메뉴 건너뛰기




Volumn 3, Issue , 2008, Pages 1710-1719

Future challenges for artificial neural network modelling in geotechnical engineering

Author keywords

Artificial intelligence; Artificial neural networks

Indexed keywords

FUTURE CHALLENGES; KNOWLEDGE EXTRACTION; MODEL ROBUSTNESS;

EID: 84869801152     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: None     Document Type: Conference Paper
Times cited : (24)

References (113)
  • 1
    • 0032430468 scopus 로고    scopus 로고
    • General regression neural networks for driven piles in cohesionless soils
    • Abu-Kiefa, M.A. 1998. General regression neural networks for driven piles in cohesionless soils, Journal of Geotechnical and Geoenvironmental Engineering, 124(12), 1177-1185.
    • (1998) Journal of Geotechnical and Geoenvironmental Engineering , vol.124 , Issue.12 , pp. 1177-1185
    • Abu-Kiefa, M.A.1
  • 2
    • 0030703042 scopus 로고    scopus 로고
    • Assessing the liquefaction susceptibility at a site based on information from penetration testing
    • N. Kartam, I. Flood, J.H. Garrett, eds., New York (USA)
    • Agrawal, G., Chameau, J.A., Bourdeau, P.L. 1997. Assessing the liquefaction susceptibility at a site based on information from penetration testing. In Artificial neural networks for civil engineers: fundamentals and applications, N. Kartam, I. Flood, J.H. Garrett, eds., New York (USA), 185-214.
    • (1997) Artificial Neural Networks for Civil Engineers: Fundamentals and Applications , pp. 185-214
    • Agrawal, G.1    Chameau, J.A.2    Bourdeau, P.L.3
  • 4
    • 0032157672 scopus 로고    scopus 로고
    • Neuronet-based approach for assessing liquefaction potential of soils
    • Ali, H.E., Najjar, Y.M. 1998. Neuronet-based approach for assessing liquefaction potential of soils, Transportation Research Record No. 1633, 3-8.
    • (1998) Transportation Research Record No. 1633 , pp. 3-8
    • Ali, H.E.1    Najjar, Y.M.2
  • 5
    • 0005220569 scopus 로고
    • Developing neural-network applications
    • Bailey, D.L., Thompson, D.M. 1990. Developing neural-network applications, AI Expert, 5(9), 34-41.
    • (1990) AI Expert , vol.5 , Issue.9 , pp. 34-41
    • Bailey, D.L.1    Thompson, D.M.2
  • 8
    • 0030195319 scopus 로고    scopus 로고
    • Site characterisation by neuronets: An application to the landfill siting problem
    • Basheer, I.A., Reddi, L.N., Najjar, Y.M. 1996. Site characterisation by neuronets: An application to the landfill siting problem, Ground Water, 34, 610-617.
    • (1996) Ground Water , vol.34 , pp. 610-617
    • Basheer, I.A.1    Reddi, L.N.2    Najjar, Y.M.3
  • 9
    • 0005210482 scopus 로고
    • Soil classification by neural-network
    • Cal, Y. 1995. Soil classification by neural-network, Advances in Engineering Software, 22(2), 95-97.
    • (1995) Advances in Engineering Software , vol.22 , Issue.2 , pp. 95-97
    • Cal, Y.1
  • 10
    • 0028977232 scopus 로고
    • Neural network: An alternative to pile driving formulas
    • Chan, W.T., Chow, Y.K., Liu, L.F. 1995. Neural network: An alternative to pile driving formulas, Computers and Geotechnics, 17, 135-156.
    • (1995) Computers and Geotechnics , vol.17 , pp. 135-156
    • Chan, W.T.1    Chow, Y.K.2    Liu, L.F.3
  • 11
    • 37849189166 scopus 로고    scopus 로고
    • Undrained lateral load capacity of piles in clay using artificial neural network
    • Das, S.K., Basudhar, P.K. 2006. Undrained lateral load capacity of piles in clay using artificial neural network, Computers and Geotechnics, 33, 454-459.
    • (2006) Computers and Geotechnics , vol.33 , pp. 454-459
    • Das, S.K.1    Basudhar, P.K.2
  • 12
    • 0026711890 scopus 로고
    • Neural network modeling of the mechanical behavior of sand
    • ASCE
    • Ellis, G.W., Yao, C., Zhao, R. 1992. Neural network modeling of the mechanical behavior of sand. Proc. Engineering Mechanics, ASCE, 421-424.
    • (1992) Proc. Engineering Mechanics , pp. 421-424
    • Ellis, G.W.1    Yao, C.2    Zhao, R.3
  • 13
  • 14
    • 38849209843 scopus 로고    scopus 로고
    • Artificial neural networks approach for swell pressure versus soil suction behaviour
    • Erzin, Y. 2007. Artificial neural networks approach for swell pressure versus soil suction behaviour, Canadian Geotechnical Journal, 44(10), 1215-1223.
    • (2007) Canadian Geotechnical Journal , vol.44 , Issue.10 , pp. 1215-1223
    • Erzin, Y.1
  • 16
    • 34848842523 scopus 로고    scopus 로고
    • Computational intelligence tools for the prediction of slope performance
    • Ferentinou, M.D., Sakellariou, M.G. 2007. Computational intelligence tools for the prediction of slope performance, Computers and Geotechnics, 34(5), 362-384.
    • (2007) Computers and Geotechnics , vol.34 , Issue.5 , pp. 362-384
    • Ferentinou, M.D.1    Sakellariou, M.G.2
  • 17
    • 0028416331 scopus 로고
    • Neural networks in civil engineering I: Principles and understanding
    • Flood, I., Kartam, N. 1994. Neural networks in civil engineering I: Principles and understanding. Journal of Computing in Civil Engineering, 8(2), 131-148.
    • (1994) Journal of Computing in Civil Engineering , vol.8 , Issue.2 , pp. 131-148
    • Flood, I.1    Kartam, N.2
  • 18
    • 0001867238 scopus 로고
    • Interpreting neural-network connection weights
    • Garson, G.D. 1991. Interpreting neural-network connection weights, AI Expert, 6(7), 47-51.
    • (1991) AI Expert , vol.6 , Issue.7 , pp. 47-51
    • Garson, G.D.1
  • 19
    • 0031917757 scopus 로고    scopus 로고
    • New nested adaptive neural networks (NANN) for constitutive modelling
    • Ghaboussi, J., Sidarta, D.E. 1998. New nested adaptive neural networks (NANN) for constitutive modelling, Computers and Geotechnics, 22(1), 29-52.
    • (1998) Computers and Geotechnics , vol.22 , Issue.1 , pp. 29-52
    • Ghaboussi, J.1    Sidarta, D.E.2
  • 20
    • 0028549824 scopus 로고
    • Nonlinear modelling in geotechnical engineering using neural networks
    • Goh, A.T.C. 1994a. Nonlinear modelling in geotechnical engineering using neural networks, Australian Civil Engineering Transactions, CE36(4), 293-297.
    • (1994) Australian Civil Engineering Transactions , vol.CE36 , Issue.4 , pp. 293-297
    • Goh, A.T.C.1
  • 22
    • 0029223565 scopus 로고
    • Back-propagation neural networks for modeling complex systems
    • Goh, A.T.C. 1995a. Back-propagation neural networks for modeling complex systems, Artificial Intelligence in Engineering, 9, 143-151.
    • (1995) Artificial Intelligence in Engineering , vol.9 , pp. 143-151
    • Goh, A.T.C.1
  • 23
    • 0029415865 scopus 로고
    • Empirical design in geotechnics using neural networks
    • Goh, A.T.C. 1995b. Empirical design in geotechnics using neural networks, Geotechnique, 45(4), 709-714.
    • (1995) Geotechnique , vol.45 , Issue.4 , pp. 709-714
    • Goh, A.T.C.1
  • 24
    • 0029415712 scopus 로고
    • Modeling soil correlations using neural networks
    • Goh, A.T.C. 1995c. Modeling soil correlations using neural networks, Journal of Computing in Civil Engineering, 9(4), 275-278.
    • (1995) Journal of Computing in Civil Engineering , vol.9 , Issue.4 , pp. 275-278
    • Goh, A.T.C.1
  • 25
    • 0030403486 scopus 로고    scopus 로고
    • Neural-network modeling of CPT seismic liquefaction data
    • Goh, A.T.C. 1996a. Neural-network modeling of CPT seismic liquefaction data, Journal of Geotechnical Engineering, 122(1), 70-73.
    • (1996) Journal of Geotechnical Engineering , vol.122 , Issue.1 , pp. 70-73
    • Goh, A.T.C.1
  • 26
    • 0030414004 scopus 로고    scopus 로고
    • Pile driving records reanalyzed using neural networks
    • Goh, A.T.C. 1996b. Pile driving records reanalyzed using neural networks, Journal of Geotechnical Engineering, 122(6), 492-495.
    • (1996) Journal of Geotechnical Engineering , vol.122 , Issue.6 , pp. 492-495
    • Goh, A.T.C.1
  • 27
    • 0036009678 scopus 로고    scopus 로고
    • Probabilistic neural network for evaluating seismic liquefaction potential
    • Goh, A.T.C. 2002. Probabilistic neural network for evaluating seismic liquefaction potential, Canadian Geotechnical Journal, 39, 219-232.
    • (2002) Canadian Geotechnical Journal , vol.39 , pp. 219-232
    • Goh, A.T.C.1
  • 28
    • 34848870321 scopus 로고    scopus 로고
    • Support vector machines: Their use in geotechnical engineering as illustrated using seismic liquefaction data
    • Goh, A.T.C., Goh, S.H. 2007. Support vector machines: Their use in geotechnical engineering as illustrated using seismic liquefaction data, Computers and Geotechnics, 34(5), 410-421.
    • (2007) Computers and Geotechnics , vol.34 , Issue.5 , pp. 410-421
    • Goh, A.T.C.1    Goh, S.H.2
  • 30
    • 0029416085 scopus 로고
    • Estimation of lateral wall movements in braced excavation using neural networks
    • Goh, A.T.C., Wong, K.S., Broms, B.B. 1995. Estimation of lateral wall movements in braced excavation using neural networks, Canadian Geotechnical Journal, 32, 1059-1064.
    • (1995) Canadian Geotechnical Journal , vol.32 , pp. 1059-1064
    • Goh, A.T.C.1    Wong, K.S.2    Broms, B.B.3
  • 32
    • 0004924014 scopus 로고
    • Use of neural networks for hydraulic conductivity determination in unsaturated soil
    • J.A. Stanford and H.M. Valett, eds., Bethesda MD: Amer, Water Resources Assoc.
    • nd Int. Conf. on Ground Water Ecology, J.A. Stanford and H.M. Valett, eds., Bethesda MD: Amer, Water Resources Assoc., 155-163.
    • (1994) nd Int. Conf. on Ground Water Ecology , pp. 155-163
    • Gribb, M.M.1    Gribb, G.W.2
  • 33
    • 0042324284 scopus 로고    scopus 로고
    • A neural network framework for mechanical behavior of unsaturated soils
    • Habibagahi, G., Bamdad, A. 2003. A neural network framework for mechanical behavior of unsaturated soils, Canadian Geotechnical Journal, 40, 684-693.
    • (2003) Canadian Geotechnical Journal , vol.40 , pp. 684-693
    • Habibagahi, G.1    Bamdad, A.2
  • 34
    • 15544381564 scopus 로고    scopus 로고
    • Efficiency of pile groups installed in cohesionless soil using artificial neural networks
    • Hanna, A.M., Morcous, G., Helmy, M. 2004. Efficiency of pile groups installed in cohesionless soil using artificial neural networks, Canadian Geotechnical Journal, 41, 1241-1249.
    • (2004) Canadian Geotechnical Journal , vol.41 , pp. 1241-1249
    • Hanna, A.M.1    Morcous, G.2    Helmy, M.3
  • 35
    • 0004199140 scopus 로고
    • Addison-Wesley Publ. Co., Boston (USA)
    • Hecht-Nielsen, R. 1990. Neurocomputing, Addison-Wesley Publ. Co., Boston (USA).
    • (1990) Neurocomputing
    • Hecht-Nielsen, R.1
  • 36
    • 34848867291 scopus 로고    scopus 로고
    • Using multiple neural networks to estimate the screening effect of surface waves by in-filled trenches
    • Hung, C.-C., Ni, S.-H. 2007. Using multiple neural networks to estimate the screening effect of surface waves by in-filled trenches, Computers and Geotechnics, 34(5), 397-409.
    • (2007) Computers and Geotechnics , vol.34 , Issue.5 , pp. 397-409
    • Hung, C.-C.1    Ni, S.-H.2
  • 37
    • 1542287371 scopus 로고    scopus 로고
    • Identification of physical processes inherent in artificial neural network rainfall runoff models
    • Jain, A., Sudheer, K.P., Srinivasulu, S. 2004. Identification of physical processes inherent in artificial neural network rainfall runoff models, Hydrological Processes, 118(3), 571-581.
    • (2004) Hydrological Processes , vol.118 , Issue.3 , pp. 571-581
    • Jain, A.1    Sudheer, K.P.2    Srinivasulu, S.3
  • 38
    • 33747786653 scopus 로고    scopus 로고
    • Evaluation of liquefaction induced lateral displacements using genetic programming
    • Javadi, A.A., Rezania, M., Mousavi Nezhad, M. 2006. Evaluation of liquefaction induced lateral displacements using genetic programming, Computers and Geotechnics, 33, 222-233.
    • (2006) Computers and Geotechnics , vol.33 , pp. 222-233
    • Javadi, A.A.1    Rezania, M.2    Mousavi Nezhad, M.3
  • 40
    • 84869859476 scopus 로고    scopus 로고
    • Prediction of relative crest settlement of concrete-faced rockfill dams analyzed using an artificial neural network model
    • Kim, Y.-S., Kim, B.-T. 2007. Prediction of relative crest settlement of concrete-faced rockfill dams analyzed using an artificial neural network model, Computers and Geotechnics, 34(6), 423-434.
    • (2007) Computers and Geotechnics , vol.34 , Issue.6 , pp. 423-434
    • Kim, Y.-S.1    Kim, B.-T.2
  • 41
    • 31444455186 scopus 로고    scopus 로고
    • Bayesian parameter estimation applied to artificial neural networks used for hydrological modeling
    • doi:10.1029/2005WR004152
    • Kingston G.B., Lambert M.F, Maier H.R. 2005a. Bayesian parameter estimation applied to artificial neural networks used for hydrological modeling, Water Resources Research, 41, W12409, doi:10.1029/2005WR004152.
    • (2005) Water Resources Research , vol.41
    • Kingston, G.B.1    Lambert, M.F.2    Maier, H.R.3
  • 42
    • 28444444200 scopus 로고    scopus 로고
    • Calibration and validation of neural networks to ensure physically plausible hydrological modelling
    • 2005
    • Kingston, G.B., Maier, H.R., Lambert, M.F. 2005b. Calibration and validation of neural networks to ensure physically plausible hydrological modelling, Journal of Hydrology 314 (2005) 158-176.
    • (2005) Journal of Hydrology , vol.314 , pp. 158-176
    • Kingston, G.B.1    Maier, H.R.2    Lambert, M.F.3
  • 43
    • 33745367041 scopus 로고    scopus 로고
    • A probabilistic method to assist knowledge extraction from artificial neural networks used for hydrological prediction
    • Kingston G.B., Maier H.R., Lambert M.F. 2006. A probabilistic method to assist knowledge extraction from artificial neural networks used for hydrological prediction, Mathematical and Computer Modelling, 44(5-6), 499-512.
    • (2006) Mathematical and Computer Modelling , vol.44 , Issue.5-6 , pp. 499-512
    • Kingston, G.B.1    Maier, H.R.2    Lambert, M.F.3
  • 44
    • 34848863752 scopus 로고    scopus 로고
    • A neural network approach to estimating deflection of diaphragm walls caused by excavation in clays
    • Kung, G.T.C., Hsiao, E.C.L., Schuster, M., Juang, C.H. 2007. A neural network approach to estimating deflection of diaphragm walls caused by excavation in clays, Computers and Geotechnics, 34(5), 385-396.
    • (2007) Computers and Geotechnics , vol.34 , Issue.5 , pp. 385-396
    • Kung, G.T.C.1    Hsiao, E.C.L.2    Schuster, M.3    Juang, C.H.4
  • 47
    • 0030472893 scopus 로고    scopus 로고
    • Prediction of pile bearing capacity using artificial neural networks
    • Lee, I.M., Lee, J.H. 1996. Prediction of pile bearing capacity using artificial neural networks. Computers and Geotechnics, 18(3), 189-200.
    • (1996) Computers and Geotechnics , vol.18 , Issue.3 , pp. 189-200
    • Lee, I.M.1    Lee, J.H.2
  • 48
    • 0037490974 scopus 로고    scopus 로고
    • An approach to estimate unsaturated shear strength using artificial neural network and hyperbolic formulation
    • Lee, S.J., Lee, S.R., Kim, Y.S. 2003. An approach to estimate unsaturated shear strength using artificial neural network and hyperbolic formulation, Computers and Geotechnics, 30, 489-503.
    • (2003) Computers and Geotechnics , vol.30 , pp. 489-503
    • Lee, S.J.1    Lee, S.R.2    Kim, Y.S.3
  • 49
    • 17444389633 scopus 로고    scopus 로고
    • Underground blast induced ground shock and its modelling using artificial neural network
    • Lu, Y. 2005. Underground blast induced ground shock and its modelling using artificial neural network, Computers and Geotechnics, 32, 164-178.
    • (2005) Computers and Geotechnics , vol.32 , pp. 164-178
    • Lu, Y.1
  • 50
    • 0032051569 scopus 로고    scopus 로고
    • The effect of internal parameters and geometry on the performance of back-propagation neural networks: An empirical study
    • Maier, H.R., Dandy, G.C. 1998. The effect of internal parameters and geometry on the performance of back-propagation neural networks: An empirical study, Environmental Modelling & Software, 13, 193-209.
    • (1998) Environmental Modelling & Software , vol.13 , pp. 193-209
    • Maier, H.R.1    Dandy, G.C.2
  • 51
    • 0033957764 scopus 로고    scopus 로고
    • Neural networks for the prediction and forecasting of water resources variables: A review of modelling issues and applications
    • 2000
    • Maier, H.R., Dandy, G.C. 2000. Neural networks for the prediction and forecasting of water resources variables: A review of modelling issues and applications, Environmental Modelling & Software, 15(2000), 101-124.
    • (2000) Environmental Modelling & Software , vol.15 , pp. 101-124
    • Maier, H.R.1    Dandy, G.C.2
  • 52
    • 0035108726 scopus 로고    scopus 로고
    • Neural network based modelling of environmental variables: A systematic approach
    • Maier H.R., Dandy G.C. 2001. Neural network based modelling of environmental variables: A systematic approach, Mathematical and Computer Modelling, 33(6-7), 669-682.
    • (2001) Mathematical and Computer Modelling , vol.33 , Issue.6-7 , pp. 669-682
    • Maier, H.R.1    Dandy, G.C.2
  • 54
    • 0030159380 scopus 로고    scopus 로고
    • Artificial neural networks as rainfall-runoff models
    • Minns, A.W., Hall, M.J. 1996. Artificial neural networks as rainfall-runoff models. Hydrological Sciences Journal, 41(3), 399-417.
    • (1996) Hydrological Sciences Journal , vol.41 , Issue.3 , pp. 399-417
    • Minns, A.W.1    Hall, M.J.2
  • 55
    • 84894180554 scopus 로고
    • Artificial neural-network integrated with expert-system for preliminary design of tunnels and slopes
    • T. Fujii, ed., Rotterdam: Balkema
    • Moon, H.K., Na, S.M., Lee, C.W. 1995. Artificial neural-network integrated with expert-system for preliminary design of tunnels and slopes. Proc. 8th Int. Congress on Rock Mechanics, T. Fujii, ed., Rotterdam: Balkema, 901-905.
    • (1995) Proc. 8th Int. Congress on Rock Mechanics , pp. 901-905
    • Moon, H.K.1    Na, S.M.2    Lee, C.W.3
  • 57
    • 0031624390 scopus 로고    scopus 로고
    • CPT-based liquefaction potential assessment: A neuronet approach
    • ASCE
    • Najjar, Y.M., Ali, H.E. 1998. CPT-based liquefaction potential assessment: A neuronet approach. Geotechnical Special Publication, ASCE, 1, 542-553.
    • (1998) Geotechnical Special Publication , vol.1 , pp. 542-553
    • Najjar, Y.M.1    Ali, H.E.2
  • 58
    • 0029723312 scopus 로고    scopus 로고
    • Neural network approach for site characterization and uncertainty prediction
    • ASCE
    • Najjar, Y.M., Basheer, I.A. 1996a. Neural network approach for site characterization and uncertainty prediction. Geotechnical Special Publication, ASCE, 58(1), 134-148.
    • (1996) Geotechnical Special Publication , vol.58 , Issue.1 , pp. 134-148
    • Najjar, Y.M.1    Basheer, I.A.2
  • 59
    • 0030240007 scopus 로고    scopus 로고
    • Utilizing computational neural networks for evaluating the permeability of compacted clay liners
    • Najjar, Y.M., Basheer, I.A. 1996b. Utilizing computational neural networks for evaluating the permeability of compacted clay liners, Geotechnical and Geological Engineering, 14, 193-221.
    • (1996) Geotechnical and Geological Engineering , vol.14 , pp. 193-221
    • Najjar, Y.M.1    Basheer, I.A.2
  • 61
    • 0030458149 scopus 로고    scopus 로고
    • On the identification of compaction characteristics by neuronets
    • Najjar, Y.M., Basheer, I.A., Naouss, W.A. 1996b. On the identification of compaction characteristics by neuronets, Computers and Geotechnics, 18(3), 167-187.
    • (1996) Computers and Geotechnics , vol.18 , Issue.3 , pp. 167-187
    • Najjar, Y.M.1    Basheer, I.A.2    Naouss, W.A.3
  • 62
    • 34848828929 scopus 로고    scopus 로고
    • Simulating the stress-strain behavior of Georgia kaolin via recurrent neuronet approach
    • Najjar, Y.M., Huang C. 2007. Simulating the stress-strain behavior of Georgia kaolin via recurrent neuronet approach, Computers and Geotechnics, 34(5), 346-361.
    • (2007) Computers and Geotechnics , vol.34 , Issue.5 , pp. 346-361
    • Najjar, Y.M.1    Huang, C.2
  • 63
    • 2442712661 scopus 로고    scopus 로고
    • Artificial intelligence techniques for the design and analysis of deep foundations
    • Nawari, N.O., Liang, R., Nusairat, J. 1999. Artificial intelligence techniques for the design and analysis of deep foundations, Electronic Journal of Geotechnical Engineering, http://geotech.civeng.okstate.edu/ejge/ppr9909/ index.html.
    • (1999) Electronic Journal of Geotechnical Engineering
    • Nawari, N.O.1    Liang, R.2    Nusairat, J.3
  • 64
    • 84869752702 scopus 로고    scopus 로고
    • NeuralWare, NeuralWare Inc., Pittsburgh (USA)
    • NeuralWare. 1997. NeuralWorks Predict Release 2.1, NeuralWare Inc., Pittsburgh (USA).
    • (1997) NeuralWorks Predict Release 2.1
  • 66
    • 3242721368 scopus 로고    scopus 로고
    • An accurate comparison of methods for quantifying variable importance in artificial neural networks using simulated data
    • Olden, J.D., Joy, M.K., Death, R.G., 2004. An accurate comparison of methods for quantifying variable importance in artificial neural networks using simulated data, Ecological Modelling, 178(3-4), 389-397.
    • (2004) Ecological Modelling , vol.178 , Issue.3-4 , pp. 389-397
    • Olden, J.D.1    Joy, M.K.2    Death, R.G.3
  • 67
    • 84869779666 scopus 로고    scopus 로고
    • Ultimate bearing capacity prediction of shallow foundations on cohesionless soils using neurofuzzy models
    • in press
    • Padmini, D., Ilamparuthi, K., Sudheer, K.P. 2007. Ultimate bearing capacity prediction of shallow foundations on cohesionless soils using neurofuzzy models, Computers and Geotechnics, in press.
    • (2007) Computers and Geotechnics
    • Padmini, D.1    Ilamparuthi, K.2    Sudheer, K.P.3
  • 69
    • 0032786618 scopus 로고    scopus 로고
    • Triaxial compression behavior of sand and gravel using artificial neural networks (ANN)
    • Penumadu, D., Zhao, R. 1999. Triaxial compression behavior of sand and gravel using artificial neural networks (ANN), Computers and Geotechnics, 24, 207-230.
    • (1999) Computers and Geotechnics , vol.24 , pp. 207-230
    • Penumadu, D.1    Zhao, R.2
  • 71
    • 1842687873 scopus 로고    scopus 로고
    • Interpretation of a model footing response through an adaptive neural fuzzy inference system
    • Provenzano, P., Ferlisi, S., Musso, A. 2004. Interpretation of a model footing response through an adaptive neural fuzzy inference system, Computers and Geotechnics, 31, 251-266.
    • (2004) Computers and Geotechnics , vol.31 , pp. 251-266
    • Provenzano, P.1    Ferlisi, S.2    Musso, A.3
  • 72
    • 0035035711 scopus 로고    scopus 로고
    • A neural network model for the uplift capacity of suction caissons
    • Rahman, M.S., Wang, J., Deng, W., Carter, J.P. 2001. A neural network model for the uplift capacity of suction caissons, Computers and Geotechnics, 28, 269-287.
    • (2001) Computers and Geotechnics , vol.28 , pp. 269-287
    • Rahman, M.S.1    Wang, J.2    Deng, W.3    Carter, J.P.4
  • 73
    • 70649110356 scopus 로고    scopus 로고
    • A new genetic programming model for predicting the settlement of shallow foundations
    • in press
    • Rezania, M., Javadi, A.A. 2007. A new genetic programming model for predicting the settlement of shallow foundations, Canadian Geotechnical Journal (in press).
    • (2007) Canadian Geotechnical Journal
    • Rezania, M.1    Javadi, A.A.2
  • 75
    • 0029703396 scopus 로고    scopus 로고
    • Comparisons of site characterization methods using mixed data
    • ASCE
    • Rizzo, D.M., Lillys, T.P., Dougherty, D.E. 1996. Comparisons of site characterization methods using mixed data. Geotechnical Special Publication, ASCE, 58(1), 157-179.
    • (1996) Geotechnical Special Publication , vol.58 , Issue.1 , pp. 157-179
    • Rizzo, D.M.1    Lillys, T.P.2    Dougherty, D.E.3
  • 76
    • 0029712274 scopus 로고    scopus 로고
    • Characterization of granular meterial by low strain dynamic excitation and ANN
    • ASTM-ASCE
    • Romero, S., Pamukcu, S. 1996. Characterization of granular meterial by low strain dynamic excitation and ANN, Geotechnical Special Publication, ASTM-ASCE, 58(2), 1134-1148.
    • (1996) Geotechnical Special Publication , vol.58 , Issue.2 , pp. 1134-1148
    • Romero, S.1    Pamukcu, S.2
  • 77
    • 39749123382 scopus 로고    scopus 로고
    • Support vector machine applied to settlement of shallow foundations on cohesionless soils
    • in press
    • Samui, P. 2007. Support vector machine applied to settlement of shallow foundations on cohesionless soils, Computers and Geotechnics, in press.
    • (2007) Computers and Geotechnics
    • Samui, P.1
  • 78
    • 33846957663 scopus 로고    scopus 로고
    • Modeling the mechanical behavior of railway ballast using artificial neural networks
    • Shahin, M.A., Indraratna, B. 2006. Modeling the mechanical behavior of railway ballast using artificial neural networks, Canadian Geotechnical Journal, 43, 1144-1152.
    • (2006) Canadian Geotechnical Journal , vol.43 , pp. 1144-1152
    • Shahin, M.A.1    Indraratna, B.2
  • 80
    • 17444421871 scopus 로고    scopus 로고
    • Neural network prediction of pullout capacity of marquee ground anchors
    • Shahin, M.A., Jaksa, M.B. 2005a. Neural network prediction of pullout capacity of marquee ground anchors, Computers and Geotechnics, 32(3), 153-163.
    • (2005) Computers and Geotechnics , vol.32 , Issue.3 , pp. 153-163
    • Shahin, M.A.1    Jaksa, M.B.2
  • 81
    • 84869826824 scopus 로고    scopus 로고
    • Modelling the pullout capacity of marquee ground anchors using neurofuzzy technique
    • Melbourne (Australia)
    • Shahin, M.A., Jaksa, M.B. 2005b. Modelling the pullout capacity of marquee ground anchors using neurofuzzy technique. Proc. Int. Congress on Modelling and Simulation, MODSIM 2005, Melbourne (Australia), 66-72.
    • (2005) Proc. Int. Congress on Modelling and Simulation, MODSIM 2005 , pp. 66-72
    • Shahin, M.A.1    Jaksa, M.B.2
  • 82
    • 33746930800 scopus 로고    scopus 로고
    • Pullout capacity of small ground anchors by direct CPT methods and neural networks
    • Shahin, M.A., Jaksa, M.B. 2006. Pullout capacity of small ground anchors by direct CPT methods and neural networks, Canadian Geotechnical Journal, 43(6), 626-637.
    • (2006) Canadian Geotechnical Journal , vol.43 , Issue.6 , pp. 626-637
    • Shahin, M.A.1    Jaksa, M.B.2
  • 83
    • 84930208606 scopus 로고    scopus 로고
    • Artificial neural network applications in geotechnical engineering
    • Shahin, M.A., Jaksa, M.B., Maier, H.R. 2001. Artificial neural network applications in geotechnical engineering, Australian Geomechanics, 36(1), 49-62.
    • (2001) Australian Geomechanics , vol.36 , Issue.1 , pp. 49-62
    • Shahin, M.A.1    Jaksa, M.B.2    Maier, H.R.3
  • 84
    • 19944393836 scopus 로고    scopus 로고
    • Artificial neural network-based settlement prediction formula for shallow foundations on granular soils
    • Shahin, M.A., Jaksa, M.B., Maier, H.R. 2002b. Artificial neural network-based settlement prediction formula for shallow foundations on granular soils, Australian Geomechanics, 37(4), 45-52.
    • (2002) Australian Geomechanics , vol.37 , Issue.4 , pp. 45-52
    • Shahin, M.A.1    Jaksa, M.B.2    Maier, H.R.3
  • 87
    • 19944364218 scopus 로고    scopus 로고
    • Neural network based stochastic design charts for settlement prediction
    • Shahin, M.A., Jaksa, M.B., Maier, H.R. 2005a. Neural network based stochastic design charts for settlement prediction, Canadian Geotechnical Journal, 42(1), 110-120.
    • (2005) Canadian Geotechnical Journal , vol.42 , Issue.1 , pp. 110-120
    • Shahin, M.A.1    Jaksa, M.B.2    Maier, H.R.3
  • 88
    • 84869747043 scopus 로고    scopus 로고
    • Stochastic simulation of settlement prediction of shallow foundations based on a deterministic artificial neural network model
    • Melbourne (Australia)
    • Shahin, M.A., Jaksa, M.B., Maier, H.R. 2005b. Stochastic simulation of settlement prediction of shallow foundations based on a deterministic artificial neural network model. Proc. Int. Congress on Modelling and Simulation, MODSIM 2005, Melbourne (Australia), 73-78.
    • (2005) Proc. Int. Congress on Modelling and Simulation, MODSIM 2005 , pp. 73-78
    • Shahin, M.A.1    Jaksa, M.B.2    Maier, H.R.3
  • 89
    • 84869750866 scopus 로고    scopus 로고
    • Neural and neurofuzzy techniques applied to modelling settlement of shallow foundations on granular soils
    • Shahin, M.A., Maier, H.R., Jaksa, M. B. 2003b. Neural and neurofuzzy techniques applied to modelling settlement of shallow foundations on granular soils. Proc Int. Congress on Modelling and Simulation, MODSIM 2003, Vol. 4, 1886-1891.
    • (2003) Proc Int. Congress on Modelling and Simulation, MODSIM 2003 , vol.4 , pp. 1886-1891
    • Shahin, M.A.1    Maier, H.R.2    Jaksa, M.B.3
  • 91
    • 0242468288 scopus 로고    scopus 로고
    • Settlement prediction of shallow foundations on granular soils using B-spline neurofuzzy models
    • Shahin, M.A., Maier, H.R., Jaksa, M.B. 2003c. Settlement prediction of shallow foundations on granular soils using B-spline neurofuzzy models, Computers and Geotechnics, 30(8), 637-647.
    • (2003) Computers and Geotechnics , vol.30 , Issue.8 , pp. 637-647
    • Shahin, M.A.1    Maier, H.R.2    Jaksa, M.B.3
  • 92
    • 16444364474 scopus 로고    scopus 로고
    • Data division for developing neural networks applied to geotechnical engineering
    • Shahin, M.A., Maier, H.R., Jaksa, M.B. 2004b. Data division for developing neural networks applied to geotechnical engineering, Journal of Computing in Civil Engineering, 18(2), 105-114.
    • (2004) Journal of Computing in Civil Engineering , vol.18 , Issue.2 , pp. 105-114
    • Shahin, M.A.1    Maier, H.R.2    Jaksa, M.B.3
  • 93
    • 60549085638 scopus 로고    scopus 로고
    • Investigation into the robustness of artificial neural network models for a case study in civil engineering
    • Melbourne (Australia)
    • Shahin, M.A., Maier, H.R., Jaksa, M.B. 2005c. Investigation into the robustness of artificial neural network models for a case study in civil engineering. Proc. Int. Congress on Modelling and Simulation, MODSIM 2005, Melbourne (Australia), 79-83.
    • (2005) Proc. Int. Congress on Modelling and Simulation, MODSIM 2005 , pp. 79-83
    • Shahin, M.A.1    Maier, H.R.2    Jaksa, M.B.3
  • 94
    • 15544383102 scopus 로고    scopus 로고
    • Detecting heavy metal contamination in soil using complex permittivity and artificial neural networks
    • Shang, J.Q., Ding, W., Rowe, R.K., Josic, L. 2004. Detecting heavy metal contamination in soil using complex permittivity and artificial neural networks, Canadian Geotechnical Journal, 41, 1054-1067.
    • (2004) Canadian Geotechnical Journal , vol.41 , pp. 1054-1067
    • Shang, J.Q.1    Ding, W.2    Rowe, R.K.3    Josic, L.4
  • 95
    • 0034171993 scopus 로고    scopus 로고
    • Reducing prediciton error by transforming input data for neural networks
    • Shi, J.J. 2000. Reducing prediciton error by transforming input data for neural networks, Journal of Computing in Civil Engineering, 14(2), 109-116.
    • (2000) Journal of Computing in Civil Engineering , vol.14 , Issue.2 , pp. 109-116
    • Shi, J.J.1
  • 97
    • 0031941646 scopus 로고    scopus 로고
    • Constitutive modeling of geomaterials from non-uniform material tests
    • Sidarta, D.E., Ghaboussi, J. 1998. Constitutive modeling of geomaterials from non-uniform material tests, Computers and Geotechnics, 22(1), 53-71.
    • (1998) Computers and Geotechnics , vol.22 , Issue.1 , pp. 53-71
    • Sidarta, D.E.1    Ghaboussi, J.2
  • 99
    • 0000629975 scopus 로고
    • Cross-validatory choice and assessment of statistical predictions
    • Stone, M. 1974, Cross-validatory choice and assessment of statistical predictions, Journal of Royal Statistical Society, B 36, 111-147.
    • (1974) Journal of Royal Statistical Society, B , vol.36 , pp. 111-147
    • Stone, M.1
  • 100
    • 23044433719 scopus 로고    scopus 로고
    • Knowledge extraction from trained neural network river flow models
    • Sudheer, K.P. 2005. Knowledge extraction from trained neural network river flow models, Journal of Hydrologic Engineering, 10(4), 264-269.
    • (2005) Journal of Hydrologic Engineering , vol.10 , Issue.4 , pp. 264-269
    • Sudheer, K.P.1
  • 101
    • 1642333234 scopus 로고    scopus 로고
    • Explaining the internal behaviour of artificial neural network river flow models
    • Sudheer, K.P., Jain, A. 2004. Explaining the internal behaviour of artificial neural network river flow models, Hydrological Processes, 118(4), 833-844.
    • (2004) Hydrological Processes , vol.118 , Issue.4 , pp. 833-844
    • Sudheer, K.P.1    Jain, A.2
  • 102
    • 0037470339 scopus 로고    scopus 로고
    • Improving peak flow estimates in artificial neural network river flow models
    • Sudheer, K.P., Nayak, P.C., Ramasastri, K.S. 2003. Improving peak flow estimates in artificial neural network river flow models. Hydrological Processes, 17, 677-686.
    • (2003) Hydrological Processes , vol.17 , pp. 677-686
    • Sudheer, K.P.1    Nayak, P.C.2    Ramasastri, K.S.3
  • 104
    • 0033167344 scopus 로고    scopus 로고
    • Rainfall-runoff modeling using artificial neural networks
    • Tokar, S.A., Johnson, P.A. 1999. Rainfall-runoff modeling using artificial neural networks. Journal of Hydrologic Engineering, 4(3), 232-239.
    • (1999) Journal of Hydrologic Engineering , vol.4 , Issue.3 , pp. 232-239
    • Tokar, S.A.1    Johnson, P.A.2
  • 105
    • 0032130999 scopus 로고    scopus 로고
    • Neural network modeling of anisotropic aggregate behavior from repeated load triaxial tests
    • National Research Council, Washington, D.C
    • Tutumluer, E., Seyhan, U. 1998. Neural network modeling of anisotropic aggregate behavior from repeated load triaxial tests. Transportation Research Record 1615, National Research Council, Washington, D.C.
    • (1998) Transportation Research Record 1615
    • Tutumluer, E.1    Seyhan, U.2
  • 107
    • 33845488712 scopus 로고    scopus 로고
    • Tunneling performance prediction using an integrated GIS and neural network
    • Yoo, C., Kim, J.-M. 2007. Tunneling performance prediction using an integrated GIS and neural network, Computers and Geotechnics, 34, 19-30.
    • (2007) Computers and Geotechnics , vol.34 , pp. 19-30
    • Yoo, C.1    Kim, J.-M.2
  • 108
    • 33751206829 scopus 로고    scopus 로고
    • Use of artificial neural networks in the prediction of liquefaction resistance of sands
    • Young-Su, K., Byung-Tak, K. 2006. Use of artificial neural networks in the prediction of liquefaction resistance of sands, Journal of Geotechnical and Geoenvironmental Engineering, 132(11), 1502-1504.
    • (2006) Journal of Geotechnical and Geoenvironmental Engineering , vol.132 , Issue.11 , pp. 1502-1504
    • Young-Su, K.1    Byung-Tak, K.2
  • 109
    • 84869779674 scopus 로고    scopus 로고
    • Slope reliability analysis using a support vector machine
    • in press
    • Zhao, H.-B. 2007. Slope reliability analysis using a support vector machine, Computers and Geotechnics, in press.
    • (2007) Computers and Geotechnics
    • Zhao, H.-B.1
  • 110
    • 0028098349 scopus 로고
    • Use of neural networks in the analysis and interpretation of site investigation data
    • Zhou, Y., Wu, X. 1994. Use of neural networks in the analysis and interpretation of site investigation data, Computers and Geotechnics, 16, 105-122.
    • (1994) Computers and Geotechnics , vol.16 , pp. 105-122
    • Zhou, Y.1    Wu, X.2
  • 111
    • 0032194440 scopus 로고    scopus 로고
    • Modeling of soil behavior with a recurrent neural network
    • Zhu, J.H., Zaman, M.M., Anderson, S.A. 1998a. Modeling of soil behavior with a recurrent neural network." Canadian Geotechnical Journal, 35(5), 858-872.
    • (1998) Canadian Geotechnical Journal , vol.35 , Issue.5 , pp. 858-872
    • Zhu, J.H.1    Zaman, M.M.2    Anderson, S.A.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.