메뉴 건너뛰기




Volumn 86, Issue 23, 2012, Pages 12940-12953

Foot-and-mouth disease virus induces autophagosomes during cell entry via a class III phosphatidylinositol 3-kinase-independent pathway

Author keywords

[No Author keywords available]

Indexed keywords

AUTOPHAGY PROTEIN 5; GREEN FLUORESCENT PROTEIN; PHOSPHATIDYLINOSITOL 3 KINASE; PROTEIN P62; VIRUS PROTEIN; WORTMANNIN;

EID: 84869226239     PISSN: 0022538X     EISSN: 10985514     Source Type: Journal    
DOI: 10.1128/JVI.00846-12     Document Type: Article
Times cited : (90)

References (50)
  • 1
    • 0029582760 scopus 로고
    • Assembly of foot-and-mouth disease virus empty capsids synthesized by a vaccinia virus expression system
    • Abrams CC, King AM, Belsham GJ. 1995. Assembly of foot-and-mouth disease virus empty capsids synthesized by a vaccinia virus expression system. J. Gen. Virol. 76:3089-3098.
    • (1995) J. Gen. Virol. , vol.76 , pp. 3089-3098
    • Abrams, C.C.1    King, A.M.2    Belsham, G.J.3
  • 2
    • 20744436958 scopus 로고    scopus 로고
    • Early events in integrin alphavbeta6-mediated cell entry of foot-and-mouth disease virus
    • Berryman S, Clark S, Monaghan P, Jackson T. 2005. Early events in integrin alphavbeta6-mediated cell entry of foot-and-mouth disease virus. J. Virol. 79:8519-8534.
    • (2005) J. Virol. , vol.79 , pp. 8519-8534
    • Berryman, S.1    Clark, S.2    Monaghan, P.3    Jackson, T.4
  • 3
    • 34648816108 scopus 로고    scopus 로고
    • Induction of autophagy does not affect human rhinovirus type 2 production
    • Brabec-Zaruba M, Berka U, Blaas D, Fuchs R. 2007. Induction of autophagy does not affect human rhinovirus type 2 production. J. Virol. 81:10815-10817.
    • (2007) J. Virol. , vol.81 , pp. 10815-10817
    • Brabec-Zaruba, M.1    Berka, U.2    Blaas, D.3    Fuchs, R.4
  • 4
    • 58149473473 scopus 로고    scopus 로고
    • Kinaseinactivated ULK proteins inhibit autophagy via their conserved C-terminal domains using an Atg13-independent mechanism
    • Chan EY, Longatti A, McKnight NC, Tooze SA. 2009. Kinaseinactivated ULK proteins inhibit autophagy via their conserved C-terminal domains using an Atg13-independent mechanism. Mol. Cell. Biol. 29:157-171.
    • (2009) Mol. Cell. Biol. , vol.29 , pp. 157-171
    • Chan, E.Y.1    Longatti, A.2    McKnight, N.C.3    Tooze, S.A.4
  • 5
    • 19444371102 scopus 로고    scopus 로고
    • Inhibition of cellular protein secretion by picornaviral 3A proteins
    • Choe SS, Dodd DA, Kirkegaard K. 2005. Inhibition of cellular protein secretion by picornaviral 3A proteins. Virology 337:18-29.
    • (2005) Virology , vol.337 , pp. 18-29
    • Choe, S.S.1    Dodd, D.A.2    Kirkegaard, K.3
  • 6
    • 0000115806 scopus 로고
    • Electron microscopic study of the formation of poliovirus
    • Dales S, Eggers HJ, Tamm I, Palade GE. 1965. Electron microscopic study of the formation of poliovirus. Virology 26:379-389.
    • (1965) Virology , vol.26 , pp. 379-389
    • Dales, S.1    Eggers, H.J.2    Tamm, I.3    Palade, G.E.4
  • 7
    • 0028918959 scopus 로고
    • Inhibition of cellular protein secretion by poliovirus proteins 2B and 3A
    • Doedens JR, Kirkegaard K. 1995. Inhibition of cellular protein secretion by poliovirus proteins 2B and 3A. EMBO J. 14:894-907.
    • (1995) EMBO J , vol.14 , pp. 894-907
    • Doedens, J.R.1    Kirkegaard, K.2
  • 8
    • 66449083078 scopus 로고    scopus 로고
    • ULK1. ATG13 FIP200 complex mediates mTOR signaling and is essential for autophagy
    • Ganley IG, et al. 2009. ULK1.ATG13.FIP200 complex mediates mTOR signaling and is essential for autophagy. J. Biol. Chem. 284:12297-12305.
    • (2009) J. Biol. Chem. , vol.284 , pp. 12297-12305
    • Ganley, I.G.1
  • 9
    • 43149090064 scopus 로고    scopus 로고
    • FIP200, a ULK-interacting protein, is required for autophagosome formation in mammalian cells
    • Hara T, et al. 2008. FIP200, a ULK-interacting protein, is required for autophagosome formation in mammalian cells. J. Cell Biol. 181:497-510.
    • (2008) J. Cell Biol. , vol.181 , pp. 497-510
    • Hara, T.1
  • 10
    • 65249119430 scopus 로고    scopus 로고
    • Nutrient-dependent mTORC1 association with the ULK1-Atg13-FIP200 complex required for autophagy
    • Hosokawa N, et al. 2009. Nutrient-dependent mTORC1 association with the ULK1-Atg13-FIP200 complex required for autophagy. Mol. Biol. Cell 20:1981-1991.
    • (2009) Mol. Biol. Cell , vol.20 , pp. 1981-1991
    • Hosokawa, N.1
  • 11
    • 70349644856 scopus 로고    scopus 로고
    • Atg101, a novel mammalian autophagy protein interacting with Atg13
    • Hosokawa N, et al. 2009. Atg101, a novel mammalian autophagy protein interacting with Atg13. Autophagy 5:973-979.
    • (2009) Autophagy , vol.5 , pp. 973-979
    • Hosokawa, N.1
  • 12
    • 67649989068 scopus 로고    scopus 로고
    • Enterovirus 71-induced autophagy detected in vitro and in vivo promotes viral replication
    • Huang SC, Chang CL, Wang PS, Tsai Y, Liu HS. 2009. Enterovirus 71-induced autophagy detected in vitro and in vivo promotes viral replication. J. Med. Virol. 81:1241-1252.
    • (2009) J. Med. Virol. , vol.81 , pp. 1241-1252
    • Huang, S.C.1    Chang, C.L.2    Wang, P.S.3    Tsai, Y.4    Liu, H.S.5
  • 13
    • 77955884684 scopus 로고    scopus 로고
    • Characterization of autophagosome formation site by a hierarchical analysis of mammalian Atg proteins
    • Itakura E, Mizushima N. 2010. Characterization of autophagosome formation site by a hierarchical analysis of mammalian Atg proteins. Autophagy 6:764-776.
    • (2010) Autophagy , vol.6 , pp. 764-776
    • Itakura, E.1    Mizushima, N.2
  • 14
    • 28844475400 scopus 로고    scopus 로고
    • HDAC6 and microtubules are required for autophagic degradation of aggregated huntingtin
    • Iwata A, Riley BE, Johnston JA, Kopito RR. 2005. HDAC6 and microtubules are required for autophagic degradation of aggregated huntingtin. J. Biol. Chem. 280:40282-40292.
    • (2005) J. Biol. Chem. , vol.280 , pp. 40282-40292
    • Iwata, A.1    Riley, B.E.2    Johnston, J.A.3    Kopito, R.R.4
  • 16
    • 21344452171 scopus 로고    scopus 로고
    • Subversion of cellular autophagosomal machinery by RNA viruses
    • doi:10.1371/journal.pbio.0030156
    • Jackson WT, et al. 2005. Subversion of cellular autophagosomal machinery by RNA viruses. PLoS Biol. 3:e156. doi:10.1371/journal.pbio.0030156.
    • (2005) PLoS Biol , vol.3
    • Jackson, W.T.1
  • 17
    • 65249176304 scopus 로고    scopus 로고
    • ULK- Atg13-FIP200 complexes mediate mTOR signaling to the autophagy machinery
    • Jung CH, et al. 2009. ULK-Atg13-FIP200 complexes mediate mTOR signaling to the autophagy machinery. Mol. Biol. Cell 20:1992-2003.
    • (2009) Mol. Biol. Cell , vol.20 , pp. 1992-2003
    • Jung, C.H.1
  • 18
    • 78049513713 scopus 로고    scopus 로고
    • Coxsackievirus infection induces autophagy-like vesicles and megaphagosomes in pancreatic acinar cells in vivo
    • Kemball CC, et al. 2010. Coxsackievirus infection induces autophagy-like vesicles and megaphagosomes in pancreatic acinar cells in vivo. J. Virol. 84:12110-12124.
    • (2010) J. Virol. , vol.84 , pp. 12110-12124
    • Kemball, C.C.1
  • 19
    • 2142752480 scopus 로고    scopus 로고
    • Cellular autophagy: surrender, avoidance and subversion by microorganisms
    • Kirkegaard K, Taylor MP, Jackson WT. 2004. Cellular autophagy: surrender, avoidance and subversion by microorganisms. Nat. Rev. Microbiol. 2:301-314.
    • (2004) Nat. Rev. Microbiol. , vol.2 , pp. 301-314
    • Kirkegaard, K.1    Taylor, M.P.2    Jackson, W.T.3
  • 20
    • 80052428163 scopus 로고    scopus 로고
    • Human rhinovirus 2 induces the autophagic pathway and replicates more efficiently in autophagic cells
    • Klein KA, Jackson WT. 2011. Human rhinovirus 2 induces the autophagic pathway and replicates more efficiently in autophagic cells. J. Virol. 85:9651-9654.
    • (2011) J. Virol. , vol.85 , pp. 9651-9654
    • Klein, K.A.1    Jackson, W.T.2
  • 21
    • 77649337122 scopus 로고    scopus 로고
    • HDAC6 controls autophagosome maturation essential for ubiquitin-selective quality-control autophagy
    • Lee JY, et al. 2010. HDAC6 controls autophagosome maturation essential for ubiquitin-selective quality-control autophagy. EMBO J. 29:969-980.
    • (2010) EMBO J , vol.29 , pp. 969-980
    • Lee, J.Y.1
  • 22
    • 0001488499 scopus 로고    scopus 로고
    • Protection against fatal Sindbis virus encephalitis by beclin, a novel Bcl-2-interacting protein
    • Liang XH, et al. 1998. Protection against fatal Sindbis virus encephalitis by beclin, a novel Bcl-2-interacting protein. J. Virol. 72:8586-8596.
    • (1998) J. Virol. , vol.72 , pp. 8586-8596
    • Liang, X.H.1
  • 23
    • 67549139908 scopus 로고    scopus 로고
    • Vesicular trafficking and autophagosome formation
    • Longatti A, Tooze SA. 2009. Vesicular trafficking and autophagosome formation. Cell Death Differ. 16:956-965.
    • (2009) Cell Death Differ , vol.16 , pp. 956-965
    • Longatti, A.1    Tooze, S.A.2
  • 24
    • 0000756795 scopus 로고
    • Evidence for at least four antigenic sites on type O foot-and-mouth disease virus involved in neutralization; identification by single and multiple site monoclonal antibody-resistant mutants
    • McCahon D, et al. 1989. Evidence for at least four antigenic sites on type O foot-and-mouth disease virus involved in neutralization; identification by single and multiple site monoclonal antibody-resistant mutants. J. Gen. Virol. 70:639-645.
    • (1989) J. Gen. Virol. , vol.70 , pp. 639-645
    • McCahon, D.1
  • 25
    • 79955460678 scopus 로고    scopus 로고
    • Early induction of autophagy in human fibroblasts after infection with human cytomegalovirus or herpes simplex virus J
    • McFarlane S, et al. 2011. Early induction of autophagy in human fibroblasts after infection with human cytomegalovirus or herpes simplex virus J. Virol. 85:4212-4221.
    • (2011) Virol , vol.85 , pp. 4212-4221
    • McFarlane, S.1
  • 26
    • 67549110195 scopus 로고    scopus 로고
    • A novel, human Atg13 binding protein, Atg101, interacts with ULK1 and is essential for macroautophagy
    • Mercer CA, Kaliappan A, Dennis PB. 2009. A novel, human Atg13 binding protein, Atg101, interacts with ULK1 and is essential for macroautophagy. Autophagy 5:649-662.
    • (2009) Autophagy , vol.5 , pp. 649-662
    • Mercer, C.A.1    Kaliappan, A.2    Dennis, P.B.3
  • 27
    • 15244349265 scopus 로고    scopus 로고
    • Effects of foot-and-mouth disease virus nonstructural proteins on the structure and function of the early secretory pathway: 2BC but not 3A blocks endoplasmic reticulum-to-Golgi transport
    • Moffat K, et al. 2005. Effects of foot-and-mouth disease virus nonstructural proteins on the structure and function of the early secretory pathway: 2BC but not 3A blocks endoplasmic reticulum-to-Golgi transport. J. Virol. 79:4382-4395.
    • (2005) J. Virol. , vol.79 , pp. 4382-4395
    • Moffat, K.1
  • 28
    • 33846554150 scopus 로고    scopus 로고
    • Inhibition of the secretory pathway by foot-andmouth disease virus 2BC protein is reproduced by coexpression of 2B with 2C, and the site of inhibition is determined by the subcellular location of 2C
    • Moffat K, et al. 2007. Inhibition of the secretory pathway by foot-andmouth disease virus 2BC protein is reproduced by coexpression of 2B with 2C, and the site of inhibition is determined by the subcellular location of 2C. J. Virol. 81:1129-1139.
    • (2007) J. Virol. , vol.81 , pp. 1129-1139
    • Moffat, K.1
  • 29
    • 78650740964 scopus 로고    scopus 로고
    • Foot-and-mouth disease virus utilizes an autophagic pathway during viral replication
    • O'Donnell V, et al. 2011. Foot-and-mouth disease virus utilizes an autophagic pathway during viral replication. Virology 410:142-150.
    • (2011) Virology , vol.410 , pp. 142-150
    • O'Donnell, V.1
  • 30
    • 33947715151 scopus 로고    scopus 로고
    • HSV- 1 ICP34 5 confers neurovirulence by targeting the Beclin 1 autophagy protein
    • Orvedahl A, et al. 2007. HSV-1 ICP34.5 confers neurovirulence by targeting the Beclin 1 autophagy protein. Cell Host Microbe 1:23-35.
    • (2007) Cell Host Microbe , vol.1 , pp. 23-35
    • Orvedahl, A.1
  • 31
    • 76249112828 scopus 로고    scopus 로고
    • Autophagy protects against Sindbis virus infection of the central nervous system
    • Orvedahl A, et al. 2010. Autophagy protects against Sindbis virus infection of the central nervous system. Cell Host Microbe 7:115-127.
    • (2010) Cell Host Microbe , vol.7 , pp. 115-127
    • Orvedahl, A.1
  • 32
    • 34548259958 scopus 로고    scopus 로고
    • p62/SQSTM1 binds directly to Atg8/LC3 to facilitate degradation of ubiquitinated protein aggregates by autophagy
    • Pankiv S, et al. 2007. p62/SQSTM1 binds directly to Atg8/LC3 to facilitate degradation of ubiquitinated protein aggregates by autophagy. J. Biol. Chem. 282:24131-24145.
    • (2007) J. Biol. Chem. , vol.282 , pp. 24131-24145
    • Pankiv, S.1
  • 33
    • 77956525570 scopus 로고    scopus 로고
    • Coronaviruses hijack the LC3-I-positive EDEMosomes, ER-derived vesicles exporting short-lived ERAD regulators, for replication
    • Reggiori F, et al. 2010. Coronaviruses hijack the LC3-I-positive EDEMosomes, ER-derived vesicles exporting short-lived ERAD regulators, for replication. Cell Host Microbe 7:500-508.
    • (2010) Cell Host Microbe , vol.7 , pp. 500-508
    • Reggiori, F.1
  • 34
    • 79551710072 scopus 로고    scopus 로고
    • Foot-and-mouth disease virus exhibits an altered tropism in the presence of specific immunoglobulins, enabling productive infection and killing of dendritic cells
    • Robinson L, et al. 2011. Foot-and-mouth disease virus exhibits an altered tropism in the presence of specific immunoglobulins, enabling productive infection and killing of dendritic cells. J. Virol. 85:2212-2223.
    • (2011) J. Virol. , vol.85 , pp. 2212-2223
    • Robinson, L.1
  • 35
    • 47249094223 scopus 로고    scopus 로고
    • Role of non-canonical Beclin 1-independent autophagy in cell death induced by resveratrol in human breast cancer cells
    • Scarlatti F, Maffei R, Beau I, Codogno P, Ghidoni R. 2008. Role of non-canonical Beclin 1-independent autophagy in cell death induced by resveratrol in human breast cancer cells. Cell Death Differ. 15:1318-1329.
    • (2008) Cell Death Differ , vol.15 , pp. 1318-1329
    • Scarlatti, F.1    Maffei, R.2    Beau, I.3    Codogno, P.4    Ghidoni, R.5
  • 36
    • 58149104300 scopus 로고    scopus 로고
    • Noncanonical autophagy: an exception or an underestimated form of autophagy?
    • Scarlatti F, Maffei R, Beau I, Ghidoni R, Codogno P. 2008. Noncanonical autophagy: an exception or an underestimated form of autophagy? Autophagy 4:1083-1085.
    • (2008) Autophagy , vol.4 , pp. 1083-1085
    • Scarlatti, F.1    Maffei, R.2    Beau, I.3    Ghidoni, R.4    Codogno, P.5
  • 37
    • 64049114864 scopus 로고    scopus 로고
    • Autophagy is an essential component of Drosophila immunity against vesicular stomatitis virus
    • Shelly S, Lukinova N, Bambina S, Berman A, Cherry S. 2009. Autophagy is an essential component of Drosophila immunity against vesicular stomatitis virus. Immunity 30:588-598.
    • (2009) Immunity , vol.30 , pp. 588-598
    • Shelly, S.1    Lukinova, N.2    Bambina, S.3    Berman, A.4    Cherry, S.5
  • 38
    • 46849121421 scopus 로고    scopus 로고
    • Utilizing flow cytometry to monitor autophagy in living mammalian cells
    • Shvets E, Fass E, Elazar Z. 2008. Utilizing flow cytometry to monitor autophagy in living mammalian cells. Autophagy 4:621-628.
    • (2008) Autophagy , vol.4 , pp. 621-628
    • Shvets, E.1    Fass, E.2    Elazar, Z.3
  • 39
    • 0017891276 scopus 로고
    • Herpes simplex virus and human cytomegalovirus replication in WI-38 cells III. Cytochemical localization of lysosomal enzymes in infected cells
    • Smith JD, de Harven E. 1978. Herpes simplex virus and human cytomegalovirus replication in WI-38 cells. III. Cytochemical localization of lysosomal enzymes in infected cells. J. Virol. 26:102-109.
    • (1978) J. Virol. , vol.26 , pp. 102-109
    • Smith, J.D.1    De Harven, E.2
  • 40
    • 0033798416 scopus 로고    scopus 로고
    • Remodeling the endoplasmic reticulum by poliovirus infection and by individual viral proteins: an autophagy-like origin for virus-induced vesicles
    • Suhy DA, Giddings TH, Jr, Kirkegaard K. 2000. Remodeling the endoplasmic reticulum by poliovirus infection and by individual viral proteins: an autophagy-like origin for virus-induced vesicles. J. Virol. 74:8953-8965.
    • (2000) J. Virol. , vol.74 , pp. 8953-8965
    • Suhy, D.A.1    Giddings Jr., T.H.2    Kirkegaard, K.3
  • 41
    • 67449097826 scopus 로고    scopus 로고
    • Role of microtubules in extracellular release of poliovirus
    • Taylor MP, Burgon TB, Kirkegaard K, Jackson WT. 2009. Role of microtubules in extracellular release of poliovirus. J. Virol. 83:6599-6609.
    • (2009) J. Virol. , vol.83 , pp. 6599-6609
    • Taylor, M.P.1    Burgon, T.B.2    Kirkegaard, K.3    Jackson, W.T.4
  • 42
    • 36049014444 scopus 로고    scopus 로고
    • Modification of cellular autophagy protein LC3 by poliovirus
    • Taylor MP, Kirkegaard K. 2007. Modification of cellular autophagy protein LC3 by poliovirus. J. Virol. 81:12543-12553.
    • (2007) J. Virol. , vol.81 , pp. 12543-12553
    • Taylor, M.P.1    Kirkegaard, K.2
  • 43
    • 65549145048 scopus 로고    scopus 로고
    • ATP-competitive mammalian target of rapamycin inhibitor reveals rapamycin-resistant functions of mTORC1
    • Thoreen CC, et al. 2009. An ATP-competitive mammalian target of rapamycin inhibitor reveals rapamycin-resistant functions of mTORC1. J. Biol. Chem. 284:8023-8032.
    • (2009) J. Biol. Chem. , vol.284 , pp. 8023-8032
    • Thoreen, C.C.1
  • 44
    • 33646555141 scopus 로고    scopus 로고
    • Aggresomes and autophagy generate sites for virus replication
    • Wileman T. 2006. Aggresomes and autophagy generate sites for virus replication. Science 312:875-878.
    • (2006) Science , vol.312 , pp. 875-878
    • Wileman, T.1
  • 45
    • 50949133741 scopus 로고    scopus 로고
    • Autophagosome supports coxsackievirus B3 replication in host cells
    • Wong J, et al. 2008. Autophagosome supports coxsackievirus B3 replication in host cells. J. Virol. 82:9143-9153.
    • (2008) J. Virol. , vol.82 , pp. 9143-9153
    • Wong, J.1
  • 46
    • 32044465506 scopus 로고    scopus 로고
    • TOR signaling in growth and metabolism
    • Wullschleger S, Loewith R, Hall MN. 2006. TOR signaling in growth and metabolism. Cell 124:471-484.
    • (2006) Cell , vol.124 , pp. 471-484
    • Wullschleger, S.1    Loewith, R.2    Hall, M.N.3
  • 47
    • 34848886914 scopus 로고    scopus 로고
    • Autophagosome formation: core machinery and adaptations
    • Xie Z, Klionsky DJ. 2007. Autophagosome formation: core machinery and adaptations. Nat. Cell Biol. 9:1102-1109.
    • (2007) Nat. Cell Biol. , vol.9 , pp. 1102-1109
    • Xie, Z.1    Klionsky, D.J.2
  • 48
    • 77956404377 scopus 로고    scopus 로고
    • Eaten alive: a history of macroautophagy
    • Yang Z, Klionsky DJ. 2010. Eaten alive: a history of macroautophagy. Nat. Cell Biol. 12:814-822.
    • (2010) Nat. Cell Biol. , vol.12 , pp. 814-822
    • Yang, Z.1    Klionsky, D.J.2
  • 49
  • 50
    • 56449116096 scopus 로고    scopus 로고
    • Coxsackievirus B4 uses autophagy for replication after calpain activation in rat primary neurons
    • Yoon SY, et al. 2008. Coxsackievirus B4 uses autophagy for replication after calpain activation in rat primary neurons. J. Virol. 82:11976-11978.
    • (2008) J. Virol. , vol.82 , pp. 11976-11978
    • Yoon, S.Y.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.