메뉴 건너뛰기




Volumn 147, Issue 3, 2010, Pages 443-453

On a Global Complexity Bound of the Levenberg-Marquardt Method

Author keywords

Global complexity bound; Levenberg Marquardt methods; Scale parameter

Indexed keywords

LEAST SQUARES APPROXIMATIONS;

EID: 78049387733     PISSN: 00223239     EISSN: 15732878     Source Type: Journal    
DOI: 10.1007/s10957-010-9731-0     Document Type: Article
Times cited : (55)

References (16)
  • 2
    • 0001362410 scopus 로고
    • The Levenberg-Marquardt algorithm: implementation and theory
    • Moré, J. J.: The Levenberg-Marquardt algorithm: implementation and theory. Numer. Anal. 630, 105-116 (1978).
    • (1978) Numer. Anal. , vol.630 , pp. 105-116
    • Moré, J.J.1
  • 4
    • 0001093053 scopus 로고
    • Nonlinear least squares-the Levenberg algorithm revisited
    • Osborne, M. R.: Nonlinear least squares-the Levenberg algorithm revisited. J. Aust. Math. Soc. 19, 343-357 (1976).
    • (1976) J. Aust. Math. Soc. , vol.19 , pp. 343-357
    • Osborne, M.R.1
  • 5
    • 0039679114 scopus 로고
    • An inexact Levenberg-Marquardt method for large sparse nonlinear least squares
    • Wright, S. J., Holt, J. N.: An inexact Levenberg-Marquardt method for large sparse nonlinear least squares. J. Aust. Math. Soc. 26, 387-403 (1985).
    • (1985) J. Aust. Math. Soc. , vol.26 , pp. 387-403
    • Wright, S.J.1    Holt, J.N.2
  • 7
    • 81255179401 scopus 로고    scopus 로고
    • Adaptive cubic regularization methods for unconstrained optimization. Part II: Worst-case function- and derivative-evaluation complexity
    • doi: 10. 1007/s10107-009-0337-y
    • Cartis, C., Gould, N. I. M., Toint, P. L.: Adaptive cubic regularization methods for unconstrained optimization. Part II: Worst-case function- and derivative-evaluation complexity. Math. Program. doi: 10. 1007/s10107-009-0337-y.
    • Math. Program.
    • Cartis, C.1    Gould, N.I.M.2    Toint, P.L.3
  • 8
    • 78049411139 scopus 로고    scopus 로고
    • On the complexity of steepest descent, Newton's and regularized Newton's methods for nonconvex unconstrained optimization problems
    • Technical Report 09/14, Department of Mathematics, FUNDP-University of Namur
    • Cartis, C., Gould, N. I. M., Toint, P. L.: On the complexity of steepest descent, Newton's and regularized Newton's methods for nonconvex unconstrained optimization problems. Technical Report 09/14, Department of Mathematics, FUNDP-University of Namur (2009).
    • (2009)
    • Cartis, C.1    Gould, N.I.M.2    Toint, P.L.3
  • 9
    • 61349175317 scopus 로고    scopus 로고
    • Recursive trust-region methods for multiscale nonlinear optimization
    • Gratton, S., Sartenaer, A., Toint, P. L.: Recursive trust-region methods for multiscale nonlinear optimization. SIAM J. Optim. 19, 414-444 (2008).
    • (2008) SIAM J. Optim. , vol.19 , pp. 414-444
    • Gratton, S.1    Sartenaer, A.2    Toint, P.L.3
  • 11
    • 33646730150 scopus 로고    scopus 로고
    • Cubic regularization of Newton method and its global performance
    • Nesterov, Yu., Polyak, B. T.: Cubic regularization of Newton method and its global performance. Math. Program., Ser. A 108, 177-205 (2006).
    • (2006) Math. Program., Ser. A , vol.108 , pp. 177-205
    • Nesterov, Y.1    Polyak, B.T.2
  • 12
    • 65249101213 scopus 로고    scopus 로고
    • Regularized Newton method for unconstrained convex optimization
    • Polyak, R. A.: Regularized Newton method for unconstrained convex optimization. Math. Program., Ser. B 120, 125-145 (2009).
    • (2009) Math. Program., Ser. B , vol.120 , pp. 125-145
    • Polyak, R.A.1
  • 13
    • 77953610110 scopus 로고    scopus 로고
    • Convergence properties of the regularized Newton method for the unconstrained nonconvex optimization
    • Ueda, K., Yamashita, N.: Convergence properties of the regularized Newton method for the unconstrained nonconvex optimization. Appl. Math. Optim. 62, 27-46 (2010).
    • (2010) Appl. Math. Optim. , vol.62 , pp. 27-46
    • Ueda, K.1    Yamashita, N.2
  • 14
    • 78049363989 scopus 로고    scopus 로고
    • A regularized Newton method without line search for unconstrained optimization
    • Technical Report 2009-007, Department of Applied Mathematics and Physics, Graduate School of Informatics, Kyoto University
    • Ueda, K., Yamashita, N.: A regularized Newton method without line search for unconstrained optimization. Technical Report 2009-007, Department of Applied Mathematics and Physics, Graduate School of Informatics, Kyoto University (2009).
    • (2009)
    • Ueda, K.1    Yamashita, N.2
  • 15
    • 33947611624 scopus 로고    scopus 로고
    • Modified Gauss-Newton scheme with worst-case guarantees for global performance
    • Nesterov, Yu.: Modified Gauss-Newton scheme with worst-case guarantees for global performance. Optim. Methods Softw. 22, 469-483 (2007).
    • (2007) Optim. Methods Softw. , vol.22 , pp. 469-483
    • Nesterov, Y.1
  • 16
    • 0011662308 scopus 로고    scopus 로고
    • On the rate of convergence of the Levenberg-Marquardt method
    • Yamashita, N., Fukushima, M.: On the rate of convergence of the Levenberg-Marquardt method. Comput., Suppl. (Wien) 15, 227-238 (2001).
    • (2001) Comput., Suppl. (Wien) , vol.15 , pp. 227-238
    • Yamashita, N.1    Fukushima, M.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.