메뉴 건너뛰기




Volumn 37, Issue , 2013, Pages 176-185

A modification of the k-means method for quasi-unsupervised learning

Author keywords

Clustering; Constrained clustering; k Means method; Loyd algorithm; Quasi unsupervised learning; Size constraints

Indexed keywords

CLUSTERING; CONSTRAINED CLUSTERING; K-MEANS METHOD; QUASI-UNSUPERVISED LEARNING; SIZE CONSTRAINT;

EID: 84870054852     PISSN: 09507051     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.knosys.2012.07.024     Document Type: Article
Times cited : (9)

References (43)
  • 2
    • 79957516063 scopus 로고    scopus 로고
    • An initialization method to simultaneously find initial cluster centers and the number of clusters for clustering categorical data
    • L. Bai, J. Liang, and C. Dang An initialization method to simultaneously find initial cluster centers and the number of clusters for clustering categorical data Knowl.-Based Syst. 24 6 2011 785 795
    • (2011) Knowl.-Based Syst. , vol.24 , Issue.6 , pp. 785-795
    • Bai, L.1    Liang, J.2    Dang, C.3
  • 4
    • 14344264451 scopus 로고    scopus 로고
    • Integrating constraints and metric learning in semi-supervised clustering
    • Banff, Alberta, Canada, July
    • M. Bilenko, S. Basu, R.J. Mooney, Integrating constraints and metric learning in semi-supervised clustering, in: Proc. Int. Conf. Mach. Learn. (ICML), Banff, Alberta, Canada, July 2004, pp. 81-88.
    • (2004) Proc. Int. Conf. Mach. Learn. (ICML) , pp. 81-88
    • Bilenko, M.1    Basu, S.2    Mooney, R.J.3
  • 7
  • 8
    • 0036190566 scopus 로고    scopus 로고
    • Practical data-oriented microaggregation for statistical disclosure control
    • J. Domingo-Ferrer, and J.M. Mateo-Sanz Practical data-oriented microaggregation for statistical disclosure control IEEE Trans. Knowl. Data Eng. 14 1 2002 189 201
    • (2002) IEEE Trans. Knowl. Data Eng. , vol.14 , Issue.1 , pp. 189-201
    • Domingo-Ferrer, J.1    Mateo-Sanz, J.M.2
  • 9
    • 26944448516 scopus 로고    scopus 로고
    • Ordinal, continuous and heterogenerous k-anonymity through microaggregation
    • J. Domingo-Ferrer, and V. Torra Ordinal, continuous and heterogenerous k-anonymity through microaggregation Data Min. Knowl. Disc. 11 2 2005 195 212
    • (2005) Data Min. Knowl. Disc. , vol.11 , Issue.2 , pp. 195-212
    • Domingo-Ferrer, J.1    Torra, V.2
  • 11
    • 0034340304 scopus 로고    scopus 로고
    • Accurate retail testing of fashion merchandise: Methodology and application
    • M. Fisher, and K. Rajaram Accurate retail testing of fashion merchandise: methodology and application J. Market. Sci. 19 3 2000
    • (2000) J. Market. Sci. , vol.19 , Issue.3
    • Fisher, M.1    Rajaram, K.2
  • 12
    • 78649934709 scopus 로고    scopus 로고
    • Univ. California, Irvine, Sch. Inform., Comput. Sci.
    • A. Frank, A. Asuncion, UCI machine learning repository, Univ. California, Irvine, Sch. Inform., Comput. Sci., 2010. < http://archive.ics.uci.edu/ml >.
    • (2010) UCI Machine Learning Repository
    • Frank, A.1    Asuncion, A.2
  • 13
    • 0032650370 scopus 로고    scopus 로고
    • A robust competitive clustering algorithm with applications in computer vision
    • H. Frigui, and R. Krishnapuram A robust competitive clustering algorithm with applications in computer vision IEEE Trans. Pattern Anal. Mach. Intell. 21 5 1999 450 465
    • (1999) IEEE Trans. Pattern Anal. Mach. Intell. , vol.21 , Issue.5 , pp. 450-465
    • Frigui, H.1    Krishnapuram, R.2
  • 16
    • 84958035025 scopus 로고    scopus 로고
    • K-Means clustering algorithm for categorical attributes
    • Lecture Notes Comput. Sci. (LNCS) Springer-Verlag Florence, Italy
    • S.K. Gupta, K.S. Rao, and V. Bhatnagar k-Means clustering algorithm for categorical attributes Proc. Data Warehous. Knowl. Disc. (DaWaK) Lecture Notes Comput. Sci. (LNCS) vol. 1676 1999 Springer-Verlag Florence, Italy 203 208
    • (1999) Proc. Data Warehous. Knowl. Disc. (DaWaK) , vol.1676 , pp. 203-208
    • Gupta, S.K.1    Rao, K.S.2    Bhatnagar, V.3
  • 17
    • 77955348911 scopus 로고    scopus 로고
    • A classification algorithm based on local cluster centers with a few labeled training examples
    • T. Huang, Y. Yu, G. Guo, and K. Li A classification algorithm based on local cluster centers with a few labeled training examples Knowl.-Based Syst. 23 6 2010 563 571
    • (2010) Knowl.-Based Syst. , vol.23 , Issue.6 , pp. 563-571
    • Huang, T.1    Yu, Y.2    Guo, G.3    Li, K.4
  • 18
    • 27144536001 scopus 로고    scopus 로고
    • Extensions to the k-means algorithm for clustering large data sets with categorical values
    • Z. Huang Extensions to the k-means algorithm for clustering large data sets with categorical values Data Min. Knowl. Disc. 2 3 1998 283 304
    • (1998) Data Min. Knowl. Disc. , vol.2 , Issue.3 , pp. 283-304
    • Huang, Z.1
  • 19
    • 0000008146 scopus 로고
    • Comparing partitions
    • L. Hubert, and P. Arabie Comparing partitions J. Classif. 2 1 1985 193 218
    • (1985) J. Classif. , vol.2 , Issue.1 , pp. 193-218
    • Hubert, L.1    Arabie, P.2
  • 20
    • 0027928863 scopus 로고
    • Applications of weighted voronoi diagrams and randomization to variance-based k-clustering
    • M. Inaba, N. Katoh, H. Imai, Applications of weighted voronoi diagrams and randomization to variance-based k-clustering, in: Proc. ACM Symp. Comput. Geom., 1994, pp. 332-339.
    • (1994) Proc. ACM Symp. Comput. Geom. , pp. 332-339
    • Inaba, M.1    Katoh, N.2    Imai, H.3
  • 21
    • 0033707141 scopus 로고    scopus 로고
    • Variance-based k-clustering algorithms by Voronoi diagrams and randomization
    • M. Inaba, N. Katoh, and H. Imai Variance-based k-clustering algorithms by Voronoi diagrams and randomization IEICE Trans. Inform. Syst. E83-D 6 2000 1199 1206
    • (2000) IEICE Trans. Inform. Syst. , vol.83 , Issue.6 , pp. 1199-1206
    • Inaba, M.1    Katoh, N.2    Imai, H.3
  • 22
    • 67650495303 scopus 로고    scopus 로고
    • Discovering unexpected documents in corpora
    • F. Jacquenet, and C. Largeron Discovering unexpected documents in corpora Knowl.-Based Syst. 22 6 2009 421 429
    • (2009) Knowl.-Based Syst. , vol.22 , Issue.6 , pp. 421-429
    • Jacquenet, F.1    Largeron, C.2
  • 25
    • 50949099030 scopus 로고    scopus 로고
    • Multinomial mixture model with feature selection for text clustering
    • M. Li, and L. Zhang Multinomial mixture model with feature selection for text clustering Knowl.-Based Syst. 21 7 2008 704 708
    • (2008) Knowl.-Based Syst. , vol.21 , Issue.7 , pp. 704-708
    • Li, M.1    Zhang, L.2
  • 26
    • 0020102027 scopus 로고
    • Least squares quantization in PCM
    • S.P. Lloyd Least squares quantization in PCM IEEE Trans. Inform. Theory IT-28 1982 129 137
    • (1982) IEEE Trans. Inform. Theory , vol.28 , pp. 129-137
    • Lloyd, S.P.1
  • 27
    • 0001457509 scopus 로고
    • Some methods for classification and analysis of multivariate observations
    • Berkeley, CA, 1965-1966 (Symp.), 1967 (Proc.)
    • J.B. MacQueen, Some methods for classification and analysis of multivariate observations, in: Proc. Berkeley Symp. Math. Stat., Prob. I (Stat.), Berkeley, CA, 1965-1966 (Symp.), 1967 (Proc.), 1967, pp. 281-297.
    • (1967) Proc. Berkeley Symp. Math. Stat., Prob. i (Stat.) , pp. 281-297
    • MacQueen, J.B.1
  • 28
    • 0000169232 scopus 로고
    • An algorithm for least-squares estimation of nonlinear parameters
    • D. Marquardt An algorithm for least-squares estimation of nonlinear parameters SIAM J. Appl. Math. (SIAP) 11 1963 431 441
    • (1963) SIAM J. Appl. Math. (SIAP) , vol.11 , pp. 431-441
    • Marquardt, D.1
  • 29
    • 84866508030 scopus 로고    scopus 로고
    • Semantically-grounded construction of centroids for datasets with textual attributes
    • S. Martínez, A. Valls, and D. Sánchez Semantically-grounded construction of centroids for datasets with textual attributes Knowledge-Based Systems 35 2012 160 172
    • (2012) Knowledge-Based Systems , vol.35 , pp. 160-172
    • Martínez, S.1    Valls, A.2    Sánchez, D.3
  • 30
    • 84937350296 scopus 로고
    • Quantizing for minimum distortion
    • J. Max Quantizing for minimum distortion IEEE Trans. Inform. Theory 6 1 1960 7 12
    • (1960) IEEE Trans. Inform. Theory , vol.6 , Issue.1 , pp. 7-12
    • Max, J.1
  • 31
    • 0001362410 scopus 로고
    • The Levenberg-Marquardt algorithm: Implementation and theory
    • G.A. Watson, Lecture Notes Math Springer Verlag
    • J.J. Moré The Levenberg-Marquardt algorithm: implementation and theory G.A. Watson, Numerical Analysis Lecture Notes Math vol. 630 1977 Springer Verlag 105 116
    • (1977) Numerical Analysis , vol.630 , pp. 105-116
    • Moré, J.J.1
  • 34
    • 80051799598 scopus 로고    scopus 로고
    • An algorithm for k-anonymous microaggregation and clustering inspired by the design of distortion-optimized quantizers
    • D. Rebollo-Monedero, J. Forné, and M. Soriano An algorithm for k-anonymous microaggregation and clustering inspired by the design of distortion-optimized quantizers Data Knowl. Eng. 70 10 2011 892 921
    • (2011) Data Knowl. Eng. , vol.70 , Issue.10 , pp. 892-921
    • Rebollo-Monedero, D.1    Forné, J.2    Soriano, M.3
  • 35
    • 33747479974 scopus 로고
    • Sur la division des corps matériels en parties
    • H. Steinhaus Sur la division des corps matériels en parties Bull. Pol. Acad. Sci. IV 12 1956 801 804
    • (1956) Bull. Pol. Acad. Sci. , vol.4 , Issue.12 , pp. 801-804
    • Steinhaus, H.1
  • 36
    • 0032762144 scopus 로고    scopus 로고
    • An overlap invariant entropy measure of 3D medical image alignment
    • C. Studholme, D.L.G. Hill, and D.J. Hawkes An overlap invariant entropy measure of 3D medical image alignment Pattern Recognit. 32 1 1999 71 86
    • (1999) Pattern Recognit. , vol.32 , Issue.1 , pp. 71-86
    • Studholme, C.1    Hill, D.L.G.2    Hawkes, D.J.3
  • 38
    • 78049387733 scopus 로고    scopus 로고
    • On a global complexity bound of the Levenberg-Marquardt method
    • K. Ueda, and N. Yamashita On a global complexity bound of the Levenberg-Marquardt method J. Optim. Theory Appl. 147 2010 443 453
    • (2010) J. Optim. Theory Appl. , vol.147 , pp. 443-453
    • Ueda, K.1    Yamashita, N.2
  • 39
    • 42549172245 scopus 로고    scopus 로고
    • On building fast kd-trees for ray tracing, and on doing that in o(nlogn)
    • I. Wald, V. Hvran, On building fast kd-trees for ray tracing, and on doing that in o(nlogn), in: Proc. IEEE Symp. Interact. Ray Trac., 2006, pp. 61-69.
    • (2006) Proc. IEEE Symp. Interact. Ray Trac. , pp. 61-69
    • Wald, I.1    Hvran, V.2
  • 41
    • 16444383160 scopus 로고    scopus 로고
    • Survey of clustering algorithms
    • R. Xu, and D. Wunsch II Survey of clustering algorithms IEEE Trans. Neural Netw. 16 3 2005 645 678
    • (2005) IEEE Trans. Neural Netw. , vol.16 , Issue.3 , pp. 645-678
    • Xu, R.1    Wunsch, I.I.D.2
  • 43
    • 77957894729 scopus 로고    scopus 로고
    • Data clustering with size constraints
    • S. Zhu, D. Wang, and T. Li Data clustering with size constraints Knowl.-Based Syst. 23 8 2010 883 889
    • (2010) Knowl.-Based Syst. , vol.23 , Issue.8 , pp. 883-889
    • Zhu, S.1    Wang, D.2    Li, T.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.