메뉴 건너뛰기




Volumn 82, Issue 1, 2013, Pages 75-96

Intuiting the fundamental theorem of arithmetic

Author keywords

Algebraic structure; Fundamental theorem of arithmetic; Intuition; Multiplicative structure; Schema

Indexed keywords


EID: 84871090596     PISSN: 00131954     EISSN: 15730816     Source Type: Journal    
DOI: 10.1007/s10649-012-9410-1     Document Type: Article
Times cited : (6)

References (50)
  • 2
    • 84871088621 scopus 로고    scopus 로고
    • The implication of multiplicative structure for students' understanding of decimal-number numeration. Proceedings of People in Mathematics Education
    • Rotorua
    • Baturo, A. (1997). The implication of multiplicative structure for students' understanding of decimal-number numeration. Proceedings of People in Mathematics Education: 20th Annual Conference of the Mathematics Education Research Group of Australasia 1 (pp. 88-95), Rotorua.
    • (1997) 20th Annual Conference of the Mathematics Education Research Group of Australasia , vol.1 , pp. 88-95
    • Baturo, A.1
  • 4
    • 84871090897 scopus 로고    scopus 로고
    • Intuitive mathematics: Theoretical and educational implications
    • B. Torff and R. Sternberg (Eds.), Mahwah, NJ: Lawrence Erlbaum
    • Ben-Zeez, T., & Star, J. (2001). Intuitive mathematics: Theoretical and educational implications. In B. Torff & R. Sternberg (Eds.), Understanding and teaching the intuitive mind: Student and teacher learning (pp. 29-56). Mahwah, NJ: Lawrence Erlbaum.
    • (2001) Understanding and Teaching the Intuitive Mind: Student and Teacher Learning , pp. 29-56
    • Ben-Zeez, T.1    Star, J.2
  • 10
  • 11
    • 0002573795 scopus 로고
    • Reflective abstraction in advanced mathematical thinking
    • D. Tall (Ed.), Dordrecht: Springer
    • Dubinsky, E. (1991). Reflective abstraction in advanced mathematical thinking. In D. Tall (Ed.), Advanced mathematical thinking (pp. 95-123). Dordrecht: Springer.
    • (1991) Advanced Mathematical Thinking , pp. 95-123
    • Dubinsky, E.1
  • 13
    • 84871053288 scopus 로고
    • Intuition, structure and heuristic methods in the teaching of mathematics
    • A. G. Howson (Ed.), Cambridge: Cambridge University Press
    • Fischbein, E. (1973). Intuition, structure and heuristic methods in the teaching of mathematics. In A. G. Howson (Ed.), Developments in mathematics education (pp. 222-232). Cambridge: Cambridge University Press.
    • (1973) Developments in Mathematics Education , pp. 222-232
    • Fischbein, E.1
  • 16
    • 64349084004 scopus 로고    scopus 로고
    • Dual processes in the psychology of mathematics education and cognitive psychology
    • Gillard, E., van Dooren, W., Schaeken, W., & Verschaffel, L. (2009). Dual processes in the psychology of mathematics education and cognitive psychology. Human Development, 52, 95-108.
    • (2009) Human Development , vol.52 , pp. 95-108
    • Gillard, E.1    van Dooren, W.2    Schaeken, W.3    Verschaffel, L.4
  • 18
    • 21344483370 scopus 로고
    • Duality, ambiguity and flexibility: A proceptual view of simple arithmetic
    • Gray, E., & Tall, D. (1994). Duality, ambiguity and flexibility: A proceptual view of simple arithmetic. Journal for Research in Mathematics Education, 25(2), 115-141.
    • (1994) Journal for Research in Mathematics Education , vol.25 , Issue.2 , pp. 115-141
    • Gray, E.1    Tall, D.2
  • 19
    • 78649345854 scopus 로고    scopus 로고
    • Mathematics suggested by a logo: Both rich and beautiful?
    • Griffiths, M. (2010a). Mathematics suggested by a logo: Both rich and beautiful? Teaching Mathematics and its Applications, 29(4), 216-229.
    • (2010) Teaching Mathematics and Its Applications , vol.29 , Issue.4 , pp. 216-229
    • Griffiths, M.1
  • 20
    • 77954117422 scopus 로고    scopus 로고
    • Thematic mathematics: The combinatorics of prime factorizations
    • Griffiths, M. (2010b). Thematic mathematics: The combinatorics of prime factorizations. Teaching Mathematics and its Applications, 29(1), 25-40.
    • (2010) Teaching Mathematics and Its Applications , vol.29 , Issue.1 , pp. 25-40
    • Griffiths, M.1
  • 22
    • 63349094811 scopus 로고    scopus 로고
    • Representing and understanding multiplication
    • Harries, A., & Barmby, P. (2007). Representing and understanding multiplication. Research in Mathematics Education, 9(1), 33-46.
    • (2007) Research in Mathematics Education , vol.9 , Issue.1 , pp. 33-46
    • Harries, A.1    Barmby, P.2
  • 23
    • 84871070546 scopus 로고    scopus 로고
    • Intuitive cognition and the formation of theories
    • E. Carson and R. Huber (Eds.), Dordrecht: Springer
    • Huber, R. (2006). Intuitive cognition and the formation of theories. In E. Carson & R. Huber (Eds.), Intuition and the axiomatic method (pp. 293-324). Dordrecht: Springer.
    • (2006) Intuition and the Axiomatic Method , pp. 293-324
    • Huber, R.1
  • 25
    • 67349207132 scopus 로고    scopus 로고
    • Intuitive vs analytical thinking: Four perspectives
    • Leron, U., & Hazzan, O. (2009). Intuitive vs analytical thinking: Four perspectives. Educational Studies in Mathematics, 71, 263-278.
    • (2009) Educational Studies in Mathematics , vol.71 , pp. 263-278
    • Leron, U.1    Hazzan, O.2
  • 26
    • 0002755031 scopus 로고
    • Learning fractions with understanding: Building on informal knowledge
    • Mack, N. (1990). Learning fractions with understanding: Building on informal knowledge. Journal for Research in Mathematics Education, 21(1), 16-32.
    • (1990) Journal for Research in Mathematics Education , vol.21 , Issue.1 , pp. 16-32
    • Mack, N.1
  • 27
    • 84871097897 scopus 로고    scopus 로고
    • Analysing children's calculations: The role of process and object
    • Manchester
    • Murphy, C. (2010). Analysing children's calculations: The role of process and object. Proceedings of British Congress of Mathematics Education 7 (1, pp. 145-150), Manchester.
    • (2010) Proceedings of British Congress of Mathematics Education , vol.7 , Issue.1 , pp. 145-150
    • Murphy, C.1
  • 31
    • 0004325526 scopus 로고
    • Lanham, MD: Rowman and Littlefield
    • Russell, B. (1988). Mysticism and logic. Lanham, MD: Rowman and Littlefield.
    • (1988) Mysticism and Logic
    • Russell, B.1
  • 33
    • 42749089479 scopus 로고    scopus 로고
    • Deep intuition as a level in the in the development of the concept image
    • Semadeni, Z. (2008). Deep intuition as a level in the in the development of the concept image. Educational Studies in Mathematics, 68, 1-17.
    • (2008) Educational Studies in Mathematics , vol.68 , pp. 1-17
    • Semadeni, Z.1
  • 34
    • 33846500531 scopus 로고    scopus 로고
    • The roles of the aesthetic in mathematical enquiry
    • Sinclair, N. (2004). The roles of the aesthetic in mathematical enquiry. Mathematical Thinking and Learning, 6(3), 261-284.
    • (2004) Mathematical Thinking and Learning , vol.6 , Issue.3 , pp. 261-284
    • Sinclair, N.1
  • 37
  • 38
    • 0000213855 scopus 로고
    • Concept image and concept definition in mathematics with particular reference to limits and continuity
    • Tall, D., & Vinner, S. (1981). Concept image and concept definition in mathematics with particular reference to limits and continuity. Educational Studies in Mathematics, 12(2), 151-169.
    • (1981) Educational Studies in Mathematics , vol.12 , Issue.2 , pp. 151-169
    • Tall, D.1    Vinner, S.2
  • 41
    • 0009169632 scopus 로고
    • Multiplicative conceptual field: What and why?
    • G. Harel and J. Confrey (Eds.), Albany: State University of New York Press
    • Vergnaud, G. (1994). Multiplicative conceptual field: What and why? In G. Harel & J. Confrey (Eds.), The development of multiplicative reasoning in the learning of mathematics (pp. 41-59). Albany: State University of New York Press.
    • (1994) The Development of Multiplicative Reasoning in the Learning of Mathematics , pp. 41-59
    • Vergnaud, G.1
  • 42
    • 0003280226 scopus 로고    scopus 로고
    • The nature of mathematical concepts
    • T. Nunes and P. Bryant (Eds.), Hove: Psychology Press
    • Vergnaud, G. (1997). The nature of mathematical concepts. In T. Nunes & P. Bryant (Eds.), Learning and teaching mathematics: An international perspective (pp. 5-28). Hove: Psychology Press.
    • (1997) Learning and Teaching Mathematics: An International Perspective , pp. 5-28
    • Vergnaud, G.1
  • 43
    • 64349114221 scopus 로고    scopus 로고
    • The theory of conceptual fields
    • Vergnaud, G. (2009). The theory of conceptual fields. Human Development, 52, 83-94.
    • (2009) Human Development , vol.52 , pp. 83-94
    • Vergnaud, G.1
  • 44
    • 77952093309 scopus 로고    scopus 로고
    • Feeling number: Grounding number in a sense of quantity
    • Wagner, D., & Davis, B. (2010). Feeling number: Grounding number in a sense of quantity. Educational Studies in Mathematics, 74, 39-51.
    • (2010) Educational Studies in Mathematics , vol.74 , pp. 39-51
    • Wagner, D.1    Davis, B.2
  • 45
    • 0013466137 scopus 로고
    • The complementary roles of intuitive and reflective thinking in mathematics teaching
    • Wittmann, E. (1981). The complementary roles of intuitive and reflective thinking in mathematics teaching. Educational Studies in Mathematics, 12, 389-397.
    • (1981) Educational Studies in Mathematics , vol.12 , pp. 389-397
    • Wittmann, E.1
  • 47
    • 84949698682 scopus 로고
    • Learning as a generative process
    • Wittrock, M. (1974b). Learning as a generative process. Educational Psychologist, 11(2), 87-95.
    • (1974) Educational Psychologist , vol.11 , Issue.2 , pp. 87-95
    • Wittrock, M.1
  • 48
    • 85006347412 scopus 로고    scopus 로고
    • Mathematics teachers' choice of examples that potentially support or impede learning
    • Zaslavsky, O., & Zodik, I. (2007). Mathematics teachers' choice of examples that potentially support or impede learning. Research in Mathematics Education, 9(1), 143-155.
    • (2007) Research in Mathematics Education , vol.9 , Issue.1 , pp. 143-155
    • Zaslavsky, O.1    Zodik, I.2
  • 49
    • 21444440363 scopus 로고    scopus 로고
    • Divisibility and multiplicative structure of natural numbers: Preservice teachers' understanding
    • Zazkis, R., & Campbell, S. (1996a). Divisibility and multiplicative structure of natural numbers: Preservice teachers' understanding. Journal for Research in Mathematics Education, 27(5), 540-563.
    • (1996) Journal for Research in Mathematics Education , vol.27 , Issue.5 , pp. 540-563
    • Zazkis, R.1    Campbell, S.2
  • 50


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.