of diseases, Vaccine 2003;21:580-1.
    • (2003) Vaccine , vol.21 , pp. 580-581
    • Kurstak, E.1
  • 5
    • 4544372674 scopus 로고    scopus 로고
    • The changing field of vaccine development in the genomics era
    • Brusic V, August JT. The changing field of vaccine development in the genomics era. Pharmacogenomics 2004; 5:597-600.
    • (2004) Pharmacogenomics , vol.5 , pp. 597-600
    • Brusic, V.1    August, J.T.2
  • 6
    • 34249042613 scopus 로고    scopus 로고
    • The pan-genome: Towards a knowledge-based discovery of novel targets for vaccines and antibacterials
    • Muzzi A, Masignani V, Rappuoli R. The pan-genome: Towards a knowledge-based discovery of novel targets for vaccines and antibacterials. Drug Discov Today 2007;12: 429-39.
    • (2007) Drug Discov Today , vol.12 , pp. 429-439
    • Muzzi, A.1    Masignani, V.2    Rappuoli, R.3
  • 7
    • 34247891741 scopus 로고    scopus 로고
    • More than one reason to rethink the use of peptides in vaccine design
    • Purcell AW, McCluskey J, Rossjohn J. More than one reason to rethink the use of peptides in vaccine design. Nat Rev Drug Discov 2007;6 404-14.
    • (2007) Nat Rev Drug Discov , vol.6 , pp. 404-414
    • Purcell, A.W.1    McCluskey, J.2    Rossjohn, J.3
  • 8
    • 43149084860 scopus 로고    scopus 로고
    • Evolutionarily conserved protein sequences of influenza a viruses, avian and human, as vaccine targets
    • Heiny AT, Miotto O, Srinivasan KN, et al. Evolutionarily conserved protein sequences of influenza a viruses, avian and human, as vaccine targets. PLoS ONE 2007;2: E1190.
    • (2007) PLoS ONE , vol.2
    • Heiny, A.T.1    Miotto, O.2    Srinivasan, K.N.3
  • 11
    • 34247214440 scopus 로고    scopus 로고
    • New routes of administration: Epidermal, transcutaneous mucosal ways of vaccination
    • Denis F, Alain S, Ploy MC. New routes of administration: Epidermal, transcutaneous mucosal ways of vaccination. Med Sci (Paris) 2007;23:379-85.
    • (2007) Med Sci (Paris) , vol.23 , pp. 379-385
    • Denis, F.1    Alain, S.2    Ploy, M.C.3
  • 12
    • 35349027729 scopus 로고    scopus 로고
    • Nanoparticles and microparticles as vaccine-delivery systems
    • Singh M, Chakrapani A, O'Hagan D. Nanoparticles and microparticles as vaccine-delivery systems. Expert Rev Vaccines 2007;6:797-808.
    • (2007) Expert Rev Vaccines , vol.6 , pp. 797-808
    • Singh, M.1    Chakrapani, A.2    O'Hagan, D.3
  • 13
    • 34247248864 scopus 로고    scopus 로고
    • Use of viral vectors for the development of vaccines
    • Liniger M, Zuniga A, Naim HY. Use of viral vectors for the development of vaccines. Expert Rev Vaccines 2007;6: 255-66.
    • (2007) Expert Rev Vaccines , vol.6 , pp. 255-266
    • Liniger, M.1    Zuniga, A.2    Naim, H.Y.3
  • 14
    • 0037171711 scopus 로고    scopus 로고
    • Dose-related effects of smallpox vaccine
    • Frey SE, Newman FK, Cruz J, et al. Dose-related effects of smallpox vaccine. N Engl J Med 2002;346:1275-80.
    • (2002) N Engl J Med , vol.346 , pp. 1275-1280
    • Frey, S.E.1    Newman, F.K.2    Cruz, J.3
  • 15
    • 33748159972 scopus 로고    scopus 로고
    • Modelling vaccination schedules for a cancer immunoprevention vaccine
    • Motta S, Castiglione F, Lollini P, Pappalardo F. Modelling vaccination schedules for a cancer immunoprevention vaccine. Immunome Res 2005;1:5.
    • (2005) Immunome Res , vol.1 , pp. 5
    • Motta, S.1    Castiglione, F.2    Lollini, P.3    Pappalardo, F.4
  • 16
    • 20944448530 scopus 로고    scopus 로고
    • HPV-16 L1 VLP vaccine elicits a broad-spectrum of cytokine responses in whole blood
    • Pinto LA, Castle PE, Roden RB, et al. HPV-16 L1 VLP vaccine elicits a broad-spectrum of cytokine responses in whole blood. Vaccine 2005;23:3555-64.
    • (2005) Vaccine , vol.23 , pp. 3555-3564
    • Pinto, L.A.1    Castle, P.E.2    Roden, R.B.3
  • 17
    • 0142093539 scopus 로고    scopus 로고
    • Cytokine profile after rubella vaccine inoculation: Evidence of the immunosuppressive effect of vaccination
    • Pukhalsky AL, Shmarina GV, Bliacher MS, et al. Cytokine profile after rubella vaccine inoculation: Evidence of the immunosuppressive effect of vaccination. Mediators Inflamm 2003;12:203-7.
    • (2003) Mediators Inflamm , vol.12 , pp. 203-207
    • Pukhalsky, A.L.1    Shmarina, G.V.2    Bliacher, M.S.3
  • 19
    • 84868923862 scopus 로고    scopus 로고
    • the international ImMunoGeneTics information system®: a standardized approach for immunogenetics and immunoinformatics, 3, imgt.cines.fr
    • Lefranc MP. IMGT, the international ImMunoGeneTics information system®: a standardized approach for immunogenetics and immunoinformatics. Immunome Res 2005;1:3. [imgt.cines.fr]
    • (2005) Immunome Res , vol.1
    • Lefranc, M.I.1
  • 20
    • 46049099840 scopus 로고    scopus 로고
    • Lefranc MP, Giudicelli V, Duroux P. IMGT®, a system and an ontology that bridge biological and computational spheres in bioinformatics. Brief Bioinform 2008;9: 263-75.
    • Lefranc MP, Giudicelli V, Duroux P. IMGT®, a system and an ontology that bridge biological and computational spheres in bioinformatics. Brief Bioinform 2008;9: 263-75.
  • 21
    • 2642551345 scopus 로고    scopus 로고
    • IMGT-ONTOLOGY for Immunogenetics and Immunoinformatics
    • Lefranc MP, Giudicelli V, Ginestoux C, et al. IMGT-ONTOLOGY for Immunogenetics and Immunoinformatics. In Silico Biol 2004;4 17-29.
    • (2004) In Silico Biol , vol.4 , pp. 17-29
    • Lefranc, M.P.1    Giudicelli, V.2    Ginestoux, C.3
  • 22
    • 46049090133 scopus 로고    scopus 로고
    • IMGT-Choreography for Immunogenetics and Immunoinformatics
    • Lefranc MP, Clément O, Kaas Q, et al. IMGT-Choreography for Immunogenetics and Immunoinformatics. In Silico Biol 2005;29 185-203.
    • (2005) In Silico Biol , vol.29 , pp. 185-203
    • Lefranc, M.P.1    Clément, O.2    Kaas, Q.3
  • 23
    • 41349123339 scopus 로고    scopus 로고
    • IMGTKaleidoscope, the formal IMGT-ONTOLOGY paradigm
    • Duroux P, Kaas Q, Brochet X, et al. IMGTKaleidoscope, the formal IMGT-ONTOLOGY paradigm. Biochimie 2008;4:570-83.
    • (2008) Biochimie , vol.4 , pp. 570-583
    • Duroux, P.1    Kaas, Q.2    Brochet, X.3
  • 24
    • 79958037727 scopus 로고    scopus 로고
    • Lefranc M-P. IMGT-ONTOLOGY, IMGT® databases, tools and Web resources for Immunoinformatics. In: Schönbach C, Nanganathan S, Brusic V (eds). Immunoinformatics. Immunomics Reviews. New York, USA: Springer, 2008;1-18.
    • Lefranc M-P. IMGT-ONTOLOGY, IMGT® databases, tools and Web resources for Immunoinformatics. In: Schönbach C, Nanganathan S, Brusic V (eds). Immunoinformatics. Immunomics Reviews. New York, USA: Springer, 2008;1-18.
  • 25
    • 36949034073 scopus 로고    scopus 로고
    • Modeling the adaptive immune system: Predictions and simulations
    • Lundegaard C, Lund O, Kecmir C, et al. Modeling the adaptive immune system: Predictions and simulations. Bioinformatics 2007; 23:3265-75.
    • (2007) Bioinformatics , vol.23 , pp. 3265-3275
    • Lundegaard, C.1    Lund, O.2    Kecmir, C.3
  • 26
    • 0031811850 scopus 로고    scopus 로고
    • Brusic V, Rudy G, Harrison LC. MHCPEP, a database of MHC-binding peptides: Update 1997. Nucleic Acids Res 1998;26:368-71.
    • Brusic V, Rudy G, Harrison LC. MHCPEP, a database of MHC-binding peptides: Update 1997. Nucleic Acids Res 1998;26:368-71.
  • 27
    • 0033388725 scopus 로고    scopus 로고
    • SYFPEITHI: Database for MHC ligands and peptide motifs
    • Rammensee H, Bachmann J, Emmerich NP, et al. SYFPEITHI: Database for MHC ligands and peptide motifs. Immunogenetics 1999;50 213-9.
    • (1999) Immunogenetics , vol.50 , pp. 213-219
    • Rammensee, H.1    Bachmann, J.2    Emmerich, N.P.3
  • 28
    • 28544438391 scopus 로고    scopus 로고
    • AntiJen: A quantitative immunology database integrating functional, thermodynamic, kinetic, biophysical, and cellular data
    • Toseland CP, Clayton DJ, McSparron H, et al. AntiJen: A quantitative immunology database integrating functional, thermodynamic, kinetic, biophysical, and cellular data. Immunome Res 2005;1 4.
    • (2005) Immunome Res , vol.1 , pp. 4
    • Toseland, C.P.1    Clayton, D.J.2    McSparron, H.3
  • 29
    • 33750040293 scopus 로고    scopus 로고
    • The immune epitope database and analysis resource
    • Sette A, Bui H, Sidney J, et al. The immune epitope database and analysis resource. Lecture Notes Comput Sci 2006;4146:126-32.
    • (2006) Lecture Notes Comput Sci , vol.4146 , pp. 126-132
    • Sette, A.1    Bui, H.2    Sidney, J.3
  • 30
    • 7944223046 scopus 로고    scopus 로고
    • Computational methods for prediction of T-cell epitopes - a framework for modelling, testing, and applications
    • Brusic V, Bajic VB, Petrovsky N. Computational methods for prediction of T-cell epitopes - a framework for modelling, testing, and applications. Methods 2004;34: 436-43.
    • (2004) Methods , vol.34 , pp. 436-443
    • Brusic, V.1    Bajic, V.B.2    Petrovsky, N.3
  • 31
    • 34250635170 scopus 로고    scopus 로고
    • Methods and protocols for prediction of immunogenic epitopes
    • Tong JC, Tan TW, Ranganathan S. Methods and protocols for prediction of immunogenic epitopes. Brief Bioinform 2007;8:96-108.
    • (2007) Brief Bioinform , vol.8 , pp. 96-108
    • Tong, J.C.1    Tan, T.W.2    Ranganathan, S.3
  • 32
    • 17844385106 scopus 로고    scopus 로고
    • The role of the proteasome in generating cytotoxic T-cell epitopes: Insights obtained from improved predictions of proteasomal cleavage
    • Nielsen M, Lundegaard C, Lund O, Kesmir C. The role of the proteasome in generating cytotoxic T-cell epitopes: Insights obtained from improved predictions of proteasomal cleavage. Immunogenetics 2005;57 33-41.
    • (2005) Immunogenetics , vol.57 , pp. 33-41
    • Nielsen, M.1    Lundegaard, C.2    Lund, O.3    Kesmir, C.4
  • 33
    • 23844528191 scopus 로고    scopus 로고
    • An integrative approach to CTL epitope prediction: A combined algorithm integrating MHC class I binding, TAP transport efficiency, and proteasomal cleavage predictions
    • Larsen MV, Lundegaard C, Lamberth K, et al. An integrative approach to CTL epitope prediction: A combined algorithm integrating MHC class I binding, TAP transport efficiency, and proteasomal cleavage predictions. Eur J Immunol 2005; 35:2295-303.
    • (2005) Eur J Immunol , vol.35 , pp. 2295-2303
    • Larsen, M.V.1    Lundegaard, C.2    Lamberth, K.3
  • 34
    • 34547778364 scopus 로고    scopus 로고
    • Prediction of MHC class II binding affinity using SMM-align, a novel stabilization matrix alignment method
    • Nielsen M, Lundegaard C, Lund O. Prediction of MHC class II binding affinity using SMM-align, a novel stabilization matrix alignment method. BMC Bioinformatics 2007;8:238.
    • (2007) BMC Bioinformatics , vol.8 , pp. 238
    • Nielsen, M.1    Lundegaard, C.2    Lund, O.3
  • 35
    • 39549084433 scopus 로고    scopus 로고
    • NetMHCpan, a method for quantitative predictions of peptide binding to any HLA-A and -B locus protein of known sequence
    • Nielsen M, Lundegaard C, Blicher T, et al. NetMHCpan, a method for quantitative predictions of peptide binding to any HLA-A and -B locus protein of known sequence. PLoS ONE 2007;2:e796.
    • (2007) PLoS ONE , vol.2
    • Nielsen, M.1    Lundegaard, C.2    Blicher, T.3
  • 36
    • 33751104704 scopus 로고    scopus 로고
    • Improved method for predicting linear B-cell epitopes
    • Larsen JE, Lund O, Nielsen M. Improved method for predicting linear B-cell epitopes. Immunome Res 2006;2:2.
    • (2006) Immunome Res , vol.2 , pp. 2
    • Larsen, J.E.1    Lund, O.2    Nielsen, M.3
  • 37
    • 33751099863 scopus 로고    scopus 로고
    • Prediction of residues in discontinuous B-cell epitopes using protein 3D structures
    • Andersen PH, Nielsen M, Lund O. Prediction of residues in discontinuous B-cell epitopes using protein 3D structures. Protein Sci 2006; 15:2558-67.
    • (2006) Protein Sci , vol.15 , pp. 2558-2567
    • Andersen, P.H.1    Nielsen, M.2    Lund, O.3
  • 38
    • 5444249860 scopus 로고    scopus 로고
    • Enhancement to the RANKPEP resource for the prediction of peptide binding to MHC molecules using profiles
    • Reche PA, Glutting JP, Zhang H, Reinherz EL. Enhancement to the RANKPEP resource for the prediction of peptide binding to MHC molecules using profiles. Immunogenetics 2004;56:405-19.
    • (2004) Immunogenetics , vol.56 , pp. 405-419
    • Reche, P.A.1    Glutting, J.P.2    Zhang, H.3    Reinherz, E.L.4
  • 39
    • 23144455463 scopus 로고    scopus 로고
    • MULTIPRED: A computational system for prediction of promiscuous HLA binding peptides
    • Zhang GE, Khan AM, Srinivasan KN, et al. MULTIPRED: A computational system for prediction of promiscuous HLA binding peptides. Nucleic Acids Res 2005;33:W172-9.
    • (2005) Nucleic Acids Res , vol.33
    • Zhang, G.E.1    Khan, A.M.2    Srinivasan, K.N.3
  • 40
    • 33847710294 scopus 로고    scopus 로고
    • Prediction of supertype-specific HLA class I binding peptides using support vector machines
    • Zhang GL, Bozic I, Kwoh CK, et al. Prediction of supertype-specific HLA class I binding peptides using support vector machines. J Immunol Meth 2007;320: 143-54.
    • (2007) J Immunol Meth , vol.320 , pp. 143-154
    • Zhang, G.L.1    Bozic, I.2    Kwoh, C.K.3
  • 41
    • 33745584371 scopus 로고    scopus 로고
    • A community resource benchmarking predictions of peptide binding to MHC-I molecules
    • Peters B, Bui HH, Frankild S. A community resource benchmarking predictions of peptide binding to MHC-I molecules. PLoS Comput Biol 2006;2:e65.
    • (2006) PLoS Comput Biol , vol.2
    • Peters, B.1    Bui, H.H.2    Frankild, S.3
  • 42
    • 38049169092 scopus 로고    scopus 로고
    • Large-scale validation of methods for cytotoxic T-lymphocyte epitope prediction
    • Larsen MV, Lundegaard C, Lamberth K, et al. Large-scale validation of methods for cytotoxic T-lymphocyte epitope prediction. BMC Bioinformatics 2007;8:424.
    • (2007) BMC Bioinformatics , vol.8 , pp. 424
    • Larsen, M.V.1    Lundegaard, C.2    Lamberth, K.3
  • 43
    • 42549105195 scopus 로고    scopus 로고
    • Evaluation of MHC class I peptide binding prediction servers: Applications for vaccine research
    • Lin HH, Ray S, Tongchusak S, et al. Evaluation of MHC class I peptide binding prediction servers: Applications for vaccine research. BMC Immunol 2008;9:8.
    • (2008) BMC Immunol , vol.9 , pp. 8
    • Lin, H.H.1    Ray, S.2    Tongchusak, S.3
  • 44
    • 38349072025 scopus 로고    scopus 로고
    • Understanding prediction systems for HLA-binding peptides and T-cell epitope identification
    • You L, Zhang P, Bodén M, Brusic V. Understanding prediction systems for HLA-binding peptides and T-cell epitope identification. Lect Notes Bioinform 2007;4774: 337-48.
    • (2007) Lect Notes Bioinform , vol.4774 , pp. 337-348
    • You, L.1    Zhang, P.2    Bodén, M.3    Brusic, V.4
  • 45
    • 57649174707 scopus 로고    scopus 로고
    • Evaluation of MHC-II peptide binding prediction servers: Applications for vaccine research
    • Lin HH, Zhang GL, Tongchusak S, et al. Evaluation of MHC-II peptide binding prediction servers: Applications for vaccine research. BMC Bioinformatics 2008;9(Suppl 12):S22.
    • (2008) BMC Bioinformatics , vol.9 , Issue.SUPPL. 12
    • Lin, H.H.1    Zhang, G.L.2    Tongchusak, S.3
  • 46
    • 38649118833 scopus 로고    scopus 로고
    • In silico tools for predicting peptides binding to HLA-class II molecules: More confusion than conclusion
    • Gowtharnan U, Agrewala JN. In silico tools for predicting peptides binding to HLA-class II molecules: More confusion than conclusion. J Proteome Res 2008;7:154-63.
    • (2008) J Proteome Res , vol.7 , pp. 154-163
    • Gowtharnan, U.1    Agrewala, J.N.2
  • 47
    • 38549105061 scopus 로고    scopus 로고
    • Predicting peptides binding to MHC class II molecules using multi-objective evolutionary algorithms
    • Rajapakse M, Schmidt B, Feng L, Brusic V. Predicting peptides binding to MHC class II molecules using multi-objective evolutionary algorithms. BMC Bioinformatics 2007;8:459.
    • (2007) BMC Bioinformatics , vol.8 , pp. 459
    • Rajapakse, M.1    Schmidt, B.2    Feng, L.3    Brusic, V.4
  • 48
    • 2442499729 scopus 로고    scopus 로고
    • Improved prediction of MHC class I and class II epitopes using a novel Gibbs sampling approach
    • Nielsen M, Lundegaard C, Worming P, et al. Improved prediction of MHC class I and class II epitopes using a novel Gibbs sampling approach. Bioinformatics 2004;20: 1388-97.
    • (2004) Bioinformatics , vol.20 , pp. 1388-1397
    • Nielsen, M.1    Lundegaard, C.2    Worming, P.3
  • 49
    • 38349175323 scopus 로고    scopus 로고
    • A probabilistic meta-predictor for the MHC class II binding peptides
    • Karpenko O, Huang L, Dai Y. A probabilistic meta-predictor for the MHC class II binding peptides. Immunogenetics 2008;60:25-36.
    • (2008) Immunogenetics , vol.60 , pp. 25-36
    • Karpenko, O.1    Huang, L.2    Dai, Y.3
  • 50
    • 33845689498 scopus 로고    scopus 로고
    • Mathematical modeling of the immune system
    • eds, Berlin: Natural Computing Series, Springer Verlag, ISBN 3-540-40799-5
    • Motta S, Brusic V. Mathematical modeling of the immune system. In: Ciobanu G, Rozenberg G (eds). Modelling in Molecular Biology. Berlin: Natural Computing Series, Springer Verlag, 2004;193-218. ISBN 3-540-40799-5.
    • (2004) Modelling in Molecular Biology , pp. 193-218
    • Motta, S.1    Brusic, V.2
  • 51
    • 33947283687 scopus 로고    scopus 로고
    • The evolution of mathematical immunology
    • Louzoun Y. The evolution of mathematical immunology. Immunol Rev 2007;216:9-20.
    • (2007) Immunol Rev , vol.216 , pp. 9-20
    • Louzoun, Y.1
  • 52
    • 26444457393 scopus 로고    scopus 로고
    • The role of computational models of the immune system in designing vaccination strategies
    • Castiglione F, Liso A. The role of computational models of the immune system in designing vaccination strategies. Immunopharmacol Immunotoxicol 2005;27:417-32.
    • (2005) Immunopharmacol Immunotoxicol , vol.27 , pp. 417-432
    • Castiglione, F.1    Liso, A.2
  • 53
    • 65549155285 scopus 로고    scopus 로고
    • Falus A ed, Hoboken, New Jersey: Wiley, ISBN: 0-470-01530-6
    • Falus A (ed). Immunogenomics and Human Disease. Hoboken, New Jersey: Wiley, 2006. ISBN: 0-470-01530-6.
    • (2006) Immunogenomics and Human Disease
  • 54
    • 2642578228 scopus 로고    scopus 로고
    • Immunoproteomics: Mass spectrometry-based methods to study the targets of the immune response
    • Purcell AW, Gorman JJ. Immunoproteomics: Mass spectrometry-based methods to study the targets of the immune response. Mol Cell Proteomics 2004;3:193-208.
    • (2004) Mol Cell Proteomics , vol.3 , pp. 193-208
    • Purcell, A.W.1    Gorman, J.J.2
  • 55
    • 33947732714 scopus 로고    scopus 로고
    • Proteome informatics for cancer research: From molecules to clinic
    • Brusic V, Marina O, Wu CJ, Reinherz EL. Proteome informatics for cancer research: From molecules to clinic. Proteomics 2007;7:976-91.
    • (2007) Proteomics , vol.7 , pp. 976-991
    • Brusic, V.1    Marina, O.2    Wu, C.J.3    Reinherz, E.L.4
  • 56
    • 84919871725 scopus 로고    scopus 로고
    • Schönbach C, Ranganathan S, Brusic V eds, Springer, ISBN: 978-0-387-72967-1
    • Schönbach C, Ranganathan S, Brusic V (eds). Immunoinformatics. Springer 2007. ISBN: 978-0-387-72967-1
    • (2007) Immunoinformatics
  • 57
    • 34248576293 scopus 로고    scopus 로고
    • Systems biology of innate immunity
    • Tegnér J, Nilsson R, Bajic VB, et al. Systems biology of innate immunity. Cell Immunol 2006;244:105-109.
    • (2006) Cell Immunol , vol.244 , pp. 105-109
    • Tegnér, J.1    Nilsson, R.2    Bajic, V.B.3
  • 58
    • 34347225102 scopus 로고    scopus 로고
    • Cytokine quantitation: Technologies and applications
    • Sachdeva N, Asthana D. Cytokine quantitation: Technologies and applications. Front Biosci 2007;12:4682-95.
    • (2007) Front Biosci , vol.12 , pp. 4682-4695
    • Sachdeva, N.1    Asthana, D.2
  • 59
    • 35548986985 scopus 로고    scopus 로고
    • Laser scanning cytometry: Understanding the immune system in situ
    • Harnett MM. Laser scanning cytometry: Understanding the immune system in situ. Nat Rev Immunol 2007;7: 897-904.
    • (2007) Nat Rev Immunol , vol.7 , pp. 897-904
    • Harnett, M.M.1
  • 60
    • 0034952463 scopus 로고    scopus 로고
    • Efficient discovery of immune response targets by cyclical refinement of QSAR models of peptide binding
    • Brusic V, Bucci K, Schönbach C, et al. Efficient discovery of immune response targets by cyclical refinement of QSAR models of peptide binding. J Mol Graph Model 2001;19:405-11.
    • (2001) J Mol Graph Model , vol.19 , pp. 405-411
    • Brusic, V.1    Bucci, K.2    Schönbach, C.3
  • 62
    • 0026556477 scopus 로고
    • A computer model of cellular interaction in the immune system
    • Celada F, Seiden PE. A computer model of cellular interaction in the immune system. Immunol Today 1992;13:56-62.
    • (1992) Immunol Today , vol.13 , pp. 56-62
    • Celada, F.1    Seiden, P.E.2
  • 63
    • 0031503374 scopus 로고    scopus 로고
    • Simulating the immune response on a distributed parallel computer
    • Castiglione F, Bernaschi M, Succi S. Simulating the immune response on a distributed parallel computer. Int J Mod Phys C 1997;8 527-45.
    • (1997) Int J Mod Phys C , vol.8 , pp. 527-545
    • Castiglione, F.1    Bernaschi, M.2    Succi, S.3
  • 64
    • 11244257420 scopus 로고    scopus 로고
    • Mutation, fitness, viral diversity and predictive markers of disease progression in a computational model of HIV-1 infection
    • Castiglione F, Poccia F, D'Offizi G, Bernaschi M. Mutation, fitness, viral diversity and predictive markers of disease progression in a computational model of HIV-1 infection. AIDS Res Hum Retroviruses 2004;20:1316-25.
    • (2004) AIDS Res Hum Retroviruses , vol.20 , pp. 1316-1325
    • Castiglione, F.1    Poccia, F.2    D'Offizi, G.3    Bernaschi, M.4
  • 65
    • 34248390839 scopus 로고    scopus 로고
    • An enhanced agent based model of the immune system response
    • Baldazzi V, Castiglione F, Bernaschi M. An enhanced agent based model of the immune system response. Cell Immunol 2006;244:77-9.
    • (2006) Cell Immunol , vol.244 , pp. 77-79
    • Baldazzi, V.1    Castiglione, F.2    Bernaschi, M.3
  • 66
    • 34447298881 scopus 로고    scopus 로고
    • Simulating Epstein-Barr virus infection with C-ImmSim
    • Castiglione F, Duca K, Jarrah A, et al. Simulating Epstein-Barr virus infection with C-ImmSim. Bioinformatics 2007;23: 1371-7.
    • (2007) Bioinformatics , vol.23 , pp. 1371-1377
    • Castiglione, F.1    Duca, K.2    Jarrah, A.3
  • 67
    • 27744463902 scopus 로고    scopus 로고
    • Computational modeling of the immune response to tumor antigens: Implications for vaccination
    • Castiglione F, Toschi F, Bernaschi M, et al. Computational modeling of the immune response to tumor antigens: Implications for vaccination. J Theo Biol 2005;237/4: 390-400.
    • (2005) J Theo Biol , vol.237 , Issue.4 , pp. 390-400
    • Castiglione, F.1    Toschi, F.2    Bernaschi, M.3
  • 68
    • 33748126338 scopus 로고    scopus 로고
    • Discovery of cancer vaccination protocols with a genetic algorithm driving an agent based simulator
    • Lollini PL, Motta S, Pappalardo F. Discovery of cancer vaccination protocols with a genetic algorithm driving an agent based simulator. BMC Bioinformatics 2006;7:352.
    • (2006) BMC Bioinformatics , vol.7 , pp. 352
    • Lollini, P.L.1    Motta, S.2    Pappalardo, F.3
  • 70
    • 48249141403 scopus 로고    scopus 로고
    • Modeling immune system control of atherogenesis
    • Pappalardo F, Musumeci S, Motta S. Modeling immune system control of atherogenesis. Bioinformatics 2008;24: 1715-21.
    • (2008) Bioinformatics , vol.24 , pp. 1715-1721
    • Pappalardo, F.1    Musumeci, S.2    Motta, S.3
  • 71
    • 4243825742 scopus 로고    scopus 로고
    • Theory of the lattice Boltzmann method: From the Boltzmann equation to the lattice Boltzmann equation
    • He X, Luo L. Theory of the lattice Boltzmann method: From the Boltzmann equation to the lattice Boltzmann equation. Phys Re E 1997;56 6811-7.
    • (1997) Phys Re E , vol.56 , pp. 6811-6817
    • He, X.1    Luo, L.2
  • 72
    • 42749100495 scopus 로고    scopus 로고
    • Morphology transitions induced by chemotherapy in carcinomas in situ
    • Ferreira SC Jr, Martins ML, Vilela MJ. Morphology transitions induced by chemotherapy in carcinomas in situ. Phys Rev E 2003;67 051914.
    • (2003) Phys Rev E , vol.67 , pp. 051914
    • Ferreira Jr, S.C.1    Martins, M.L.2    Vilela, M.J.3
  • 73
  • 74
    • 4444329364 scopus 로고    scopus 로고
    • Visualizing the first 50 hr of the primary immune response to a soluble antigen
    • Catron DM, Itano AA, Pape KA, et al. Visualizing the first 50 hr of the primary immune response to a soluble antigen. Immunity 2004;21:341-7.
    • (2004) Immunity , vol.21 , pp. 341-347
    • Catron, D.M.1    Itano, A.A.2    Pape, K.A.3
  • 75
    • 0032479526 scopus 로고    scopus 로고
    • Visualization of specific B and T lymphocyte interactions in the lymph node
    • Garside P, Ingulli E, Merica RR, et al. Visualization of specific B and T lymphocyte interactions in the lymph node. Science 1998; 281:96-9.
    • (1998) Science , vol.281 , pp. 96-99
    • Garside, P.1    Ingulli, E.2    Merica, R.R.3
  • 76
    • 0347717903 scopus 로고    scopus 로고
    • T-cell priming by dendritic cells in lymph nodes occurs in three distinct phases
    • Mempel TR, Henrickson SE, Von Andrian UH. T-cell priming by dendritic cells in lymph nodes occurs in three distinct phases. Nature 2004;427:154-9.
    • (2004) Nature , vol.427 , pp. 154-159
    • Mempel, T.R.1    Henrickson, S.E.2    Von Andrian, U.H.3
  • 77
    • 38549173725 scopus 로고    scopus 로고
    • An emerging cyberinfrastructure for biodefense pathogen and pathogen-host data
    • Zhang C, Crasta O, Cammer S, et al. An emerging cyberinfrastructure for biodefense pathogen and pathogen-host data. Nucleic Acids Res 2008;36:D884-91.
    • (2008) Nucleic Acids Res , vol.36
    • Zhang, C.1    Crasta, O.2    Cammer, S.3
  • 78
    • 26244443269 scopus 로고    scopus 로고
    • Artificial intelligence and robotics in high throughput post-genomics
    • Laghaee A, Malcohn C, Hallam J, Ghazal P. Artificial intelligence and robotics in high throughput post-genomics. Drug Discov Today 2005;10:1253-9.
    • (2005) Drug Discov Today , vol.10 , pp. 1253-1259
    • Laghaee, A.1    Malcohn, C.2    Hallam, J.3    Ghazal, P.4
  • 79
    • 45949096079 scopus 로고    scopus 로고
    • Computational Intelligence approaches for pattern discovery in biological systems
    • Fogel G. Computational Intelligence approaches for pattern discovery in biological systems. Brief Bioinform 2008;9: 307-16.
    • (2008) Brief Bioinform , vol.9 , pp. 307-316
    • Fogel, G.1
  • 81
    • 34548594274 scopus 로고    scopus 로고
    • ImmunoGrid - the virtual human immune system project
    • Emerson A, Rossi E. ImmunoGrid - the virtual human immune system project. Stud Health Technol Inform 2007;126:87-92.
    • (2007) Stud Health Technol Inform , vol.126 , pp. 87-92
    • Emerson, A.1    Rossi, E.2
  • 82
    • 65549132432 scopus 로고    scopus 로고
    • ImmunoGrid - The European Virtual Human Immune System Project: Educational and Research Portal. http://igrid-ext.cryst.bbk.ac.uk/ immunogrid/ (22 March 2009, date last accessed).
    • ImmunoGrid - The European Virtual Human Immune System Project: Educational and Research Portal. http://igrid-ext.cryst.bbk.ac.uk/ immunogrid/ (22 March 2009, date last accessed).
  • 83
    • 34548496702 scopus 로고    scopus 로고
    • Towards a useful classification of learning objects
    • Churchill D. Towards a useful classification of learning objects. Educ Technol Res Dev 2007;55:479-97.
    • (2007) Educ Technol Res Dev , vol.55 , pp. 479-497
    • Churchill, D.1
  • 84
    • 45949089554 scopus 로고    scopus 로고
    • Bioinformatics, multiscale modeling and the IUPS Physiome Project
    • Hunter PJ, Crampin EJ, Nielsen PMF. Bioinformatics, multiscale modeling and the IUPS Physiome Project. Brief Bioinform 2008;9:333-43.
    • (2008) Brief Bioinform , vol.9 , pp. 333-343
    • Hunter, P.J.1    Crampin, E.J.2    Nielsen, P.M.F.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.