메뉴 건너뛰기




Volumn 108, Issue 5, 2012, Pages 804-811

Monocyte function and trafficking in cardiovascular disease

Author keywords

Atherosclerosis; Cardiovascular disease; Monocytes; Myocardial infarction

Indexed keywords

CD14 ANTIGEN; CD16 ANTIGEN; CHEMOKINE RECEPTOR CCR2; CHEMOKINE RECEPTOR CX3CR1; FLUORODEOXYGLUCOSE F 18; PLACENTAL GROWTH FACTOR; VASCULOTROPIN; VASCULOTROPIN RECEPTOR 1;

EID: 84869992773     PISSN: 03406245     EISSN: None     Source Type: Journal    
DOI: 10.1160/TH12-04-0276     Document Type: Article
Times cited : (21)

References (97)
  • 1
    • 33645902493 scopus 로고    scopus 로고
    • Monocyte emigration from bone marrow during bacterial infection requires signals mediated by chemokine receptor CCR2
    • Serbina NV and Pamer EG. Monocyte emigration from bone marrow during bacterial infection requires signals mediated by chemokine receptor CCR2. Nat Immunol 2006; 7: 311-317.
    • (2006) Nat Immunol , vol.7 , pp. 311-317
    • Serbina, N.V.1    Pamer, E.G.2
  • 2
    • 34147164049 scopus 로고    scopus 로고
    • Critical roles for CCR2 and MCP-3 in monocyte mobilization from bone marrow and recruitment to inflammatory sites
    • Tsou CL, Peters W, Si Y, et al. Critical roles for CCR2 and MCP-3 in monocyte mobili zati o n from b on e marrow and recruitment to inflammatory sites. J Clin In -vest 2007; 117: 902-909.
    • (2007) J Clin In -vest , vol.117 , pp. 902-909
    • Tsou, C.L.1    Peters, W.2    Si, Y.3
  • 3
    • 34547728312 scopus 로고    scopus 로고
    • Monitoring of blood vessels and tissues by a population of monocytes with patrolling behavior
    • Auffray C, Fogg D, Garfa M, et al. Monitoring of blood vessels and tissues by a population of monocytes with patrolling behavior. Science 2007; 317: 666-670.
    • (2007) Science , vol.317 , pp. 666-670
    • Auffray, C.1    Fogg, D.2    Garfa, M.3
  • 4
    • 63449110370 scopus 로고    scopus 로고
    • CX3CR1+ CD115+ CD135+ common macrophage/DC precursors and the role of CX3CR1 in their response to inflammation
    • Auffray C, Fogg DK, Narni-Mancinelli E, et al. CX3CR1+ CD115+ CD135+ common macrophage/DC precursors and the role of CX3CR1 in their response to inflammation. J Exp Med 2009; 206: 595-606.
    • (2009) J Exp Med , vol.206 , pp. 595-606
    • Auffray, C.1    Fogg, D.K.2    Narni-Mancinelli, E.3
  • 5
    • 67649404131 scopus 로고    scopus 로고
    • Blood monocytes: Development, heterogeneity, and relationship with dendritic cells
    • Auffray C, Sieweke MH, Geissmann F. Blood monocytes: development, heterogeneity, and relationship with dendritic cells. Annu Rev Immunol 2009; 27: 669-692.
    • (2009) Annu Rev Immunol , vol.27 , pp. 669-692
    • Auffray, C.1    Sieweke, M.H.2    Geissmann, F.3
  • 6
    • 0014325451 scopus 로고
    • The origin and kinetics of mononuclear phagocytes
    • van Furth R, Cohn ZA. The origin and kinetics of mononuclear phagocytes. J Exp Med 1968; 128: 415-435.
    • (1968) J Exp Med , vol.128 , pp. 415-435
    • van Furth, R.1    Cohn, Z.A.2
  • 7
    • 68149119072 scopus 로고    scopus 로고
    • Identification of splenic reservoir monocytes and their deployment to inflammatory sites
    • Swirski FK, Nahrendorf M, Etzrodt M, et al. Identification of splenic reservoir monocytes and their deployment to inflammatory sites. Science 2009; 325: 612-616.
    • (2009) Science , vol.325 , pp. 612-616
    • Swirski, F.K.1    Nahrendorf, M.2    Etzrodt, M.3
  • 8
    • 34249085336 scopus 로고    scopus 로고
    • Origin of dendritic cells in peripheral lymphoid organs of mice
    • Liu K, Waskow C, Liu X, et al. Origin of dendritic cells in peripheral lymphoid organs of mice. Nat Immunol 2007; 8: 578-583.
    • (2007) Nat Immunol , vol.8 , pp. 578-583
    • Liu, K.1    Waskow, C.2    Liu, X.3
  • 9
    • 80355146868 scopus 로고    scopus 로고
    • Monocyte recruitment during infection and inflammation
    • Shi C, Pamer EG. Monocyte recruitment during infection and inflammation. Nat Rev Immunol 2011; 11: 762-774.
    • (2011) Nat Rev Immunol , vol.11 , pp. 762-774
    • Shi, C.1    Pamer, E.G.2
  • 10
    • 77958185103 scopus 로고    scopus 로고
    • Nomenclature of monocytes and dendritic cells in blood
    • Ziegler-Heitbrock L, Ancuta P, Crowe S, et al. Nomenclature of monocytes and dendritic cells in blood. Blood 2010; 116: e74-80.
    • (2010) Blood , vol.116
    • Ziegler-Heitbrock, L.1    Ancuta, P.2    Crowe, S.3
  • 11
    • 84861726306 scopus 로고    scopus 로고
    • Monocyte subpopulations and cardiovascular risk in chronic kidney disease
    • Heine GH, Ortiz A, Massy ZA, et al. Monocyte subpopulations and cardiovascular risk in chronic kidney disease. Nat Rev Nephrol 2012; 8: 362-369.
    • (2012) Nat Rev Nephrol , vol.8 , pp. 362-369
    • Heine, G.H.1    Ortiz, A.2    Massy, Z.A.3
  • 12
    • 33847789122 scopus 로고    scopus 로고
    • The CD14+ CD16+ blood monocytes: Their role in infection and inflammation
    • Ziegler-Heitbrock L. The CD14+ CD16+ blood monocytes: their role in infection and inflammation. J Leukoc Biol 2007; 81: 584-592.
    • (2007) J Leukoc Biol , vol.81 , pp. 584-592
    • Ziegler-Heitbrock, L.1
  • 13
    • 70349563347 scopus 로고    scopus 로고
    • Transcriptional profiling reveals developmental relationship and distinct biological functions of CD16+ and CD16- monocyte subsets
    • Ancuta P, Liu KY, Misra V, et al. Transcriptional profiling reveals developmental relationship and distinct biological functions of CD16+ and CD16- monocyte subsets. BMC Genomics 2009; 10: 403.
    • (2009) BMC Genomics , vol.10 , pp. 403
    • Ancuta, P.1    Liu, K.Y.2    Misra, V.3
  • 14
    • 0037867044 scopus 로고    scopus 로고
    • Fractalkine preferentially mediates arrest and migration of CD16+ monocytes
    • Ancuta P, Rao R, Moses A, et al. Fractalkine preferentially mediates arrest and migration of CD16+ monocytes. J Exp Med 2003; 197: 1701-1707.
    • (2003) J Exp Med , vol.197 , pp. 1701-1707
    • Ancuta, P.1    Rao, R.2    Moses, A.3
  • 15
    • 0033844802 scopus 로고    scopus 로고
    • Differential chemokine receptor expression and function in human monocyte subpopulations
    • Weber C, Belge KU, von Hundelshausen P, et al. Differential chemokine receptor expression and function in human monocyte subpopulations. J Leukoc Biol 200; 67: 699-704.
    • J Leukoc Biol 200 , vol.67 , pp. 699-704
    • Weber, C.1    Belge, K.U.2    von Hundelshausen, P.3
  • 16
    • 0036533648 scopus 로고    scopus 로고
    • The proinflammatory CD14+CD16+DR++ monocytes are a major source of TNF
    • Belge KU, Dayyani F, Horelt A, et al. The proinflammatory CD14+CD16+DR++ monocytes are a major source of TNF. J Immunol 2002; 168: 3536-3542.
    • (2002) J Immunol , vol.168 , pp. 3536-3542
    • Belge, K.U.1    Dayyani, F.2    Horelt, A.3
  • 17
    • 79953049019 scopus 로고    scopus 로고
    • VEGF-A-induced chemotaxis of CD16+ monocytes is decreased secondary to lower VEGFR-1 expression
    • Czepluch FS, Olieslagers S, van Hulten R, et al. VEGF-A-induced chemotaxis of CD16+ monocytes is decreased secondary to lower VEGFR-1 expression. Atherosclerosis 2011; 215: 331-338.
    • (2011) Atherosclerosis , vol.215 , pp. 331-338
    • Czepluch, F.S.1    Olieslagers, S.2    van Hulten, R.3
  • 18
    • 4143145320 scopus 로고    scopus 로고
    • Antitumor response of CD14+/CD16+ monocyte subpopulation
    • Szaflarska A, Baj-Krzyworzeka M, Siedlar M, et al. Antitumor response of CD14+/CD16+ monocyte subpopulation. Exp Hematol 2004; 32: 748-755.
    • (2004) Exp Hematol , vol.32 , pp. 748-755
    • Szaflarska, A.1    Baj-Krzyworzeka, M.2    Siedlar, M.3
  • 19
    • 68549135403 scopus 로고    scopus 로고
    • Identification of novel functional differences in monocyte subsets using proteomic and transcriptomic methods
    • Zhao C, Zhang H, Wong WC, et al. Identification of novel functional differences in monocyte subsets using proteomic and transcriptomic methods. J Proteome Res 2009; 8: 4028-4038.
    • (2009) J Proteome Res , vol.8 , pp. 4028-4038
    • Zhao, C.1    Zhang, H.2    Wong, W.C.3
  • 20
    • 77957020717 scopus 로고    scopus 로고
    • Human CD14dim monocytes patrol and sense nucleic acids and viruses via TLR7 and TLR8 receptors
    • Cros J, Cagnard N, Woollard K, et al. Human CD14dim monocytes patrol and sense nucleic acids and viruses via TLR7 and TLR8 receptors. Immunity 2010; 33: 375-386.
    • (2010) Immunity , vol.33 , pp. 375-386
    • Cros, J.1    Cagnard, N.2    Woollard, K.3
  • 21
    • 80053181958 scopus 로고    scopus 로고
    • SuperSAGE evidence for CD14++CD16+ monocytes as a third monocyte subset
    • Zawada AM, Rogacev KS, Rotter B, et al. SuperSAGE evidence for CD14++CD16+ monocytes as a third monocyte subset. Blood 2011; 118: e50-61.
    • (2011) Blood , vol.118
    • Zawada, A.M.1    Rogacev, K.S.2    Rotter, B.3
  • 22
    • 59649092443 scopus 로고    scopus 로고
    • CX3CR1 is required for monocyte homeostasis and atherogenesis by promoting cell survival
    • Landsman L, Bar-On L, Zernecke A, et al. CX3CR1 is required for monocyte homeostasis and atherogenesis by promoting cell survival. Blood 2009; 113: 963-972.
    • (2009) Blood , vol.113 , pp. 963-972
    • Landsman, L.1    Bar-On, L.2    Zernecke, A.3
  • 23
    • 20944442160 scopus 로고    scopus 로고
    • TLR activation triggers the rapid differentiation of monocytes into macrophages and dendritic cells
    • Krutzik SR, Tan B, Li H, et al. TLR activation triggers the rapid differentiation of monocytes into macrophages and dendritic cells. Nat Med 2005; 11: 653-660.
    • (2005) Nat Med , vol.11 , pp. 653-660
    • Krutzik, S.R.1    Tan, B.2    Li, H.3
  • 24
    • 0037135659 scopus 로고    scopus 로고
    • The CD16(+) (Fcgamma-R3(+)) subset of human monocytes preferentially becomes migratory dendritic cells in a model tissue setting
    • Randolph GJ, Sanchez-Schmitz G, Liebman RM et al. The CD16(+) (Fcgamma-R3(+)) subset of human monocytes preferentially becomes migratory dendritic cells in a model tissue setting. J Exp Med 2002; 196: 517-527.
    • (2002) J Exp Med , vol.196 , pp. 517-527
    • Randolph, G.J.1    Sanchez-Schmitz, G.2    Liebman, R.M.3
  • 25
    • 27144466756 scopus 로고    scopus 로고
    • Only a specific subset of human peripheral-blood monocytes has endothelial-like functional capacity
    • Elsheikh E, Uzunel M, He Z, et al. Only a specific subset of human peripheral-blood monocytes has endothelial-like functional capacity. Blood 2005; 106: 2347-2355.
    • (2005) Blood , vol.106 , pp. 2347-2355
    • Elsheikh, E.1    Uzunel, M.2    He, Z.3
  • 26
    • 77950588300 scopus 로고    scopus 로고
    • Elusive identities and overlapping pheno-types of proangiogenic myeloid cells in tumors
    • Coffelt SB, Lewis CE, Naldini L, et al. Elusive identities and overlapping pheno-types of proangiogenic myeloid cells in tumors. Am J Pathol 2010; 176: 1564-1576.
    • (2010) Am J Pathol , vol.176 , pp. 1564-1576
    • Coffelt, S.B.1    Lewis, C.E.2    Naldini, L.3
  • 27
    • 0037963473 scopus 로고    scopus 로고
    • Blood monocytes consist of two principal subsets with distinct migratory properties
    • Geissmann F, Jung S, Littman DR. Blood monocytes consist of two principal subsets with distinct migratory properties. Immunity 2003; 19: 71-82.
    • (2003) Immunity , vol.19 , pp. 71-82
    • Geissmann, F.1    Jung, S.2    Littman, D.R.3
  • 28
    • 0030691025 scopus 로고    scopus 로고
    • Severe reduction in leukocyte adhesion and monocyte extravasation in mice deficient in CC chemokine receptor 2
    • Kuziel WA, Morgan SJ, Dawson TC, et al. Severe reduction in leukocyte adhesion and monocyte extravasation in mice deficient in CC chemokine receptor 2. Proc Natl Acad Sci USA 1997; 94: 12053-12058.
    • (1997) Proc Natl Acad Sci USA , vol.94 , pp. 12053-12058
    • Kuziel, W.A.1    Morgan, S.J.2    Dawson, T.C.3
  • 29
    • 1542327620 scopus 로고    scopus 로고
    • Expression of chemokine receptors CCR1 and CCR5 reflects differential activation of mononuclear phagocytes in pattern II and pattern 3 multiple sclerosis lesions
    • Mahad DJ, Trebst C, Kivisakk P, et al. Expression of chemokine receptors CCR1 and CCR5 reflects differential activation of mononuclear phagocytes in pattern II and pattern 3 multiple sclerosis lesions. J Neuropathol Exp Neurol 2004; 63: 262-273.
    • (2004) J Neuropathol Exp Neurol , vol.63 , pp. 262-273
    • Mahad, D.J.1    Trebst, C.2    Kivisakk, P.3
  • 30
    • 33845989083 scopus 로고    scopus 로고
    • Monocyte subsets differentially employ CCR2, CCR5, and CX3CR1 to accumulate within atherosclerotic plaques
    • Tacke F, Alvarez D, Kaplan TJ, et al. Monocyte subsets differentially employ CCR2, CCR5, and CX3CR1 to accumulate within atherosclerotic plaques. J Clin Invest 2007; 117: 185-194.
    • (2007) J Clin Invest , vol.117 , pp. 185-194
    • Tacke, F.1    Alvarez, D.2    Kaplan, T.J.3
  • 31
    • 28544446111 scopus 로고    scopus 로고
    • Monocyte and macrophage heterogeneity
    • Gordon S and Taylor PR. Monocyte and macrophage heterogeneity. Nat Rev Immunol 2005; 5: 953-964.
    • (2005) Nat Rev Immunol , vol.5 , pp. 953-964
    • Gordon, S.1    Taylor, P.R.2
  • 32
    • 9244240285 scopus 로고    scopus 로고
    • Role of CCR8 and other chemokine pathways in the migration of monocyte-derived dendritic cells to lymph nodes
    • Qu C, Edwards EW, Tacke F, et al. Role of CCR8 and other chemokine pathways in the migration of monocyte-derived dendritic cells to lymph nodes. J Exp Med 2004; 200: 1231-1241.
    • (2004) J Exp Med , vol.200 , pp. 1231-1241
    • Qu, C.1    Edwards, E.W.2    Tacke, F.3
  • 33
    • 1642406217 scopus 로고    scopus 로고
    • Subpopulations of mouse blood monocytes differ in maturation stage and inflammatory response
    • Sunderkotter C, Nikolic T, Dillon MJ, et al. Subpopulations of mouse blood monocytes differ in maturation stage and inflammatory response. J Immunol 2004; 172: 4410-4417.
    • (2004) J Immunol , vol.172 , pp. 4410-4417
    • Sunderkotter, C.1    Nikolic, T.2    Dillon, M.J.3
  • 34
    • 36549033197 scopus 로고    scopus 로고
    • The healing myocardium sequentially mobilizes two monocyte subsets with divergent and complementary functions
    • Nahrendorf M, Swirski FK, Aikawa E, et al. The healing myocardium sequentially mobilizes two monocyte subsets with divergent and complementary functions. J Exp Med 2007; 204: 3037-3047.
    • (2007) J Exp Med , vol.204 , pp. 3037-3047
    • Nahrendorf, M.1    Swirski, F.K.2    Aikawa, E.3
  • 35
    • 0034919232 scopus 로고    scopus 로고
    • The emerging role of the bone marrow-derived stem cells in (therapeutic) angiogenesis
    • Carmeliet P and Luttun A. The emerging role of the bone marrow-derived stem cells in (therapeutic) angiogenesis. Thromb Haemost 2001; 86: 289-297.
    • (2001) Thromb Haemost , vol.86 , pp. 289-297
    • Carmeliet, P.1    Luttun, A.2
  • 36
    • 0036889885 scopus 로고    scopus 로고
    • Blood monocyte concentration is critical for enhancement of collateral artery growth
    • Heil M, Ziegelhoeffer T, Pipp F, et al. Blood monocyte concentration is critical for enhancement of collateral artery growth. Am J Physiol Heart Circ Physiol 2002; 283: H2411-H2419.
    • (2002) Am J Physiol Heart Circ Physiol , vol.283
    • Heil, M.1    Ziegelhoeffer, T.2    Pipp, F.3
  • 37
    • 0035895708 scopus 로고    scopus 로고
    • Impaired collateral vessel development in diabetes: Potential cellular mechanisms and therapeutic implications
    • Waltenberger J. Impaired collateral vessel development in diabetes: potential cellular mechanisms and therapeutic implications. Cardiovasc Res 2001; 49: 554-560.
    • (2001) Cardiovasc Res , vol.49 , pp. 554-560
    • Waltenberger, J.1
  • 38
    • 2242423544 scopus 로고    scopus 로고
    • Neovascularization in the human heart is associated with expression of VEGF-A and its receptors Flt-1 (VEGFR-1) and KDR (VEGFR-2). Results from cardiomyopexy in ischemic cardiomyopathy
    • Waltenberger J, Kranz A, Beyer M. Neovascularization in the human heart is associated with expression of VEGF-A and its receptors Flt-1 (VEGFR-1) and KDR (VEGFR-2). Results from cardiomyopexy in ischemic cardiomyopathy. Angio-genesis 1999; 3: 345-351.
    • (1999) Angio-genesis , vol.3 , pp. 345-351
    • Waltenberger, J.1    Kranz, A.2    Beyer, M.3
  • 39
    • 0034636835 scopus 로고    scopus 로고
    • Vascular endothelial growth factor-A-induced chemotaxis of monocytes is attenuated in patients with diabetes mellitus: A potential predictor for the individual capacity to develop collaterals
    • Waltenberger J, Lange J, Kranz A. Vascular endothelial growth factor-A-induced chemotaxis of monocytes is attenuated in patients with diabetes mellitus: A potential predictor for the individual capacity to develop collaterals. Circulation 2000; 102: 185-190.
    • (2000) Circulation , vol.102 , pp. 185-190
    • Waltenberger, J.1    Lange, J.2    Kranz, A.3
  • 40
    • 0037703184 scopus 로고    scopus 로고
    • Role of PlGF in the intra- and in-termolecular cross talk between the VEGF receptors Flt1 and Flk1
    • Autiero M, Waltenberger J, Communi D, et al. Role of PlGF in the intra- and in-termolecular cross talk between the VEGF receptors Flt1 and Flk1. Nat Med 2003; 9: 936-943.
    • (2003) Nat Med , vol.9 , pp. 936-943
    • Autiero, M.1    Waltenberger, J.2    Communi, D.3
  • 41
    • 70450174366 scopus 로고    scopus 로고
    • VEGF resistance as a molecular basis to explain the angiogenesis paradox in diabetes mellitus
    • Waltenberger J. VEGF resistance as a molecular basis to explain the angiogenesis paradox in diabetes mellitus. Biochem Soc Trans 2009; 37: 1167-1170.
    • (2009) Biochem Soc Trans , vol.37 , pp. 1167-1170
    • Waltenberger, J.1
  • 42
    • 10844238910 scopus 로고    scopus 로고
    • Differential roles of vascular endothelial growth factor receptors 1 and 2 in dendritic cell differentiation
    • Dikov MM, Ohm JE, Ray N, et al. Differential roles of vascular endothelial growth factor receptors 1 and 2 in dendritic cell differentiation. J Immunol 2005; 174: 215-222.
    • (2005) J Immunol , vol.174 , pp. 215-222
    • Dikov, M.M.1    Ohm, J.E.2    Ray, N.3
  • 43
    • 35548982639 scopus 로고    scopus 로고
    • Anti-PlGF inhibits growth of VEGF(R)-in-hibitor-resistant tumors without affecting healthy vessels
    • Fischer C, Jonckx B, Mazzone M, et al. Anti-PlGF inhibits growth of VEGF(R)-in-hibitor-resistant tumors without affecting healthy vessels. Cell 2007; 131: 463-475.
    • (2007) Cell , vol.131 , pp. 463-475
    • Fischer, C.1    Jonckx, B.2    Mazzone, M.3
  • 44
    • 0035003384 scopus 로고    scopus 로고
    • Structure and function of VEGF/VEGF-receptor system involved in angiogenesis
    • Shibuya M. Structure and function of VEGF/VEGF-receptor system involved in angiogenesis. Cell Struct Funct 2001; 26: 25-35.
    • (2001) Cell Struct Funct , vol.26 , pp. 25-35
    • Shibuya, M.1
  • 45
    • 51649099800 scopus 로고    scopus 로고
    • Assessing identity, phenotype, and fate of en-dothelial progenitor cells
    • Hirschi KK, Ingram DA, Yoder MC. Assessing identity, phenotype, and fate of en-dothelial progenitor cells. Arterioscler Thromb Vasc Biol 2008; 28: 1584-1595.
    • (2008) Arterioscler Thromb Vasc Biol , vol.28 , pp. 1584-1595
    • Hirschi, K.K.1    Ingram, D.A.2    Yoder, M.C.3
  • 46
    • 74949106854 scopus 로고    scopus 로고
    • Soluble CD40 ligand impairs the function of peripheral blood angiogenic outgrowth cells and increases neointimal formation after arterial injury
    • Hristov M, Gumbel D, Lutgens E, et al. Soluble CD40 ligand impairs the function of peripheral blood angiogenic outgrowth cells and increases neointimal formation after arterial injury. Circulation 2010; 121: 315-324.
    • (2010) Circulation , vol.121 , pp. 315-324
    • Hristov, M.1    Gumbel, D.2    Lutgens, E.3
  • 47
    • 0037418213 scopus 로고    scopus 로고
    • Peripheral blood "endothelial progenitor cells"are derived from monocyte/macrophages and secrete angiogenic growth factors
    • Rehman J, Li J, Orschell CM, March KL. Peripheral blood "endothelial progenitor cells"are derived from monocyte/macrophages and secrete angiogenic growth factors. Circulation 2003; 107: 1164-1169.
    • (2003) Circulation , vol.107 , pp. 1164-1169
    • Rehman, J.1    Li, J.2    Orschell, C.M.3    March, K.L.4
  • 48
    • 38549130968 scopus 로고    scopus 로고
    • The molecular basis of VEGFR-1 signal transduction pathways in primary human monocytes
    • Tchaikovski V, Fellbrich G, Waltenberger J. The molecular basis of VEGFR-1 signal transduction pathways in primary human monocytes. Arterioscler Thromb Vasc Biol 2008; 28: 322-328.
    • (2008) Arterioscler Thromb Vasc Biol , vol.28 , pp. 322-328
    • Tchaikovski, V.1    Fellbrich, G.2    Waltenberger, J.3
  • 49
    • 0037423858 scopus 로고    scopus 로고
    • VEGFR-1-selective VEGF homologue PlGF is arteriogenic: Evidence for a monocyte-mediated mechanism
    • Pipp F, Heil M, Issbrucker K, et al. VEGFR-1-selective VEGF homologue PlGF is arteriogenic: evidence for a monocyte-mediated mechanism. Circ Res 2003: 92: 378-385.
    • (2003) Circ Res , vol.92 , pp. 378-385
    • Pipp, F.1    Heil, M.2    Issbrucker, K.3
  • 50
    • 0037331157 scopus 로고    scopus 로고
    • Bone marrow transplantation abolishes inhibition of arteriogenesis in placenta growth factor (PlGF) -/- mice
    • Scholz D, Elsaesser H, Sauer A, et al. Bone marrow transplantation abolishes inhibition of arteriogenesis in placenta growth factor (PlGF) -/- mice. J Mol Cell Cardiol 2003; 35: 177-184.
    • (2003) J Mol Cell Cardiol , vol.35 , pp. 177-184
    • Scholz, D.1    Elsaesser, H.2    Sauer, A.3
  • 51
    • 75949103151 scopus 로고    scopus 로고
    • VEGFR-1 signaling regulates the homing of bone marrow-derived cells in a mouse stroke model
    • Beck H, Raab S, Copanaki E, et al. VEGFR-1 signaling regulates the homing of bone marrow-derived cells in a mouse stroke model. J Neuropathol Exp Neurol 2010; 69: 168-175.
    • (2010) J Neuropathol Exp Neurol , vol.69 , pp. 168-175
    • Beck, H.1    Raab, S.2    Copanaki, E.3
  • 52
    • 43049125831 scopus 로고    scopus 로고
    • Inhibition of choroidal neovascularization by blocking vascular endothelial growth factor receptor tyrosine kinase
    • Kami J, Muranaka K, Yanagi Y, et al. Inhibition of choroidal neovascularization by blocking vascular endothelial growth factor receptor tyrosine kinase. Jpn J Oph-thalmol 2008; 52: 91-98.
    • (2008) Jpn J Oph-thalmol , vol.52 , pp. 91-98
    • Kami, J.1    Muranaka, K.2    Yanagi, Y.3
  • 53
    • 33748703844 scopus 로고    scopus 로고
    • Signaling of vascular endothelial growth factor receptor-1 tyrosine kinase promotes rheumatoid arthritis through activation of monocytes/macrophages
    • Murakami M, Iwai S, Hiratsuka S, et al. Signaling of vascular endothelial growth factor receptor-1 tyrosine kinase promotes rheumatoid arthritis through activation of monocytes/macrophages. Blood 2006; 108: 1849-1856.
    • (2006) Blood , vol.108 , pp. 1849-1856
    • Murakami, M.1    Iwai, S.2    Hiratsuka, S.3
  • 54
    • 20844461824 scopus 로고    scopus 로고
    • Essential role of vascular endothelial growth factor and Flt-1 signals in neointimal formation after periadventitial injury
    • Zhao Q, Egashira K, Hiasa K, et al. Essential role of vascular endothelial growth factor and Flt-1 signals in neointimal formation after periadventitial injury. Arte-rioscler Thromb Vasc Biol 2004; 24: 2284-2289.
    • (2004) Arte-rioscler Thromb Vasc Biol , vol.24 , pp. 2284-2289
    • Zhao, Q.1    Egashira, K.2    Hiasa, K.3
  • 55
    • 38349154239 scopus 로고    scopus 로고
    • Enhanced functional response of CD133+ circulating progenitor cells in patients early after acute myocardial infarction
    • Voo S, Eggermann J, Dunaeva M, et al. Enhanced functional response of CD133+ circulating progenitor cells in patients early after acute myocardial infarction. Eur Heart J 2008; 29: 241-250.
    • (2008) Eur Heart J , vol.29 , pp. 241-250
    • Voo, S.1    Eggermann, J.2    Dunaeva, M.3
  • 56
    • 70350462045 scopus 로고    scopus 로고
    • The inflammatory response as a target to reduce myocardial ischaemia and reperfusion injury
    • Steffens S, Montecucco F, Mach F. The inflammatory response as a target to reduce myocardial ischaemia and reperfusion injury. Thromb Haemost 2009; 102: 240-247.
    • (2009) Thromb Haemost , vol.102 , pp. 240-247
    • Steffens, S.1    Montecucco, F.2    Mach, F.3
  • 57
    • 34548746306 scopus 로고    scopus 로고
    • Myocardial reperfusion injury
    • Yellon DM, Hausenloy DJ. Myocardial reperfusion injury. N Engl J Med 2007; 357: 1121-1135.
    • (2007) N Engl J Med , vol.357 , pp. 1121-1135
    • Yellon, D.M.1    Hausenloy, D.J.2
  • 58
    • 33845970192 scopus 로고    scopus 로고
    • Ly-6Chi monocytes dominate hypercholeste-rolemia-associated monocytosis and give rise to macrophages in atheromata
    • Swirski FK, Libby P, Aikawa E, et al. Ly-6Chi monocytes dominate hypercholeste-rolemia-associated monocytosis and give rise to macrophages in atheromata. J Clin Invest 2007; 117: 195-205.
    • (2007) J Clin Invest , vol.117 , pp. 195-205
    • Swirski, F.K.1    Libby, P.2    Aikawa, E.3
  • 59
    • 70349560390 scopus 로고    scopus 로고
    • Heterogeneous in vivo behavior of monocyte subsets in atherosclerosis
    • Swirski FK, Weissleder R, Pittet MJ. Heterogeneous in vivo behavior of monocyte subsets in atherosclerosis. Arterioscler Thromb Vasc Biol 2009; 29: 1424-1432.
    • (2009) Arterioscler Thromb Vasc Biol , vol.29 , pp. 1424-1432
    • Swirski, F.K.1    Weissleder, R.2    Pittet, M.J.3
  • 60
    • 67649359508 scopus 로고    scopus 로고
    • Impact of heterogeneity of human peripheral blood monocyte subsets on myocardial salvage in patients with primary acute myocardial infarction
    • Tsujioka H, Imanishi T, Ikejima H, et al. Impact of heterogeneity of human peripheral blood monocyte subsets on myocardial salvage in patients with primary acute myocardial infarction. J Am Coll Cardiol 2009; 54: 130-138.
    • (2009) J Am Coll Cardiol , vol.54 , pp. 130-138
    • Tsujioka, H.1    Imanishi, T.2    Ikejima, H.3
  • 61
    • 77953490087 scopus 로고    scopus 로고
    • Post-reperfusion enhancement of CD14(+)CD16(-) monocytes and microvascular obstruction in ST-segment elevation acute myocardial infarction
    • Tsujioka H, Imanishi T, Ikejima H, et al. Post-reperfusion enhancement of CD14(+)CD16(-) monocytes and microvascular obstruction in ST-segment elevation acute myocardial infarction. Circ J 2010; 74: 1175-1182.
    • (2010) Circ J , vol.74 , pp. 1175-1182
    • Tsujioka, H.1    Imanishi, T.2    Ikejima, H.3
  • 62
    • 77955461032 scopus 로고    scopus 로고
    • Circulating monocyte subsets and cardiovascular risk factors in coronary artery disease
    • Hristov M, Leyendecker T, Schuhmann C, et al. Circulating monocyte subsets and cardiovascular risk factors in coronary artery disease. Thromb Haemost 2010; 104: 412-414.
    • (2010) Thromb Haemost , vol.104 , pp. 412-414
    • Hristov, M.1    Leyendecker, T.2    Schuhmann, C.3
  • 63
    • 80155193159 scopus 로고    scopus 로고
    • Differential role of monocyte subsets in atherosclerosis
    • Hristov M, Weber C. Differential role of monocyte subsets in atherosclerosis. Thromb Haemost 2011; 106: 757-762.
    • (2011) Thromb Haemost , vol.106 , pp. 757-762
    • Hristov, M.1    Weber, C.2
  • 65
    • 84863115989 scopus 로고    scopus 로고
    • Rapid monocyte kinetics in acute myocardial infarction are sustained by extramedullary monocytopoiesis
    • Leuschner F, Rauch PJ, Ueno T, et al. Rapid monocyte kinetics in acute myocardial infarction are sustained by extramedullary monocytopoiesis. J Exp Med 2012; 209: 123-137.
    • (2012) J Exp Med , vol.209 , pp. 123-137
    • Leuschner, F.1    Rauch, P.J.2    Ueno, T.3
  • 66
    • 0031774870 scopus 로고    scopus 로고
    • The interface of atherosclerosis and thrombosis: Basic mechanisms
    • Libby P. The interface of atherosclerosis and thrombosis: basic mechanisms. Vasc Med 1998; 3: 225-229.
    • (1998) Vasc Med , vol.3 , pp. 225-229
    • Libby, P.1
  • 67
    • 0034116663 scopus 로고    scopus 로고
    • Changing concepts of atherogenesis
    • Libby P. Changing concepts of atherogenesis. J Intern Med 2000; 247: 349-358.
    • (2000) J Intern Med , vol.247 , pp. 349-358
    • Libby, P.1
  • 68
    • 79956319051 scopus 로고    scopus 로고
    • Progress and challenges in translating the biology of atherosclerosis
    • Libby P, Ridker PM, Hansson GK. Progress and challenges in translating the biology of atherosclerosis. Nature 2011; 473: 317-325.
    • (2011) Nature , vol.473 , pp. 317-325
    • Libby, P.1    Ridker, P.M.2    Hansson, G.K.3
  • 69
    • 0042860453 scopus 로고
    • The role of endothelial injury and platelet and macrophage interactions in atherosclerosis
    • Ross R, Faggiotto A, Bowen-Pope D et al. The role of endothelial injury and platelet and macrophage interactions in atherosclerosis. Circulation 1984; 70:3 77-82.
    • (1984) Circulation , vol.70 , Issue.3 , pp. 77-82
    • Ross, R.1    Faggiotto, A.2    Bowen-Pope, D.3
  • 70
    • 0030969425 scopus 로고    scopus 로고
    • Role of macrophage colony-stimulating factor in atherosclerosis: Studies of osteopetrotic mice
    • Qiao JH, Tripathi J, Mishra NK, et al. Role of macrophage colony-stimulating factor in atherosclerosis: studies of osteopetrotic mice. Am J Pathol 1997; 150: 1687-1699.
    • (1997) Am J Pathol , vol.150 , pp. 1687-1699
    • Qiao, J.H.1    Tripathi, J.2    Mishra, N.K.3
  • 71
    • 0032525907 scopus 로고    scopus 로고
    • Heterozygous osteopetrotic (op) mutation reduces atherosclerosis in LDL receptor- deficient mice
    • Rajavashisth T, Qiao JH, Tripathi S, et al. Heterozygous osteopetrotic (op) mutation reduces atherosclerosis in LDL receptor- deficient mice. J Clin Invest 1998; 101: 2702-2710.
    • (1998) J Clin Invest , vol.101 , pp. 2702-2710
    • Rajavashisth, T.1    Qiao, J.H.2    Tripathi, S.3
  • 72
    • 84856083908 scopus 로고    scopus 로고
    • Extramedullary hematopoiesis generates Ly-6C(high) monocytes that infiltrate atherosclerotic lesions
    • Robbins CS, Chudnovskiy A, Rauch PJ, et al. Extramedullary hematopoiesis generates Ly-6C(high) monocytes that infiltrate atherosclerotic lesions. Circulation 2012; 125: 364-374.
    • (2012) Circulation , vol.125 , pp. 364-374
    • Robbins, C.S.1    Chudnovskiy, A.2    Rauch, P.J.3
  • 73
    • 41649100060 scopus 로고    scopus 로고
    • Combined inhibition of CCL2, CX3CR1, and CCR5 abrogates Ly6C(hi) and Ly6C(lo) monocytosis and almost abolishes atherosclerosis in hypercholesterolemic mice
    • Combadiere C, Potteaux S, Rodero M, et al. Combined inhibition of CCL2, CX3CR1, and CCR5 abrogates Ly6C(hi) and Ly6C(lo) monocytosis and almost abolishes atherosclerosis in hypercholesterolemic mice. Circulation 2008; 117: 1649-1657.
    • (2008) Circulation , vol.117 , pp. 1649-1657
    • Combadiere, C.1    Potteaux, S.2    Rodero, M.3
  • 74
    • 85047687223 scopus 로고    scopus 로고
    • Decreased atherosclerosis in CX3CR1-/- mice reveals a role for fractalkine in atherogenesis
    • Lesnik P, Haskell CA, Charo IF. Decreased atherosclerosis in CX3CR1-/- mice reveals a role for fractalkine in atherogenesis. J Clin Invest 2003; 111: 333-340.
    • (2003) J Clin Invest , vol.111 , pp. 333-340
    • Lesnik, P.1    Haskell, C.A.2    Charo, I.F.3
  • 75
    • 41649107036 scopus 로고    scopus 로고
    • Fractalkine deficiency markedly reduces mac-rophage accumulation and atherosclerotic lesion formation in CCR2-/- mice: Evidence for independent chemokine functions in atherogenesis
    • Saederup N, Chan L, Lira SA et al. Fractalkine deficiency markedly reduces mac-rophage accumulation and atherosclerotic lesion formation in CCR2-/- mice: evidence for independent chemokine functions in atherogenesis. Circulation 2008; 117: 1642-1648.
    • (2008) Circulation , vol.117 , pp. 1642-1648
    • Saederup, N.1    Chan, L.2    Lira, S.A.3
  • 76
    • 80155200721 scopus 로고    scopus 로고
    • Thera peuticsi RNA silencingi n i n f la mmatory monocytes in mice
    • Leuschner F, Dutta P, Gorbatov R, et al. Thera peuticsi RNA silencingi n i n f la mmatory monocytes in mice. Nat Biotechnol 2011; 29: 1005-1010.
    • (2011) Nat Biotechnol , vol.29 , pp. 1005-1010
    • Leuschner, F.1    Dutta, P.2    Gorbatov, R.3    et al4
  • 77
    • 67651095601 scopus 로고    scopus 로고
    • Diabetes mellitus activates signal transduction pathways resulting in vascular endothelial growth factor resistance of human monocytes
    • Tchaikovski V, Olieslagers S, Bohmer FD, Waltenberger J. Diabetes mellitus activates signal transduction pathways resulting in vascular endothelial growth factor resistance of human monocytes. Circulation 2009; 120: 150-159.
    • (2009) Circulation , vol.120 , pp. 150-159
    • Tchaikovski, V.1    Olieslagers, S.2    Bohmer, F.D.3    Waltenberger, J.4
  • 78
    • 72449209673 scopus 로고    scopus 로고
    • Sonic hedgehog is a potent chemoattractant for human monocytes: Diabetes mellitus inhibits Sonic hedgehog-induced monocyte chemotaxis
    • Dunaeva M, Voo S, van Oosterhoud C, Waltenberger J. Sonic hedgehog is a potent chemoattractant for human monocytes: diabetes mellitus inhibits Sonic hedgehog-induced monocyte chemotaxis. Basic Res Cardiol 2010; 105: 61-71.
    • (2010) Basic Res Cardiol , vol.105 , pp. 61-71
    • Dunaeva, M.1    Voo, S.2    van Oosterhoud, C.3    Waltenberger, J.4
  • 79
    • 79960767466 scopus 로고    scopus 로고
    • TGF-β1/ALK5-induced monocyte migration involves PI3K and p38 pathways and is not negatively affected by diabetes mellitus
    • Olieslagers S, Pardali E, Tchaikovski V, et al. TGF-β1/ALK5-induced monocyte migration involves PI3K and p38 pathways and is not negatively affected by diabetes mellitus. Cardiovasc Res 2011; 91: 510-518.
    • (2011) Cardiovasc Res , vol.91 , pp. 510-518
    • Olieslagers, S.1    Pardali, E.2    Tchaikovski, V.3
  • 80
    • 33846143528 scopus 로고    scopus 로고
    • Hypercholesterolaemia impairs mono-cyte function in CAD patients
    • Czepluch FS, Bergler A, Waltenberger J. Hypercholesterolaemia impairs mono-cyte function in CAD patients. J Intern Med 2007; 261: 201-204.
    • (2007) J Intern Med , vol.261 , pp. 201-204
    • Czepluch, F.S.1    Bergler, A.2    Waltenberger, J.3
  • 81
    • 33847651710 scopus 로고    scopus 로고
    • Smoking-induced monocyte dysfunction is reversed by vitamin C supplementation in vivo
    • Stadler N, Eggermann J, Voo S, et al. Smoking-induced monocyte dysfunction is reversed by vitamin C supplementation in vivo. Arterioscler Thromb Vasc Biol 2007; 27: 120-126.
    • (2007) Arterioscler Thromb Vasc Biol , vol.27 , pp. 120-126
    • Stadler, N.1    Eggermann, J.2    Voo, S.3
  • 82
    • 84860842552 scopus 로고    scopus 로고
    • Elevated CD14++CD16- monocytes predict cardiovascular events
    • Berg KE, Ljungcrantz I, Andersson L, et al. Elevated CD14++CD16- monocytes predict cardiovascular events. Circ Cardiovasc Genet 2012; 5: 122-131.
    • (2012) Circ Cardiovasc Genet , vol.5 , pp. 122-131
    • Berg, K.E.1    Ljungcrantz, I.2    Andersson, L.3
  • 83
    • 39349086778 scopus 로고    scopus 로고
    • CD14(++)CD16+ monocytes but not total monocyte numbers predict cardiovascular events in dialysis patients
    • Heine GH, Ulrich C, Seibert E, et al. CD14(++)CD16+ monocytes but not total monocyte numbers predict cardiovascular events in dialysis patients. Kidney Int 2008; 73: 622-629.
    • (2008) Kidney Int , vol.73 , pp. 622-629
    • Heine, G.H.1    Ulrich, C.2    Seibert, E.3
  • 84
    • 78651344842 scopus 로고    scopus 로고
    • CD14++CD16+ monocytes and cardiovascular outcome in patients with chronic kidney disease
    • Rogacev KS, Seiler S, Zawada AM, et al. CD14++CD16+ monocytes and cardiovascular outcome in patients with chronic kidney disease. Eur Heart J 2011; 32: 84-92.
    • (2011) Eur Heart J , vol.32 , pp. 84-92
    • Rogacev, K.S.1    Seiler, S.2    Zawada, A.M.3
  • 85
    • 65549158746 scopus 로고    scopus 로고
    • Monocyte subtypes predict clinical course and prognosis in human stroke
    • Urra X, Villamor N, Amaro S, et al. Monocyte subtypes predict clinical course and prognosis in human stroke. J Cereb Blood Flow Metab 2009; 29: 994-1002.
    • (2009) J Cereb Blood Flow Metab , vol.29 , pp. 994-1002
    • Urra, X.1    Villamor, N.2    Amaro, S.3
  • 86
    • 77955382686 scopus 로고    scopus 로고
    • Molecular imaging of atherosclerosis: A progress report
    • Libby P, Nahrendorf M, Weissleder R. Molecular imaging of atherosclerosis: a progress report. Tex Heart Inst J 2010; 37: 324-327.
    • (2010) Tex Heart Inst J , vol.37 , pp. 324-327
    • Libby, P.1    Nahrendorf, M.2    Weissleder, R.3
  • 87
    • 62549093916 scopus 로고    scopus 로고
    • 18F labeled nanoparticles for in vivo PET-CT imaging
    • Devaraj NK, Keliher EJ, Thurber GM, et al. 18F labeled nanoparticles for in vivo PET-CT imaging. Bioconjug Chem 2009; 20: 397-401.
    • (2009) Bioconjug Chem , vol.20 , pp. 397-401
    • Devaraj, N.K.1    Keliher, E.J.2    Thurber, G.M.3
  • 88
    • 38349158417 scopus 로고    scopus 로고
    • Nanoparticle PET-CT imaging of macrophages in inflammatory atherosclerosis
    • Nahrendorf M, Zhang H, Hembrador S, et al. Nanoparticle PET-CT imaging of macrophages in inflammatory atherosclerosis. Circulation 2008; 117: 379-387.
    • (2008) Circulation , vol.117 , pp. 379-387
    • Nahrendorf, M.1    Zhang, H.2    Hembrador, S.3
  • 89
    • 65549128771 scopus 로고    scopus 로고
    • Macrophage-specific lipid-based nano-particles improve cardiac magnetic resonance detection and characterization of human atherosclerosis
    • Lipinski MJ, Frias JC, Amirbekian V, et al. Macrophage-specific lipid-based nano-particles improve cardiac magnetic resonance detection and characterization of human atherosclerosis. JACC Cardiovasc Imaging 2009; 2: 637-647.
    • (2009) JACC Cardiovasc Imaging , vol.2 , pp. 637-647
    • Lipinski, M.J.1    Frias, J.C.2    Amirbekian, V.3
  • 90
    • 41149109091 scopus 로고    scopus 로고
    • Activatable magnetic resonance imaging agent reports myeloperoxidase activity in healing infarcts and noninvas-ively detects the antiinflammatory effects of atorvastatin on ischemia-reperfusion injury
    • Nahrendorf M, Sosnovik D, Chen JW, et al. Activatable magnetic resonance imaging agent reports myeloperoxidase activity in healing infarcts and noninvas-ively detects the antiinflammatory effects of atorvastatin on ischemia-reperfusion injury. Circulation 2008; 117: 1153-1160.
    • (2008) Circulation , vol.117 , pp. 1153-1160
    • Nahrendorf, M.1    Sosnovik, D.2    Chen, J.W.3
  • 91
    • 33745960653 scopus 로고    scopus 로고
    • Identifying inflamed carotid plaques using in vivo USPIO-enhanced MR imaging to label plaque macro-phages
    • Trivedi RA, Mallawarachi C, JM UK-I, Graves MJ, et al. Identifying inflamed carotid plaques using in vivo USPIO-enhanced MR imaging to label plaque macro-phages. Arterioscler Thromb Vasc Biol 2006; 26: 1601-1606.
    • (2006) Arterioscler Thromb Vasc Biol , vol.26 , pp. 1601-1606
    • Trivedi, R.A.1    Mallawarachi, C.2    Jm, U.K-I.3    Graves, M.J.4
  • 92
    • 77952686489 scopus 로고    scopus 로고
    • Feasibility of FDG imaging of the coronary arteries: Comparison between acute coronary syndrome and stable angina
    • Rogers IS, Nasir K, Figueroa AL, et al. Feasibility of FDG imaging of the coronary arteries: comparison between acute coronary syndrome and stable angina. JACC Cardiovasc Imaging 2010; 3: 388-397.
    • (2010) JACC Cardiovasc Imaging , vol.3 , pp. 388-397
    • Rogers, I.S.1    Nasir, K.2    Figueroa, A.L.3
  • 93
    • 77952692199 scopus 로고    scopus 로고
    • Imaging atherosclerotic plaque inflammation by fluorodeoxyglucose with positron emission tomography: Ready for prime time?
    • Rudd JH, Narula J, Strauss HW, et al. Imaging atherosclerotic plaque inflammation by fluorodeoxyglucose with positron emission tomography: ready for prime time? J Am Coll Cardiol 2010; 55: 2527-2535.
    • (2010) J Am Coll Cardiol , vol.55 , pp. 2527-2535
    • Rudd, J.H.1    Narula, J.2    Strauss, H.W.3
  • 94
    • 63849216723 scopus 로고    scopus 로고
    • Imaging of inflamed and vulnerable plaque in coronary arteries with 18F-FDG PET/CT in patients with suppression of myocardial uptake using a low-carbohydrate, high-fat preparation
    • Wykrzykowska J, Lehman S, Williams G, et al. Imaging of inflamed and vulnerable plaque in coronary arteries with 18F-FDG PET/CT in patients with suppression of myocardial uptake using a low-carbohydrate, high-fat preparation. J Nucl Med 2009; 50: 563-568.
    • (2009) J Nucl Med , vol.50 , pp. 563-568
    • Wykrzykowska, J.1    Lehman, S.2    Williams, G.3
  • 95
    • 77953208563 scopus 로고    scopus 로고
    • In vivo labelling of resting mono-cytes in the reticuloendothelial system with fluorescent iron oxide nanoparticles prior to injury reveals that they are mobilized to infarcted myocardium
    • Montet-Abou K, Daire JL, Hyacinthe JN, et al. In vivo labelling of resting mono-cytes in the reticuloendothelial system with fluorescent iron oxide nanoparticles prior to injury reveals that they are mobilized to infarcted myocardium. Eur Heart J 2010; 31: 1410-1420.
    • (2010) Eur Heart J , vol.31 , pp. 1410-1420
    • Montet-Abou, K.1    Daire, J.L.2    Hyacinthe, J.N.3
  • 96
    • 34247486871 scopus 로고    scopus 로고
    • Comparison of SPIO and USPIO for in vitro labeling of human monocytes: MR detection and cell function
    • Oude Engberink RD, van der Pol SM, Dopp EA, et al. Comparison of SPIO and USPIO for in vitro labeling of human monocytes: MR detection and cell function. Radiology 2007; 243: 467-474.
    • (2007) Radiology , vol.243 , pp. 467-474
    • Oude, E.R.D.1    van der Pol, S.M.2    Dopp, E.A.3
  • 97
    • 77954969581 scopus 로고    scopus 로고
    • Myeloperoxidase-rich Ly-6C+ myeloid cells infiltrate allografts and contribute to an imaging signature of organ rejection in mice
    • Swirski FK, Wildgruber M, Ueno T, et al. Myeloperoxidase-rich Ly-6C+ myeloid cells infiltrate allografts and contribute to an imaging signature of organ rejection in mice. J Clin Invest 2010; 120: 2627-2634.
    • (2010) J Clin Invest , vol.120 , pp. 2627-2634
    • Swirski, F.K.1    Wildgruber, M.2    Ueno, T.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.