-
1
-
-
84858341692
-
Variations on a theme: Plant autophagy in comparison to yeast and mammals
-
Avin-Wittenberg, T., Honig, A., and Galili, G. (2012). Variations on a theme: Plant autophagy in comparison to yeast and mammals. Protoplasma 249, 285-299.
-
(2012)
Protoplasma
, vol.249
, pp. 285-299
-
-
Avin-Wittenberg, T.1
Honig, A.2
Galili, G.3
-
2
-
-
33644583039
-
Autophagy in development and stress responses of plants
-
Bassham, D.C., Laporte, M., Marty, F., Moriyasu, Y., Ohsumi, Y., Olsen, L.J., and Yoshimoto, K. (2006). Autophagy in development and stress responses of plants. Autophagy 2, 2-11.
-
(2006)
Autophagy
, vol.2
, pp. 2-11
-
-
Bassham, D.C.1
Laporte, M.2
Marty, F.3
Moriyasu, Y.4
Ohsumi, Y.5
Olsen, L.J.6
Yoshimoto, K.7
-
3
-
-
77954237882
-
Network organization of the human autophagy system
-
Behrends, C., Sowa, M.E., Gygi, S.P., and Harper, J.W. (2010). Network organization of the human autophagy system. Nature 466, 68-76.
-
(2010)
Nature
, vol.466
, pp. 68-76
-
-
Behrends, C.1
Sowa, M.E.2
Gygi, S.P.3
Harper, J.W.4
-
4
-
-
78651488777
-
RalB and the exocyst mediate the cellular starvation response by direct activation of autophago-some assembly
-
Bodemann, B.O., Orvedahl, A., Cheng, T., Ram, R.R., Ou, Y.H., Formstecher, E., Maiti, M., Hazelett, C.C., Wauson, E.M., Balakireva, M., et al. (2011). RalB and the exocyst mediate the cellular starvation response by direct activation of autophago-some assembly. Cell 144, 253-267.
-
(2011)
Cell
, vol.144
, pp. 253-267
-
-
Bodemann, B.O.1
Orvedahl, A.2
Cheng, T.3
Ram, R.R.4
Ou, Y.H.5
Formstecher, E.6
Maiti, M.7
Hazelett, C.C.8
Wauson, E.M.9
Balakireva, M.10
-
5
-
-
80053974377
-
See how i eat my greens-autophagy in plant cells
-
Chung, T. (2011). See how I eat my greens-autophagy in plant cells. J. Plant Biol. 54, 339-350.
-
(2011)
J. Plant Biol.
, vol.54
, pp. 339-350
-
-
Chung, T.1
-
6
-
-
58449118073
-
The ATG autophagic conjugation system in maize: ATG transcripts and abundance of the ATG8-lipid adduct are regulated by develop ment and nutrient availability
-
Chung, T., Suttangkakul, A., and Vierstra, R.D. (2009). The ATG autophagic conjugation system in maize: ATG transcripts and abundance of the ATG8-lipid adduct are regulated by develop ment and nutrient availability. Plant Physiol. 149, 220-234.
-
(2009)
Plant Physiol.
, vol.149
, pp. 220-234
-
-
Chung, T.1
Suttangkakul, A.2
Vierstra, R.D.3
-
7
-
-
77950956398
-
ATG8 Lipidation And ATG8-mediated autophagy in Arabidopsis require ATG12 expressed from the differentially controlled ATG12A AND ATG12B loci
-
Chung, T., Phillips, A.R., and Vierstra, R.D. (2010). ATG8 lipidation and ATG8-mediated autophagy in Arabidopsis require ATG12 expressed from the differentially controlled ATG12A AND ATG12B loci. Plant J. 62, 483-493.
-
(2010)
Plant J.
, vol.62
, pp. 483-493
-
-
Chung, T.1
Phillips, A.R.2
Vierstra, R.D.3
-
8
-
-
80052631811
-
The plant cell death suppressor Adi3 interacts with the autophagic protein Atg8h
-
Devarenne, T.P. (2011). The plant cell death suppressor Adi3 interacts with the autophagic protein Atg8h. Biochem. Biophys. Res. Commun. 412, 699-703.
-
(2011)
Biochem. Biophys. Res. Commun.
, vol.412
, pp. 699-703
-
-
Devarenne, T.P.1
-
9
-
-
77954763024
-
Plant immunity: Towards an integrated view of plant-pathogen interactions
-
Dodds, P.N., and Rathjen, J.P. (2010). Plant immunity: Towards an integrated view of plant-pathogen interactions. Nat. Rev. Genet. 11, 539-548.
-
(2010)
Nat. Rev. Genet.
, vol.11
, pp. 539-548
-
-
Dodds, P.N.1
Rathjen, J.P.2
-
10
-
-
0037031843
-
The APG8/12-activating enzyme APG7 is required for proper nutrient recycling and senescence in Arabidopsis thaliana
-
Doelling, J.H., Walker, J.M., Friedman, E.M., Thompson, A.R., and Vierstra, R.D. (2002). The APG8/12-activating enzyme APG7 is required for proper nutrient recycling and senescence in Arabidopsis thaliana. J. Biol. Chem. 277, 33105-33114.
-
(2002)
J. Biol. Chem.
, vol.277
, pp. 33105-33114
-
-
Doelling, J.H.1
Walker, J.M.2
Friedman, E.M.3
Thompson, A.R.4
Vierstra, R.D.5
-
11
-
-
77149155386
-
Unconventional secretion of Acb1 is mediated by autophagosomes
-
Duran, J.M., Anjard, C., Stefan, C., Loomis, W.F., and Malhotra, V. (2010). Unconventional secretion of Acb1 is mediated by autophagosomes. J. Cell Biol. 188, 527-536.
-
(2010)
J. Cell Biol.
, vol.188
, pp. 527-536
-
-
Duran, J.M.1
Anjard, C.2
Stefan, C.3
Loomis, W.F.4
Malhotra, V.5
-
12
-
-
35948983328
-
Functional multivesicular bodies are required for autophagic clearance of protein aggregates associated with neurodegenerative disease
-
Filimonenko, M., Stuffers, S., Raiborg, C., Yamamoto, A., Mal-erod, L., Fisher, E.M., Isaacs, A., Brech, A., Stenmark, H., and Simonsen, A. (2007). Functional multivesicular bodies are required for autophagic clearance of protein aggregates associated with neurodegenerative disease. J. Cell Biol. 179, 485-500.
-
(2007)
J. Cell Biol.
, vol.179
, pp. 485-500
-
-
Filimonenko, M.1
Stuffers, S.2
Raiborg, C.3
Yamamoto, A.4
Mal-Erod, L.5
Fisher, E.M.6
Isaacs, A.7
Brech, A.8
Stenmark, H.9
Simonsen, A.10
-
13
-
-
34250669930
-
An Arabidopsis homolog of yeast ATG6/VPS30 is essential for pollen germination
-
Fujiki, Y., Yoshimoto, K., and Ohsumi, Y. (2007). An Arabidopsis homolog of yeast ATG6/VPS30 is essential for pollen germination. Plant Physiol. 143, 1132-1139.
-
(2007)
Plant Physiol.
, vol.143
, pp. 1132-1139
-
-
Fujiki, Y.1
Yoshimoto, K.2
Ohsumi, Y.3
-
14
-
-
77953543377
-
The Beclin 1-VPS34 complex-at the crossroads of autophagy and beyond
-
Funderburk, S.F., Wang, Q.J., and Yue, Z. (2010). The Beclin 1-VPS34 complex-at the crossroads of autophagy and beyond. Trends Cell Biol. 20, 355-362.
-
(2010)
Trends Cell Biol.
, vol.20
, pp. 355-362
-
-
Funderburk, S.F.1
Wang, Q.J.2
Yue, Z.3
-
15
-
-
70350131893
-
Sequestosome 1/p62 links familial ALS mutant SOD1 to LC3 via an ubiquitin-independent mechanism
-
Gal, J., Strom, A.L., Kwinter, D.M., Kilty, R., Zhang, J., Shi, P., Fu, W., Wooten, M.W., and Zhu, H. (2009). Sequestosome 1/p62 links familial ALS mutant SOD1 to LC3 via an ubiquitin-independent mechanism. J. Neurochem. 111, 1062-1073.
-
(2009)
J. Neurochem.
, vol.111
, pp. 1062-1073
-
-
Gal, J.1
Strom, A.L.2
Kwinter, D.M.3
Kilty, R.4
Zhang, J.5
Shi, P.6
Fu, W.7
Wooten, M.W.8
Zhu, H.9
-
16
-
-
67649496487
-
Rapid, combinatorial analysis of membrane compartments in intact plants with a multicolor marker set
-
Geldner, N., Dénervaud-Tendon, V., Hyman, D.L., Mayer, U., Stierhof, Y.D., and Chory, J. (2009). Rapid, combinatorial analysis of membrane compartments in intact plants with a multicolor marker set. Plant J. 59, 169-178.
-
(2009)
Plant J.
, vol.59
, pp. 169-178
-
-
Geldner, N.1
Dénervaud-Tendon, V.2
Hyman, D.L.3
Mayer, U.4
Stierhof, Y.D.5
Chory, J.6
-
17
-
-
0035983934
-
Leaf senescence and starvation-induced chlorosis are accelerated by the disruption of an Arabidopsis autophagy gene
-
Hanaoka, H., Noda, T., Shirano, Y., Kato, T., Hayashi, H., Shibata, D., Tabata, S., and Ohsumi, Y. (2002). Leaf senescence and starvation-induced chlorosis are accelerated by the disruption of an Arabidopsis autophagy gene. Plant Physiol. 129, 1181-1193.
-
(2002)
Plant Physiol.
, vol.129
, pp. 1181-1193
-
-
Hanaoka, H.1
Noda, T.2
Shirano, Y.3
Kato, T.4
Hayashi, H.5
Shibata, D.6
Tabata, S.7
Ohsumi, Y.8
-
18
-
-
79959971427
-
What can plant autophagy do for an innate immune response?
-
Hayward, A.P., and Dinesh-Kumar, S.P. (2011). What can plant autophagy do for an innate immune response? Annu. Rev. Phytopathol. 49, 557-576.
-
(2011)
Annu. Rev. Phytopathol.
, vol.49
, pp. 557-576
-
-
Hayward, A.P.1
Dinesh-Kumar, S.P.2
-
19
-
-
65549157489
-
Autophagic components contribute to hypersensitive cell death in Arabidopsis
-
Hofius, D., Schultz-Larsen, T., Joensen, J., Tsitsigiannis, D.I., Petersen, N.H., Mattsson, O., Jørgensen, L.B., Jones, J.D., Mundy, J., and Petersen, M. (2009). Autophagic components contribute to hypersensitive cell death in Arabidopsis. Cell 137, 773-783.
-
(2009)
Cell
, vol.137
, pp. 773-783
-
-
Hofius, D.1
Schultz-Larsen, T.2
Joensen, J.3
Tsitsigiannis, D.I.4
Petersen, N.H.5
Mattsson, O.6
Jørgensen, L.B.7
Jones, J.D.8
Mundy, J.9
Petersen, M.10
-
20
-
-
79960222617
-
Role of autophagy in disease resistance and hypersensitive response-associated cell death
-
Hofius, D., Munch, D., Bressendorff, S., Mundy, J., and Petersen, M. (2011). Role of autophagy in disease resistance and hypersensitive response-associated cell death. Cell Death Differ. 18, 1257-1262.
-
(2011)
Cell Death Differ.
, vol.18
, pp. 1257-1262
-
-
Hofius, D.1
Munch, D.2
Bressendorff, S.3
Mundy, J.4
Petersen, M.5
-
21
-
-
84857758872
-
A new type of compartment, defined by plant-specific Atg8-interacting proteins, is induced upon exposure of Arabidopsis plants to carbon starvation
-
Honig, A., Avin-Wittenberg, T., Ufaz, S., and Galili, G. (2012). A new type of compartment, defined by plant-specific Atg8-interacting proteins, is induced upon exposure of Arabidopsis plants to carbon starvation. Plant Cell 24, 288-303.
-
(2012)
Plant Cell
, vol.24
, pp. 288-303
-
-
Honig, A.1
Avin-Wittenberg, T.2
Ufaz, S.3
Galili, G.4
-
22
-
-
33845693003
-
AtATG genes, homologs of yeast autophagy genes, are involved in constitutive autophagy in Arabidopsis root tip cells
-
Inoue, Y., Suzuki, T., Hattori, M., Yoshimoto, K., Ohsumi, Y., and Moriyasu, Y. (2006). AtATG genes, homologs of yeast autophagy genes, are involved in constitutive autophagy in Arabidopsis root tip cells. Plant Cell Physiol. 47, 1641-1652.
-
(2006)
Plant Cell Physiol.
, vol.47
, pp. 1641-1652
-
-
Inoue, Y.1
Suzuki, T.2
Hattori, M.3
Yoshimoto, K.4
Ohsumi, Y.5
Moriyasu, Y.6
-
23
-
-
77955878045
-
The deubiquitinating enzyme AMSH3 is required for intracellular trafficking and vacuole biogenesis in arabidopsis Thaliana
-
Isono, E., Katsiarimpa, A., Müller, I.K., Anzenberger, F., Stierhof, Y.D., Geldner, N., Chory, J., and Schwechheimer, C. (2010). The deubiquitinating enzyme AMSH3 is required for intracellular trafficking and vacuole biogenesis in Arabidopsis thaliana. Plant Cell 22, 1826-1837.
-
(2010)
Plant Cell
, vol.22
, pp. 1826-1837
-
-
Isono, E.1
Katsiarimpa, A.2
Müller, I.K.3
Anzenberger, F.4
Stierhof, Y.D.5
Geldner, N.6
Chory, J.7
Schwechheimer, C.8
-
24
-
-
59249089394
-
Beclin 1 forms two distinct phosphatidylinositol 3-kinase complexes with mammalian Atg14 and UVRAG
-
Itakura, E., Kishi, C., Inoue, K., and Mizushima, N. (2008) Beclin 1 forms two distinct phosphatidylinositol 3-kinase complexes with mammalian Atg14 and UVRAG. Mol. Biol. Cell. 19, 5360-5372.
-
(2008)
Mol. Biol. Cell.
, vol.19
, pp. 5360-5372
-
-
Itakura, E.1
Kishi, C.2
Inoue, K.3
Mizushima, N.4
-
25
-
-
79952355107
-
Selective autophagy mediated by autophagic adapter proteins
-
Johansen, T., and Lamark, T. (2011). Selective autophagy mediated by autophagic adapter proteins. Autophagy 7, 279-296.
-
(2011)
Autophagy
, vol.7
, pp. 279-296
-
-
Johansen, T.1
Lamark, T.2
-
26
-
-
33751100626
-
The plant immune system
-
Jones, J.D., and Dangl, J.L. (2006). The plant immune system. Nature 444, 323-329.
-
(2006)
Nature
, vol.444
, pp. 323-329
-
-
Jones, J.D.1
Dangl, J.L.2
-
27
-
-
0032575551
-
Apg14p and Apg6/Vps30p form a protein complex essential for autophagy in the yeast, Saccharomyces cerevisiae
-
Kametaka, S., Okano, T., Ohsumi, M., and Ohsumi, Y. (1998). Apg14p and Apg6/Vps30p form a protein complex essential for autophagy in the yeast, Saccharomyces cerevisiae. J. Biol. Chem. 273, 22284-22291.
-
(1998)
J. Biol. Chem.
, vol.273
, pp. 22284-22291
-
-
Kametaka, S.1
Okano, T.2
Ohsumi, M.3
Ohsumi, Y.4
-
28
-
-
58549084167
-
Ubiquitin signals autophagic degradation of cytosolic proteins and peroxisomes
-
Kim, P.K., Hailey, D.W., Mullen, R.T., and Lippincott-Schwartz, J. (2008). Ubiquitin signals autophagic degradation of cytosolic proteins and peroxisomes. Proc. Natl. Acad. Sci. USA 105, 20567-20574.
-
(2008)
Proc. Natl. Acad. Sci. USA
, vol.105
, pp. 20567-20574
-
-
Kim, P.K.1
Hailey, D.W.2
Mullen, R.T.3
Lippincott-Schwartz, J.4
-
29
-
-
60849099049
-
A role for NBR1 in autophagosomal degradation of ubiquitinated substrates
-
Kirkin, V., Lamark, T., Sou, Y.S., Bjorkoy, G., Nunn, J.L., Bruun, J.A., Shvets, E., McEwan, D.G., Clausen, T.H., Wild, P., et al. (2009). A role for NBR1 in autophagosomal degradation of ubiquitinated substrates. Mol. Cell 33, 505-516.
-
(2009)
Mol. Cell
, vol.33
, pp. 505-516
-
-
Kirkin, V.1
Lamark, T.2
Sou, Y.S.3
Bjorkoy, G.4
Nunn, J.L.5
Bruun, J.A.6
Shvets, E.7
McEwan, D.G.8
Clausen, T.H.9
Wild, P.10
-
30
-
-
21044455137
-
Impairment of starvation-induced and constitutive autophagy in Atg7-deficient mice
-
Komatsu, M., Waguri, S., Ueno, T., Iwata, J., Murata, S., Tanida, I., Ezaki, J., Mizushima, N., Ohsumi, Y., Uchiyama, Y., et al. (2005) Impairment of starvation-induced and constitutive autophagy in Atg7-deficient mice. J. Cell Biol. 169, 425-434.
-
(2005)
J. Cell Biol.
, vol.169
, pp. 425-434
-
-
Komatsu, M.1
Waguri, S.2
Ueno, T.3
Iwata, J.4
Murata, S.5
Tanida, I.6
Ezaki, J.7
Mizushima, N.8
Ohsumi, Y.9
Uchiyama, Y.10
-
31
-
-
33646800306
-
Loss of autophagy in the central nervous system causes neurodegeneration in mice
-
Komatsu, M., Waguri, S., Chiba, T., Murata, S., Iwata, J., Tanida, I., Ueno, T., Koike, M., Uchiyama, Y., Kominami, E., et al. (2006). Loss of autophagy in the central nervous system causes neurodegeneration in mice. Nature 441, 880-884.
-
(2006)
Nature
, vol.441
, pp. 880-884
-
-
Komatsu, M.1
Waguri, S.2
Chiba, T.3
Murata, S.4
Iwata, J.5
Tanida, I.6
Ueno, T.7
Koike, M.8
Uchiyama, Y.9
Kominami, E.10
-
32
-
-
36849089101
-
Homeostatic levels of p62 control cytoplasmic inclusion body formation in autophagy-deficient mice
-
Komatsu, M., Waguri, S., Koike, M., Sou, Y.S., Ueno, T., Hara, T., Mizushima, N., Iwata, J., Ezaki, J., Murata, S., et al. (2007). Homeostatic levels of p62 control cytoplasmic inclusion body formation in autophagy-deficient mice. Cell 131, 1149-1163.
-
(2007)
Cell
, vol.131
, pp. 1149-1163
-
-
Komatsu, M.1
Waguri, S.2
Koike, M.3
Sou, Y.S.4
Ueno, T.5
Hara, T.6
Mizushima, N.7
Iwata, J.8
Ezaki, J.9
Murata, S.10
-
33
-
-
48949107715
-
Cross talk in defense signaling
-
Koornneef, A., and Pieterse, C.M. (2008). Cross talk in defense signaling. Plant Physiol. 146, 839-844.
-
(2008)
Plant Physiol.
, vol.146
, pp. 839-844
-
-
Koornneef, A.1
Pieterse, C.M.2
-
34
-
-
60549093730
-
Autophagy inhibition compromises degradation of ubiquitin-proteasome pathway substrates
-
Korolchuk, V.I., Mansilla, A., Menzies, F.M., and Rubinsztein, D.C. (2009). Autophagy inhibition compromises degradation of ubiquitin-proteasome pathway substrates. Mol. Cell 33, 517-527.
-
(2009)
Mol. Cell
, vol.33
, pp. 517-527
-
-
Korolchuk, V.I.1
Mansilla, A.2
Menzies, F.M.3
Rubinsztein, D.C.4
-
35
-
-
77950487987
-
Mechanisms of cross-talk between the ubiquitin-proteasome and autophagy-lysosome systems
-
Korolchuk, V.I., Menzies, F.M., and Rubinsztein, D.C. (2010). Mechanisms of cross-talk between the ubiquitin-proteasome and autophagy-lysosome systems. FEBS Lett. 584, 1393-1398.
-
(2010)
FEBS Lett.
, vol.584
, pp. 1393-1398
-
-
Korolchuk, V.I.1
Menzies, F.M.2
Rubinsztein, D.C.3
-
36
-
-
77957234857
-
The Rab GTPase RabG3b functions in autophagy and contributes to tracheary element differentiation in Arabidopsis
-
Kwon, S.I., Cho, H.J., Jung, J.H., Yoshimoto, K., Shirasu, K., and Park, O.K. (2010). The Rab GTPase RabG3b functions in autophagy and contributes to tracheary element differentiation in Arabidopsis. Plant J. 64, 151-164.
-
(2010)
Plant J.
, vol.64
, pp. 151-164
-
-
Kwon, S.I.1
Cho, H.J.2
Jung, J.H.3
Yoshimoto, K.4
Shirasu, K.5
Park, O.K.6
-
37
-
-
79958199637
-
A critical role of autophagy in plant resistance to necrotrophic fungal pathogens
-
Lai, Z., Wang, F., Zheng, Z., Fan, B., and Chen, Z. (2011). A critical role of autophagy in plant resistance to necrotrophic fungal pathogens. Plant J. 66, 953-968.
-
(2011)
Plant J.
, vol.66
, pp. 953-968
-
-
Lai, Z.1
Wang, F.2
Zheng, Z.3
Fan, B.4
Chen, Z.5
-
38
-
-
34548492271
-
ESCRT-III dysfunction causes autophagosome accumulation and neurodegeneration
-
Lee, J.A., Beigneux, A., Ahmad, S.T., Young, S.G., and Gao, F.B. (2007). ESCRT-III dysfunction causes autophagosome accumulation and neurodegeneration. Curr. Biol. 17, 1561-1567.
-
(2007)
Curr. Biol.
, vol.17
, pp. 1561-1567
-
-
Lee, J.A.1
Beigneux, A.2
Ahmad, S.T.3
Young, S.G.4
Gao, F.B.5
-
39
-
-
53749095272
-
The Arabidopsis phosphatidylinositol 3-kinase is important for pollen development
-
Lee, Y., Kim, E.S., Choi, Y., Hwang, I., Staiger, C.J., Chung, Y.Y., and Lee, Y. (2008). The Arabidopsis phosphatidylinositol 3-kinase is important for pollen development. Plant Physiol. 147, 1886-1897.
-
(2008)
Plant Physiol.
, vol.147
, pp. 1886-1897
-
-
Lee, Y.1
Kim, E.S.2
Choi, Y.3
Hwang, I.4
Staiger, C.J.5
Chung, Y.Y.6
Lee, Y.7
-
40
-
-
79959978116
-
Autophagy differentially controls plant basal immunity to biotrophic and necrotrophic pathogens
-
Lenz, H.D., Haller, E., Melzer, E., Kober, K., Wurster, K., Stahl, M., Bassham, D.C., Vierstra, R.D., Parker, J.E., Bautor, J., et al. (2011). Autophagy differentially controls plant basal immunity to biotrophic and necrotrophic pathogens. Plant J. 66, 818-830.
-
(2011)
Plant J.
, vol.66
, pp. 818-830
-
-
Lenz, H.D.1
Haller, E.2
Melzer, E.3
Kober, K.4
Wurster, K.5
Stahl, M.6
Bassham, D.C.7
Vierstra, R.D.8
Parker, J.E.9
Bautor, J.10
-
41
-
-
0026478698
-
Evidence for a novel route of wheat storage proteins to vacuoles
-
Levanony, H., Rubin, R., Altschuler, Y., and Galili, G. (1992). Evidence for a novel route of wheat storage proteins to vacuoles. J. Cell Biol. 119, 1117-1128.
-
(1992)
J. Cell Biol.
, vol.119
, pp. 1117-1128
-
-
Levanony, H.1
Rubin, R.2
Altschuler, Y.3
Galili, G.4
-
42
-
-
37649005234
-
Autophagy in the pathogenesis of disease
-
Levine, B., and Kroemer, G. (2008). Autophagy in the pathogenesis of disease. Cell 132, 27-42.
-
(2008)
Cell
, vol.132
, pp. 27-42
-
-
Levine, B.1
Kroemer, G.2
-
43
-
-
77954898129
-
A Genome-wide siRNA screen reveals multiple mTORC1 independent signaling pathways regulating autophagy under normal nutritional conditions
-
Lipinski, M.M., Hoffman, G., Ng, A., Zhou, W., Py, B.F., Hsu, E., Liu, X., Eisenberg, J., Liu, J., Blenis, J., et al. (2010). A genome-wide siRNA screen reveals multiple mTORC1 independent signaling pathways regulating autophagy under normal nutritional conditions. Dev. Cell. 18, 1041-1052.
-
(2010)
Dev. Cell.
, vol.18
, pp. 1041-1052
-
-
Lipinski, M.M.1
Hoffman, G.2
Ng, A.3
Zhou, W.4
Py, B.F.5
Hsu, E.6
Liu, X.7
Eisenberg, J.8
Liu, J.9
Blenis, J.10
-
44
-
-
19344368318
-
Autophagy regulates program-med cell death during the plant innate immune response
-
Liu, Y., Schiff, M., Czymmek, K., Tallóczy, Z., Levine, B., and Dinesh-Kumar, S.P. (2005). Autophagy regulates program-med cell death during the plant innate immune response. Cell 121, 567-577.
-
(2005)
Cell
, vol.121
, pp. 567-577
-
-
Liu, Y.1
Schiff, M.2
Czymmek, K.3
Tallóczy, Z.4
Levine, B.5
Dinesh-Kumar, S.P.6
-
45
-
-
70349645984
-
Autophagy is required for tolerance of drought and salt stress in plants
-
Liu, Y., Xiong, Y., and Bassham, D.C. (2009). Autophagy is required for tolerance of drought and salt stress in plants. Autophagy 5, 954-963.
-
(2009)
Autophagy
, vol.5
, pp. 954-963
-
-
Liu, Y.1
Xiong, Y.2
Bassham, D.C.3
-
46
-
-
77954350739
-
Pregnenolone sulfate and cortisol induce secretion of Acyl-CoAbinding protein and its conversion into endo-zepines from astrocytes
-
Loomis, W.F., Behrens, M.M., Williams, M.E., and Anjard, C. (2010). Pregnenolone sulfate and cortisol induce secretion of acyl-CoAbinding protein and its conversion into endo-zepines from astrocytes. J. Biol. Chem. 285, 21359-21365.
-
(2010)
J. Biol. Chem.
, vol.285
, pp. 21359-21365
-
-
Loomis, W.F.1
Behrens, M.M.2
Williams, M.E.3
Anjard, C.4
-
47
-
-
79151470481
-
Autophagy: A broad role in unconventional protein secretion?
-
Manjithaya, R., and Subramani, S. (2011). Autophagy: A broad role in unconventional protein secretion? Trends Cell Biol. 21, 67-73.
-
(2011)
Trends Cell Biol.
, vol.21
, pp. 67-73
-
-
Manjithaya, R.1
Subramani, S.2
-
48
-
-
77149152566
-
Unconventional secretion of Pichia pastoris Acb1 is dependent on GRASP protein, peroxisomal functions, and autophagosome formation
-
Manjithaya, R., Anjard, C., Loomis, W.F., and Subramani, S. (2010). Unconventional secretion of Pichia pastoris Acb1 is dependent on GRASP protein, peroxisomal functions, and autophagosome formation. J. Cell Biol. 188, 537-546.
-
(2010)
J. Cell Biol.
, vol.188
, pp. 537-546
-
-
Manjithaya, R.1
Anjard, C.2
Loomis, W.F.3
Subramani, S.4
-
49
-
-
0032718565
-
Plant vacuoles
-
Marty, F. (1999). Plant vacuoles. Plant Cell 11, 587-600.
-
(1999)
Plant Cell
, vol.11
, pp. 587-600
-
-
Marty, F.1
-
50
-
-
0030983504
-
Apg1p, a novel protein kinase required for the autophagic process in Saccharomyces cerevisiae
-
Matsuura, A., Tsukada, M., Wada, Y., and Ohsumi, Y. (1997) Apg1p, a novel protein kinase required for the autophagic process in Saccharomyces cerevisiae. Gene 192, 245-250.
-
(1997)
Gene
, vol.192
, pp. 245-250
-
-
Matsuura, A.1
Tsukada, M.2
Wada, Y.3
Ohsumi, Y.4
-
51
-
-
4143080425
-
AMSH is an endosome-associated ubiquitin isopeptidase
-
McCullough, J., Clague, M.J., and Urbé, S. (2004). AMSH is an endosome-associated ubiquitin isopeptidase. J. Cell Biol. 166, 487-492.
-
(2004)
J. Cell Biol.
, vol.166
, pp. 487-492
-
-
McCullough, J.1
Clague, M.J.2
Urbé, S.3
-
52
-
-
50249103834
-
The cell biology of autophagy in metazoans: A developing story
-
Meléndez, A., and Neufeld, T.P. (2008). The cell biology of autophagy in metazoans: A developing story. Development 135, 2347-2360.
-
(2008)
Development
, vol.135
, pp. 2347-2360
-
-
Meléndez, A.1
Neufeld, T.P.2
-
53
-
-
70349213559
-
Techniques to study autophagy in plants
-
Mitou, G., Budak, H., and Gozuacik, D. (2009). Techniques to study autophagy in plants. Int. J. Plant. Genomics 2009, 451357.
-
(2009)
Int. J. Plant. Genomics
, vol.2009
, pp. 451357
-
-
Mitou, G.1
Budak, H.2
Gozuacik, D.3
-
54
-
-
4644304481
-
Reactive oxygen gene network of plants
-
Mittler, R., Vanderauwera, S., Gollery, M., and Van Breusegem, F. (2004). Reactive oxygen gene network of plants. Trends Plant Sci. 9, 490-498.
-
(2004)
Trends Plant Sci.
, vol.9
, pp. 490-498
-
-
Mittler, R.1
Vanderauwera, S.2
Gollery, M.3
Van Breusegem, F.4
-
55
-
-
4344712684
-
Methods for monitoring autophagy
-
Mizushima, N. (2004). Methods for monitoring autophagy. Int. J. Biochem. Cell Biol. 36, 2491-2502.
-
(2004)
Int. J. Biochem. Cell Biol.
, vol.36
, pp. 2491-2502
-
-
Mizushima, N.1
-
56
-
-
77956416339
-
Autophagy in mammalian development and differentiation
-
Mizushima, N., and Levine, B. (2010). Autophagy in mammalian development and differentiation. Nat. Cell Biol. 12, 823-830.
-
(2010)
Nat. Cell Biol.
, vol.12
, pp. 823-830
-
-
Mizushima, N.1
Levine, B.2
-
57
-
-
81055144784
-
Autophagy: Renovation of cells and tissues
-
Mizushima, N., and Komatsu, M. (2011). Autophagy: Renovation of cells and tissues. Cell 147, 728-741.
-
(2011)
Cell
, vol.147
, pp. 728-741
-
-
Mizushima, N.1
Komatsu, M.2
-
58
-
-
75749122303
-
Methods in mammalian autophagy research
-
Mizushima, N., Yoshimori, T., and Levine, B. (2010). Methods in mammalian autophagy research. Cell 140, 313-326.
-
(2010)
Cell
, vol.140
, pp. 313-326
-
-
Mizushima, N.1
Yoshimori, T.2
Levine, B.3
-
59
-
-
70349247790
-
Validating the location of fluorescent protein fusions in the endomembrane system
-
Moore, I., and Murphy, A. (2009). Validating the location of fluorescent protein fusions in the endomembrane system. Plant Cell 21, 1632-1636.
-
(2009)
Plant Cell
, vol.21
, pp. 1632-1636
-
-
Moore, I.1
Murphy, A.2
-
60
-
-
0029798980
-
Autophagy in tobacco suspension-cultured cells in response to sucrose starvation
-
Moriyasu, Y., and Ohsumi, Y. (1996). Autophagy in tobacco suspension-cultured cells in response to sucrose starvation. Plant Physiol. 111, 1233-1241.
-
(1996)
Plant Physiol.
, vol.111
, pp. 1233-1241
-
-
Moriyasu, Y.1
Ohsumi, Y.2
-
61
-
-
78649300971
-
P62SQSTM1 is required for parkin-induced mitochondrial clustering but not mitophagy; VDAC1 is dispensable for both
-
Narendra, D., Kane, L.A., Hauser, D.N., Fearnley, I.M., and Youle, R.J. (2010). p62/SQSTM1 is required for Parkin-induced mitochondrial clustering but not mitophagy; VDAC1 is dispensable for both. Autophagy 6, 1090-1106.
-
(2010)
Autophagy
, vol.6
, pp. 1090-1106
-
-
Narendra, D.1
Kane, L.A.2
Hauser, D.N.3
Fearnley, I.M.4
Youle, R.J.5
-
62
-
-
70349687405
-
Discovery of Atg5/Atg7-independent alternative macroautophagy
-
Nishida, Y., Arakawa, S., Fujitani, K., Yamaguchi, H., Mizuta, T., Kanaseki, T., Komatsu, M., Otsu, K., Tsujimoto, Y., and Shimizu, S. (2009). Discovery of Atg5/Atg7-independent alternative macroautophagy. Nature 461, 654-658.
-
(2009)
Nature
, vol.461
, pp. 654-658
-
-
Nishida, Y.1
Arakawa, S.2
Fujitani, K.3
Yamaguchi, H.4
Mizuta, T.5
Kanaseki, T.6
Komatsu, M.7
Otsu, K.8
Tsujimoto, Y.9
Shimizu, S.10
-
63
-
-
82555187810
-
Imagebased genome-wide siRNA screen identifies selective autophagy factors
-
Orvedahl, A., Sumpter, R., Jr, Xiao, G., Ng, A., Zou, Z., Tang, Y., Narimatsu, M., Gilpin, C., Sun, Q., Roth, M., et al. (2011). Imagebased genome-wide siRNA screen identifies selective autophagy factors. Nature 480, 113-117.
-
(2011)
Nature
, vol.480
, pp. 113-117
-
-
Orvedahl, A.1
Sumpter Jr., R.2
Xiao, G.3
Ng, A.4
Zou, Z.5
Tang, Y.6
Narimatsu, M.7
Gilpin, C.8
Sun, Q.9
Roth, M.10
-
64
-
-
15544364270
-
Senescence-associated vacuoles with intense proteolytic activity develop in leaves of Arabidopsis and soybean
-
Otegui, M.S., Noh, Y.S., Martínez, D.E., Vila Petroff, M.G., Staehelin, L.A., Amasino, R.M., and Guiamet, J.J. (2005). Senescence-associated vacuoles with intense proteolytic activity develop in leaves of Arabidopsis and soybean. Plant J. 41, 831-844.
-
(2005)
Plant J.
, vol.41
, pp. 831-844
-
-
Otegui, M.S.1
Noh, Y.S.2
Martínez, D.E.3
Vila Petroff, M.G.4
Staehelin, L.A.5
Amasino, R.M.6
Guiamet, J.J.7
-
65
-
-
34250183177
-
HDAC6 rescues neuro-degeneration and provides an essential link between autophagy and the UPS
-
Pandey, U.B., Nie, Z., Batlevi, Y., McCray, B.A., Ritson, G.P., Nedelsky, N.B., Schwartz, S.L., DiProspero, N.A., Knight, M.A., Schuldiner, O., et al. (2007). HDAC6 rescues neuro-degeneration and provides an essential link between autophagy and the UPS. Nature 447, 859-863.
-
(2007)
Nature
, vol.447
, pp. 859-863
-
-
Pandey, U.B.1
Nie, Z.2
Batlevi, Y.3
McCray, B.A.4
Ritson, G.P.5
Nedelsky, N.B.6
Schwartz, S.L.7
DiProspero, N.A.8
Knight, M.A.9
Schuldiner, O.10
-
66
-
-
34548259958
-
P62/ SQSTM1 binds directly to Atg8/LC3 to facilitate degradation of ubiquitinated protein aggregates by autophagy
-
Pankiv, S., Clausen, T.H., Lamark, T., Brech, A., Bruun, J.A., Outzen, H., Overvatn, A., Bjorkoy, G., and Johansen, T. (2007). p62/ SQSTM1 binds directly to Atg8/LC3 to facilitate degradation of ubiquitinated protein aggregates by autophagy. J. Biol. Chem. 282, 24131-24145.
-
(2007)
J. Biol. Chem.
, vol.282
, pp. 24131-24145
-
-
Pankiv, S.1
Clausen, T.H.2
Lamark, T.3
Brech, A.4
Bruun, J.A.5
Outzen, H.6
Overvatn, A.7
Bjorkoy, G.8
Johansen, T.9
-
67
-
-
38049001895
-
Arabidopsis ATG6 is required to limit the pathogen-associated cell death response
-
Patel, S., and Dinesh-Kumar, S.P. (2008). Arabidopsis ATG6 is required to limit the pathogen-associated cell death response. Autophagy 4, 20-27.
-
(2008)
Autophagy
, vol.4
, pp. 20-27
-
-
Patel, S.1
Dinesh-Kumar, S.P.2
-
68
-
-
45149130031
-
The ATG12-conjugating enzyme ATG10 is essential for autophagic vesicle formation in Arabidopsis thaliana
-
Phillips, A.R., Suttangkakul, A., and Vierstra, R.D. (2008). The ATG12-conjugating enzyme ATG10 is essential for autophagic vesicle formation in Arabidopsis thaliana. Genetics 178, 1339-1353.
-
(2008)
Genetics
, vol.178
, pp. 1339-1353
-
-
Phillips, A.R.1
Suttangkakul, A.2
Vierstra, R.D.3
-
69
-
-
33947331773
-
Arabidopsis AtBECLIN 1/AtAtg6/ AtVps30 is essential for pollen germination and plant development
-
Qin, G., Ma, Z., Zhang, L., Xing, S., Hou, X., Deng, J., Liu, J., Chen, Z., Qu, L.J., and Gu, H. (2007). Arabidopsis AtBECLIN 1/AtAtg6/ AtVps30 is essential for pollen germination and plant development. Cell Res. 17, 249-263.
-
(2007)
Cell Res.
, vol.17
, pp. 249-263
-
-
Qin, G.1
Ma, Z.2
Zhang, L.3
Xing, S.4
Hou, X.5
Deng, J.6
Liu, J.7
Chen, Z.8
Qu, L.J.9
Gu, H.10
-
70
-
-
9144240441
-
Promotion of tumorigenesis by heterozygous disruption of the beclin 1 autophagy gene
-
Qu, X., Yu, J., Bhagat, G., Furuya, N., Hibshoosh, H., Troxel, A., Rosen, J., Eskelinen, E.L., Mizushima, N., Ohsumi, Y., et al. (2003). Promotion of tumorigenesis by heterozygous disruption of the beclin 1 autophagy gene. J. Clin. Invest. 112, 1809-1820.
-
(2003)
J. Clin. Invest.
, vol.112
, pp. 1809-1820
-
-
Qu, X.1
Yu, J.2
Bhagat, G.3
Furuya, N.4
Hibshoosh, H.5
Troxel, A.6
Rosen, J.7
Eskelinen, E.L.8
Mizushima, N.9
Ohsumi, Y.10
-
71
-
-
78649497797
-
From signal transduction to autophagy of plant cell organelles: Lessons from yeast and mammals and plant-specific features
-
Reumann, S., Voitsekhovskaja, O., and Lillo, C. (2010). From signal transduction to autophagy of plant cell organelles: Lessons from yeast and mammals and plant-specific features. Protoplasma 247, 233-256.
-
(2010)
Protoplasma
, vol.247
, pp. 233-256
-
-
Reumann, S.1
Voitsekhovskaja, O.2
Lillo, C.3
-
72
-
-
79953088489
-
Delivery of prolamins to the protein storage vacuole in maize aleurone cells
-
Reyes, F.C., Chung, T., Holding, D., Jung, R., Vierstra, R., and Otegui, M.S. (2011). Delivery of prolamins to the protein storage vacuole in maize aleurone cells. Plant Cell 23, 769-784.
-
(2011)
Plant Cell
, vol.23
, pp. 769-784
-
-
Reyes, F.C.1
Chung, T.2
Holding, D.3
Jung, R.4
Vierstra, R.5
Otegui, M.S.6
-
73
-
-
0035433303
-
VACUOLELESS1 is an essential gene required for vacuole formation and morphogenesis in Arabidopsis
-
Rojo, E., Gillmor, C.S., Kovaleva, V., Somerville, C.R., and Raikhel, N.V. (2001). VACUOLELESS1 is an essential gene required for vacuole formation and morphogenesis in Arabidopsis. Dev. Cell. 1, 303-310.
-
(2001)
Dev. Cell.
, vol.1
, pp. 303-310
-
-
Rojo, E.1
Gillmor, C.S.2
Kovaleva, V.3
Somerville, C.R.4
Raikhel, N.V.5
-
74
-
-
30344474574
-
Starvation-induced expression of autophagy-related genes in Arabidopsis
-
Rose, T.L., Bonneau, L., Der, C., Marty-Mazars, D., and Marty, F. (2006). Starvation-induced expression of autophagy-related genes in Arabidopsis. Biol. Cell. 98, 53-67.
-
(2006)
Biol. Cell.
, vol.98
, pp. 53-67
-
-
Rose, T.L.1
Bonneau, L.2
Der, C.3
Marty-Mazars, D.4
Marty, F.5
-
75
-
-
69449089915
-
How do ESCRT proteins control autophagy?
-
Rusten, T.E., and Stenmark, H. (2009). How do ESCRT proteins control autophagy? J. Cell Sci. 122, 2179-2183.
-
(2009)
J. Cell Sci.
, vol.122
, pp. 2179-2183
-
-
Rusten, T.E.1
Stenmark, H.2
-
76
-
-
35348869859
-
ESCRTs and Fab1 regulate distinct steps of autophagy
-
Rusten, T.E., Vaccari, T., Lindmo, K., Rodahl, L.M., Nezis, I.P., Sem-Jacobsen, C., Wendler, F., Vincent, J.P., Brech, A., Bilder, D., et al. (2007). ESCRTs and Fab1 regulate distinct steps of autophagy. Curr. Biol. 17, 1817-1825.
-
(2007)
Curr. Biol.
, vol.17
, pp. 1817-1825
-
-
Rusten, T.E.1
Vaccari, T.2
Lindmo, K.3
Rodahl, L.M.4
Nezis, I.P.5
Sem-Jacobsen, C.6
Wendler, F.7
Vincent, J.P.8
Brech, A.9
Bilder, D.10
-
77
-
-
34247186472
-
Reactive oxygen species are essential for autophagy and specifically regulate the activity of Atg4
-
Scherz-Shouval, R., Shvets, E., Fass, E., Shorer, H., Gil, L., and Elazar, Z. (2007). Reactive oxygen species are essential for autophagy and specifically regulate the activity of Atg4. EMBO J. 26, 1749-1760.
-
(2007)
EMBO J.
, vol.26
, pp. 1749-1760
-
-
Scherz-Shouval, R.1
Shvets, E.2
Fass, E.3
Shorer, H.4
Gil, L.5
Elazar, Z.6
-
78
-
-
2942592057
-
Hydrogen peroxide mediates plant root cell response to nutrient deprivation]
-
Shin, R., and Schachtman, D.P. (2004). Hydrogen peroxide mediates plant root cell response to nutrient deprivation. Proc. Natl. Acad. Sci. USA 101, 8827-8832.
-
(2004)
Proc. Natl. Acad. Sci. USA
, vol.101
, pp. 8827-8832
-
-
Shin, R.1
Schachtman, D.P.2
-
79
-
-
62849123596
-
OsATG10b, an autophagosome component, is needed for cell survival against oxidative stresses in rice
-
Shin, J.H., Yoshimoto, K., Ohsumi, Y., Jeon, J.S., and An, G. (2009). OsATG10b, an autophagosome component, is needed for cell survival against oxidative stresses in rice. Mol. Cells 27, 67-74.
-
(2009)
Mol. Cells
, vol.27
, pp. 67-74
-
-
Shin, J.H.1
Yoshimoto, K.2
Ohsumi, Y.3
Jeon, J.S.4
An, G.5
-
80
-
-
44649141242
-
Making sense of hormone crosstalk during plant immune responses
-
Spoel, S.H., and Dong, X. (2008). Making sense of hormone crosstalk during plant immune responses. Cell. Host Microbe 3, 348-351.
-
(2008)
Cell. Host Microbe
, vol.3
, pp. 348-351
-
-
Spoel, S.H.1
Dong, X.2
-
81
-
-
82755166963
-
The ATG1/ATG13 protein kinase complex is both a regulator and a target of autophagic recycling in Arabidopsis
-
Suttangkakul, A., Li, F., Chung, T., and Vierstra, R.D. (2011). The ATG1/ATG13 protein kinase complex is both a regulator and a target of autophagic recycling in Arabidopsis. Plant Cell 23, 3761-3779.
-
(2011)
Plant Cell
, vol.23
, pp. 3761-3779
-
-
Suttangkakul, A.1
Li, F.2
Chung, T.3
Vierstra, R.D.4
-
82
-
-
80052363973
-
Plant NBR1 is a selective autophagy substrate and a functional hybrid of the mammalian autophagic adapters NBR1 and p62/ SQSTM1
-
Svenning, S., Lamark, T., Krause, K., and Johansen, T. (2011). Plant NBR1 is a selective autophagy substrate and a functional hybrid of the mammalian autophagic adapters NBR1 and p62/ SQSTM1. Autophagy 7, 993-1010.
-
(2011)
Autophagy
, vol.7
, pp. 993-1010
-
-
Svenning, S.1
Lamark, T.2
Krause, K.3
Johansen, T.4
-
83
-
-
83255176954
-
Autophagy in tobacco BY-2 cells cultured under sucrose starvation conditions: Isolation of the autolysosome and its characterization
-
Takatsuka, C., Inoue, Y., Higuchi, T., Hillmer, S., Robinson, D.G., and Moriyasu, Y. (2011). Autophagy in tobacco BY-2 cells cultured under sucrose starvation conditions: Isolation of the autolysosome and its characterization. Plant Cell Physiol. 52, 2074-2087.
-
(2011)
Plant Cell Physiol.
, vol.52
, pp. 2074-2087
-
-
Takatsuka, C.1
Inoue, Y.2
Higuchi, T.3
Hillmer, S.4
Robinson, D.G.5
Moriyasu, Y.6
-
84
-
-
77649243261
-
Synergistic roles of the proteasome and autophagy for mitochondrial maintenance and chronological lifespan in fission yeast
-
Takeda, K., Yoshida, T., Kikuchi, S., Nagao, K., Kokubu, A., Pluskal, T., Villar-Briones, A., Nakamura, T., and Yanagida, M. (2010). Synergistic roles of the proteasome and autophagy for mitochondrial maintenance and chronological lifespan in fission yeast. Proc. Natl. Acad. Sci. USA 107, 3540-3545.
-
(2010)
Proc. Natl. Acad. Sci. USA
, vol.107
, pp. 3540-3545
-
-
Takeda, K.1
Yoshida, T.2
Kikuchi, S.3
Nagao, K.4
Kokubu, A.5
Pluskal, T.6
Villar-Briones, A.7
Nakamura, T.8
Yanagida, M.9
-
85
-
-
68149122173
-
The emerging role of autophagy in plant pathogen attack and host defence
-
Talbot, N.J., and Kershaw, M.J. (2009). The emerging role of autophagy in plant pathogen attack and host defence. Curr. Opin. Plant Biol. 12, 444-450.
-
(2009)
Curr. Opin. Plant Biol.
, vol.12
, pp. 444-450
-
-
Talbot, N.J.1
Kershaw, M.J.2
-
86
-
-
14744281878
-
Autophagic recycling: Lessons from yeast help define the process in plants
-
Thompson, A.R., and Vierstra, R.D. (2005). Autophagic recycling: Lessons from yeast help define the process in plants. Curr. Opin. Plant Biol. 8, 165-173.
-
(2005)
Curr. Opin. Plant Biol.
, vol.8
, pp. 165-173
-
-
Thompson, A.R.1
Vierstra, R.D.2
-
87
-
-
33644594726
-
Autophagic nutrient recycling in Arabidopsis directed by the ATG8 and ATG12 conjugation pathways
-
Thompson, A.R., Doelling, J.H., Suttangkakul, A., and Vierstra, R.D. (2005). Autophagic nutrient recycling in Arabidopsis directed by the ATG8 and ATG12 conjugation pathways. Plant Physiol. 138, 2097-2110.
-
(2005)
Plant Physiol.
, vol.138
, pp. 2097-2110
-
-
Thompson, A.R.1
Doelling, J.H.2
Suttangkakul, A.3
Vierstra, R.D.4
-
88
-
-
77953713630
-
C. Elegans screen identifies autophagy genes specific to multicellular organisms
-
Tian, Y., Li, Z., Hu, W., Ren, H., Tian, E., Zhao, Y., Lu, Q., Huang, X., Yang, P., Li, X., et al. (2010). C. elegans screen identifies autophagy genes specific to multicellular organisms. Cell 141, 1042-1055.
-
(2010)
Cell
, vol.141
, pp. 1042-1055
-
-
Tian, Y.1
Li, Z.2
Hu, W.3
Ren, H.4
Tian, E.5
Zhao, Y.6
Lu, Q.7
Huang, X.8
Yang, P.9
Li, X.10
-
89
-
-
0027424777
-
Isolation and characterization of autophagy-defective mutants of Saccharomyces cerevisiae
-
Tsukada, M., and Ohsumi, Y. (1993) Isolation and characterization of autophagy-defective mutants of Saccharomyces cerevisiae. FEBS Lett. 333, 169-174.
-
(1993)
FEBS Lett.
, vol.333
, pp. 169-174
-
-
Tsukada, M.1
Ohsumi, Y.2
-
90
-
-
14744275580
-
Many ways to exit? Cell death categories in plants
-
van Doorn, W.G., and Woltering, E.J. (2005). Many ways to exit? Cell death categories in plants. Trends Plant Sci. 10, 117-122.
-
(2005)
Trends Plant Sci.
, vol.10
, pp. 117-122
-
-
Van Doorn, W.G.1
Woltering, E.J.2
-
91
-
-
79960205826
-
Morphological classification of plant cell deaths
-
van Doorn, W.G., Beers, E.P., Dangl, J.L., Franklin-Tong, V.E., Gallois, P., Hara-Nishimura, I., Jones, A.M., Kawai-Yamada, M., Lam, E., Mundy, J., et al. (2011). Morphological classification of plant cell deaths. Cell Death Differ. 18, 1241-1246.
-
(2011)
Cell Death Differ.
, vol.18
, pp. 1241-1246
-
-
Van Doorn, W.G.1
Beers, E.P.2
Dangl, J.L.3
Franklin-Tong, V.E.4
Gallois, P.5
Hara-Nishimura, I.6
Jones, A.M.7
Kawai-Yamada, M.8
Lam, E.9
Mundy, J.10
-
92
-
-
79953100002
-
The arabidopsis multistress regulator TSPO is a heme binding membrane protein and a potential scavenger of porphyrins via an autophagy-dependent degradation mechanism
-
Vanhee, C., Zapotoczny, G., Masquelier, D., Ghislain, M., and Batoko, H. (2011). The Arabidopsis multistress regulator TSPO is a heme binding membrane protein and a potential scavenger of porphyrins via an autophagy-dependent degradation mechanism. Plant Cell 23, 785-805.
-
(2011)
Plant Cell
, vol.23
, pp. 785-805
-
-
Vanhee, C.1
Zapotoczny, G.2
Masquelier, D.3
Ghislain, M.4
Batoko, H.5
-
93
-
-
79551653860
-
EXPO, an exocystpositive organelle distinct from multivesicular endosomes and autophagosomes, mediates cytosol to cell wall exocytosis in Arabidopsis and tobacco cells
-
Wang, J., Ding, Y., Wang, J., Hillmer, S., Miao, Y., Lo, S.W., Wang, X., Robinson, D.G., and Jiang, L. (2010). EXPO, an exocystpositive organelle distinct from multivesicular endosomes and autophagosomes, mediates cytosol to cell wall exocytosis in Arabidopsis and tobacco cells. Plant Cell 22, 4009-4030.
-
(2010)
Plant Cell
, vol.22
, pp. 4009-4030
-
-
Wang, J.1
Ding, Y.2
Wang, J.3
Hillmer, S.4
Miao, Y.5
Lo, S.W.6
Wang, X.7
Robinson, D.G.8
Jiang, L.9
-
94
-
-
80052557034
-
ATG2 an autophagy-related protein, negatively affects powdery mildew resistance and mildew-induced cell death in Arabidopsis
-
Wang, Y., Nishimura, M.T., Zhao, T., and Tang, D. (2011). ATG2, an autophagy-related protein, negatively affects powdery mildew resistance and mildew-induced cell death in Arabidopsis. Plant J. 68, 74-87.
-
(2011)
Plant J.
, vol.68
, pp. 74-87
-
-
Wang, Y.1
Nishimura, M.T.2
Zhao, T.3
Tang, D.4
-
95
-
-
79961142199
-
P62SQSTM1 in autophagic clearance of a non-ubiquitylated substrate
-
Watanabe, Y., and Tanaka, M. (2011). p62/SQSTM1 in autophagic clearance of a non-ubiquitylated substrate. J. Cell Sci. 124, 2692-2701.
-
(2011)
J. Cell Sci.
, vol.124
, pp. 2692-2701
-
-
Watanabe, Y.1
Tanaka, M.2
-
96
-
-
33644872913
-
Exploring the ESCRTing machinery in eukaryotes
-
Winter, V., and Hauser, M.T. (2006). Exploring the ESCRTing machinery in eukaryotes. Trends Plant Sci. 11, 115-123.
-
(2006)
Trends Plant Sci.
, vol.11
, pp. 115-123
-
-
Winter, V.1
Hauser, M.T.2
-
97
-
-
77954392870
-
Overexpression of arabidopsis acyl-CoA binding protein ACBP3 promotes starvation-induced and age-dependent leaf senescence
-
Xiao, S., Gao, W., Chen, Q.F., Chan, S.W., Zheng, S.X., Ma, J., Wang, M., Welti, R., and Chye, M.L. (2010). Overexpression of Arabidopsis acyl-CoA binding protein ACBP3 promotes starvation-induced and age-dependent leaf senescence. Plant Cell 22, 1463-1482.
-
(2010)
Plant Cell
, vol.22
, pp. 1463-1482
-
-
Xiao, S.1
Gao, W.2
Chen, Q.F.3
Chan, S.W.4
Zheng, S.X.5
Ma, J.6
Wang, M.7
Welti, R.8
Chye, M.L.9
-
98
-
-
19444366819
-
AtATG18a is required for the formation of autophagosomes during nutrient stress and senescence in Arabidopsis thaliana
-
Xiong, Y., Contento, A.L., and Bassham, D.C. (2005). AtATG18a is required for the formation of autophagosomes during nutrient stress and senescence in Arabidopsis thaliana. Plant J. 42, 535-546.
-
(2005)
Plant J.
, vol.42
, pp. 535-546
-
-
Xiong, Y.1
Contento, A.L.2
Bassham, D.C.3
-
99
-
-
33846378524
-
Degradation of oxidized proteins by autophagy during oxidative stress in Arabidopsis
-
Xiong, Y., Contento, A.L., Nguyen, P.Q., and Bassham, D.C. (2007). Degradation of oxidized proteins by autophagy during oxidative stress in Arabidopsis. Plant Physiol. 143, 291-299.
-
(2007)
Plant Physiol.
, vol.143
, pp. 291-299
-
-
Xiong, Y.1
Contento, A.L.2
Nguyen, P.Q.3
Bassham, D.C.4
-
100
-
-
77951214016
-
Mammalian autophagy: Core molecular machinery and signaling regulation
-
Yang, Z., and Klionsky, D.J. (2010). Mammalian autophagy: Core molecular machinery and signaling regulation. Curr. Opin. Cell Biol. 22, 124-131.
-
(2010)
Curr. Opin. Cell Biol.
, vol.22
, pp. 124-131
-
-
Yang, Z.1
Klionsky, D.J.2
-
101
-
-
34248546410
-
A novel type of autophagy occurs together with vacuole genesis in miniprotoplasts prepared from tobacco culture cells
-
Yano, K., Hattori, M., and Moriyasu, Y. (2007). A novel type of autophagy occurs together with vacuole genesis in miniprotoplasts prepared from tobacco culture cells. Autophagy 3, 215-221.
-
(2007)
Autophagy
, vol.3
, pp. 215-221
-
-
Yano, K.1
Hattori, M.2
Moriyasu, Y.3
-
102
-
-
33750366092
-
Starvation and ULK1-dependent cycling of mammalian Atg9 between the TGN and endosomes
-
Young, A.R., Chan, E.Y., Hu, X.W., Kochl, R., Crawshaw, S.G., High, S., Hailey, D.W., Lippincott-Schwartz, J., and Tooze, S.A. (2006). Starvation and ULK1-dependent cycling of mammalian Atg9 between the TGN and endosomes. J. Cell Sci. 119, 3888-3900.
-
(2006)
J. Cell Sci.
, vol.119
, pp. 3888-3900
-
-
Young, A.R.1
Chan, E.Y.2
Hu, X.W.3
Kochl, R.4
Crawshaw, S.G.5
High, S.6
Hailey, D.W.7
Lippincott-Schwartz, J.8
Tooze, S.A.9
-
103
-
-
14744268915
-
Processing of ATG8s, ubiquitin-like proteins, and their deconjugation by ATG4s are essential for plant autophagy
-
Yoshimoto, K., Hanaoka, H., Sato, S., Kato, T., Tabata, S., Noda, T., and Ohsumi, Y. (2004). Processing of ATG8s, ubiquitin-like proteins, and their deconjugation by ATG4s are essential for plant autophagy. Plant Cell 16, 2967-2983.
-
(2004)
Plant Cell
, vol.16
, pp. 2967-2983
-
-
Yoshimoto, K.1
Hanaoka, H.2
Sato, S.3
Kato, T.4
Tabata, S.5
Noda, T.6
Ohsumi, Y.7
-
104
-
-
70849127320
-
Auto-phagy negatively regulates cell death by controlling NPR1-dependent salicylic acid signaling during senescence and the innate immune response in Arabidopsis
-
Yoshimoto, K., Jikumaru, Y., Kamiya, Y., Kusano, M., Consonni, C., Panstruga, R., Ohsumi, Y., and Shirasu, K. (2009). Auto-phagy negatively regulates cell death by controlling NPR1-dependent salicylic acid signaling during senescence and the innate immune response in Arabidopsis. Plant Cell 21, 2914-2927.
-
(2009)
Plant Cell
, vol.21
, pp. 2914-2927
-
-
Yoshimoto, K.1
Jikumaru, Y.2
Kamiya, Y.3
Kusano, M.4
Consonni, C.5
Panstruga, R.6
Ohsumi, Y.7
Shirasu, K.8
-
105
-
-
0345166111
-
Beclin 1, an autophagy gene essential for early embryonic development, is a haploinsufficient tumor suppressor
-
Yue, Z., Jin, S., Yang, C., Levine, A.J., and Heintz, N. (2003) Beclin 1, an autophagy gene essential for early embryonic development, is a haploinsufficient tumor suppressor. Proc. Natl. Acad. Sci. USA 100, 15077-15082.
-
(2003)
Proc. Natl. Acad. Sci. USA
, vol.100
, pp. 15077-15082
-
-
Yue, Z.1
Jin, S.2
Yang, C.3
Levine, A.J.4
Heintz, N.5
-
106
-
-
74049126112
-
The adaptor protein p62/SQSTM1 targets invading bacteria to the autophagy pathway
-
Zheng, Y.T., Shahnazari, S., Brech, A., Lamark, T., Johansen, T., and Brumell, J.H. (2009). The adaptor protein p62/SQSTM1 targets invading bacteria to the autophagy pathway. J. Immunol. 183, 5909-5916.
-
(2009)
J. Immunol.
, vol.183
, pp. 5909-5916
-
-
Zheng, Y.T.1
Shahnazari, S.2
Brech, A.3
Lamark, T.4
Johansen, T.5
Brumell, J.H.6
-
107
-
-
80053390952
-
Identification and functional analysis of Joka2, a tobacco member of the family of selec-tive autophagy cargo receptors
-
Zientara-Rytter, K., Lukomska, J., Moniuszko, G., Gwozdecki, R., Surowiecki, P., Lewandowska, M., Liszewska, F., Wawr-zynska, A., and Sirko, A. (2011). Identification and functional analysis of Joka2, a tobacco member of the family of selec-tive autophagy cargo receptors. Autophagy 7, 1145-1158.
-
(2011)
Autophagy
, vol.7
, pp. 1145-1158
-
-
Zientara-Rytter, K.1
Lukomska, J.2
Moniuszko, G.3
Gwozdecki, R.4
Surowiecki, P.5
Lewandowska, M.6
Liszewska, F.7
Wawr-Zynska, A.8
Sirko, A.9
-
108
-
-
70450207780
-
Plant vacuoles: Where did they come from and where are they heading?
-
Zouhar, J., and Rojo, E. (2009). Plant vacuoles: Where did they come from and where are they heading? Curr. Opin. Plant Biol. 12, 677-684.
-
(2009)
Curr. Opin. Plant Biol.
, vol.12
, pp. 677-684
-
-
Zouhar, J.1
Rojo, E.2
|