메뉴 건너뛰기




Volumn 58, Issue 12, 2012, Pages 3763-3776

Data-based linear Gaussian state-space model for dynamic process monitoring

Author keywords

Dynamic; Fault detection, fault identification; Linear Gaussian state space model; Probabilistic

Indexed keywords

DYNAMIC DATA; DYNAMIC PROCESS; DYNAMIC PROCESS MONITORING; EFFECT ANALYSIS; EXPECTATION-MAXIMIZATION ALGORITHMS; FAULT DETECTION AND IDENTIFICATION; FAULT IDENTIFICATIONS; GAUSSIANS; IDENTIFICATION METHOD; MODEL PARAMETERS; NOISY ENVIRONMENT; PROBABILISTIC; STATE-SPACE MODELS;

EID: 84868704032     PISSN: 00011541     EISSN: 15475905     Source Type: Journal    
DOI: 10.1002/aic.13776     Document Type: Article
Times cited : (67)

References (36)
  • 1
    • 0037084628 scopus 로고    scopus 로고
    • Comparison of multivariate statistical process monitoring methods with applications to the Eastman challenge problem
    • Kano M, Nagao K, Hasebe H, Hashimoto I, Ohno H, Strauss R, Bakshi BR. Comparison of multivariate statistical process monitoring methods with applications to the Eastman challenge problem. Comput Chem Eng. 2002; 26: 161-174.
    • (2002) Comput Chem Eng. , vol.26 , pp. 161-174
    • Kano, M.1    Nagao, K.2    Hasebe, H.3    Hashimoto, I.4    Ohno, H.5    Strauss, R.6    Bakshi, B.R.7
  • 2
    • 0242354134 scopus 로고    scopus 로고
    • Statistical process monitoring: basics and beyond
    • Qin SJ. Statistical process monitoring: basics and beyond. J Chemom 2003; 17: 480-502.
    • (2003) J Chemom , vol.17 , pp. 480-502
    • Qin, S.J.1
  • 3
    • 6344265494 scopus 로고    scopus 로고
    • Multidimensional visualization of principal component scores for process historical data analysis
    • Wang XZ, Medasani S, Marhoon F, Albazzaz H. Multidimensional visualization of principal component scores for process historical data analysis. Ind Eng Chem Res. 2004; 43: 7036-7048.
    • (2004) Ind Eng Chem Res. , vol.43 , pp. 7036-7048
    • Wang, X.Z.1    Medasani, S.2    Marhoon, F.3    Albazzaz, H.4
  • 4
    • 18244408225 scopus 로고    scopus 로고
    • Data-based latent variable methods for process analysis, monitoring and control
    • MacGregor JF, Yu HL, Munoz SG, Flores-Cerrillo J. Data-based latent variable methods for process analysis, monitoring and control. Comput Chem Eng. 2005; 29: 1217-1223.
    • (2005) Comput Chem Eng. , vol.29 , pp. 1217-1223
    • MacGregor, J.F.1    Yu, H.L.2    Munoz, S.G.3    Flores-Cerrillo, J.4
  • 5
    • 33645389475 scopus 로고    scopus 로고
    • Evaluation of a pattern matching method for the Tennessee Eastman challenge process
    • Singhai A, Seborg DE. Evaluation of a pattern matching method for the Tennessee Eastman challenge process. J Process Control. 2006; 16: 601-613.
    • (2006) J Process Control. , vol.16 , pp. 601-613
    • Singhai, A.1    Seborg, D.E.2
  • 6
    • 35648993555 scopus 로고    scopus 로고
    • Online monitoring of multi-phase batch processes using phase-based multivariate statistical process control
    • Doan XT, Srinivasan R. Online monitoring of multi-phase batch processes using phase-based multivariate statistical process control. Comput Chem Eng. 2008; 32: 230-243.
    • (2008) Comput Chem Eng. , vol.32 , pp. 230-243
    • Doan, X.T.1    Srinivasan, R.2
  • 7
    • 78650046728 scopus 로고    scopus 로고
    • Statistics pattern analysis: a new process monitoring framework and its application to semiconductor batch processes
    • He QP, Wang J. Statistics pattern analysis: a new process monitoring framework and its application to semiconductor batch processes. AIChE J. 2011; 57: 107-121.
    • (2011) AIChE J. , vol.57 , pp. 107-121
    • He, Q.P.1    Wang, J.2
  • 8
    • 79952591121 scopus 로고    scopus 로고
    • Nonlinear bioprocess monitoring using multiway kernel localized fisher discriminant analysis
    • Yu J. Nonlinear bioprocess monitoring using multiway kernel localized fisher discriminant analysis. Ind Eng Chem Res. 2011; 50: 3390-3402.
    • (2011) Ind Eng Chem Res. , vol.50 , pp. 3390-3402
    • Yu, J.1
  • 10
    • 0041530045 scopus 로고    scopus 로고
    • Process monitoring based on probabilistic PCA
    • Kim D, Lee IB. Process monitoring based on probabilistic PCA. Chem Intell Lab Syst. 2003; 67: 109-123.
    • (2003) Chem Intell Lab Syst. , vol.67 , pp. 109-123
    • Kim, D.1    Lee, I.B.2
  • 11
    • 35648957812 scopus 로고    scopus 로고
    • Model identification and error covariance matrix estimation from noisy data using PCA
    • Narasimhan S, Shah SL. Model identification and error covariance matrix estimation from noisy data using PCA. Control Eng Pract. 2008; 16: 146-155.
    • (2008) Control Eng Pract. , vol.16 , pp. 146-155
    • Narasimhan, S.1    Shah, S.L.2
  • 12
    • 78650303983 scopus 로고    scopus 로고
    • A unified statistical framework for monitoring multivariate systems with unknown source and error signals
    • Feital T, Kruger U, Xie L, Schubert U, Lima EL, Pinto JC. A unified statistical framework for monitoring multivariate systems with unknown source and error signals. Chem Intell Lab Syst. 2010; 104: 223-232.
    • (2010) Chem Intell Lab Syst. , vol.104 , pp. 223-232
    • Feital, T.1    Kruger, U.2    Xie, L.3    Schubert, U.4    Lima, E.L.5    Pinto, J.C.6
  • 13
    • 33646177719 scopus 로고    scopus 로고
    • Calibration, prediction and process monitoring model based on factor analysis for incomplete process data
    • Kim DS, Yoo CK, Kim YI, Jung JK, Lee IB. Calibration, prediction and process monitoring model based on factor analysis for incomplete process data. J Chem Eng Jpn. 2005; 38: 1025-1034.
    • (2005) J Chem Eng Jpn. , vol.38 , pp. 1025-1034
    • Kim, D.S.1    Yoo, C.K.2    Kim, Y.I.3    Jung, J.K.4    Lee, I.B.5
  • 14
    • 67249116501 scopus 로고    scopus 로고
    • A novel statistical-based monitoring approach for complex multivariate processes
    • Ge ZQ, Xie L, Song ZH. A novel statistical-based monitoring approach for complex multivariate processes. Ind Eng Chem Res. 2009; 48: 4892-4898.
    • (2009) Ind Eng Chem Res. , vol.48 , pp. 4892-4898
    • Ge, Z.Q.1    Xie, L.2    Song, Z.H.3
  • 15
    • 0028892168 scopus 로고
    • Disturbance rejection and isolation by dynamic principal component analysis
    • Ku W, Storer RH, Georgakis C. Disturbance rejection and isolation by dynamic principal component analysis. Chem Intell Lab Syst. 1995; 30: 179-196.
    • (1995) Chem Intell Lab Syst. , vol.30 , pp. 179-196
    • Ku, W.1    Storer, R.H.2    Georgakis, C.3
  • 16
    • 0037039540 scopus 로고    scopus 로고
    • On-line batch process monitoring using dynamic PCA and dynamic PLS models
    • Chen J, Liu K. On-line batch process monitoring using dynamic PCA and dynamic PLS models. Chem Eng Sci. 2002; 14: 63-75.
    • (2002) Chem Eng Sci. , vol.14 , pp. 63-75
    • Chen, J.1    Liu, K.2
  • 17
    • 10044259622 scopus 로고    scopus 로고
    • Nonlinear dynamic process monitoring based on dynamic kernel PCA
    • Choi SW, Lee IB. Nonlinear dynamic process monitoring based on dynamic kernel PCA. Chem Eng Sci. 2004; 59: 5897-5908.
    • (2004) Chem Eng Sci. , vol.59 , pp. 5897-5908
    • Choi, S.W.1    Lee, I.B.2
  • 18
    • 77951090351 scopus 로고    scopus 로고
    • On-line batch process monitoring using batch dynamic kernel principal component analysis
    • Jia MX, Chu F, Wang FL, Wang W. On-line batch process monitoring using batch dynamic kernel principal component analysis. Chem Intell Lab Syst. 2010; 101: 110-122.
    • (2010) Chem Intell Lab Syst. , vol.101 , pp. 110-122
    • Jia, M.X.1    Chu, F.2    Wang, F.L.3    Wang, W.4
  • 19
    • 77957303678 scopus 로고    scopus 로고
    • Statistical analysis and adaptive technique for dynamic process monitoring
    • Zhang YW, Li ZW, Zhou H. Statistical analysis and adaptive technique for dynamic process monitoring. Chem Eng Res Des. 2010; 88: 1381-1392.
    • (2010) Chem Eng Res Des. , vol.88 , pp. 1381-1392
    • Zhang, Y.W.1    Li, Z.W.2    Zhou, H.3
  • 20
    • 3242705894 scopus 로고    scopus 로고
    • Improved principal component monitoring of large-scale processes
    • Kruger U, Zhou YQ, Irwin GW. Improved principal component monitoring of large-scale processes. J Process Control. 2004; 14: 879-888.
    • (2004) J Process Control. , vol.14 , pp. 879-888
    • Kruger, U.1    Zhou, Y.Q.2    Irwin, G.W.3
  • 21
    • 33645007202 scopus 로고    scopus 로고
    • Statistical monitoring of dynamic multivariate processes part1 modeling autocorrelation and cross-correlation
    • Xie L, Kruger U, Lieftucht D, Littler T, Chen Q, Wang SQ. Statistical monitoring of dynamic multivariate processes part1 modeling autocorrelation and cross-correlation. Ind Eng Chem Res. 2006; 45: 1659-1676.
    • (2006) Ind Eng Chem Res. , vol.45 , pp. 1659-1676
    • Xie, L.1    Kruger, U.2    Lieftucht, D.3    Littler, T.4    Chen, Q.5    Wang, S.Q.6
  • 22
    • 44749086556 scopus 로고    scopus 로고
    • Subspace identification for two-dimensional dynamic batch process statistical monitoring
    • Yao Y, Gao FR. Subspace identification for two-dimensional dynamic batch process statistical monitoring. Chem Eng Sci. 2008; 63: 3411-3418.
    • (2008) Chem Eng Sci. , vol.63 , pp. 3411-3418
    • Yao, Y.1    Gao, F.R.2
  • 23
    • 77954660281 scopus 로고    scopus 로고
    • State-space independent component analysis for nonlinear dynamic process monitoring
    • Odiowei PP, Cao Y. State-space independent component analysis for nonlinear dynamic process monitoring. Chem Intell Lab Syst. 2010; 103: 59-65.
    • (2010) Chem Intell Lab Syst. , vol.103 , pp. 59-65
    • Odiowei, P.P.1    Cao, Y.2
  • 24
    • 22744452329 scopus 로고    scopus 로고
    • On-line dynamic process monitoring using wavelet-based generic dissimilarity measure
    • Alabi SI, Morris AJ, Martin EB. On-line dynamic process monitoring using wavelet-based generic dissimilarity measure. Chem Eng Res Des. 2005; 83: 698-705.
    • (2005) Chem Eng Res Des. , vol.83 , pp. 698-705
    • Alabi, S.I.1    Morris, A.J.2    Martin, E.B.3
  • 25
    • 36849039411 scopus 로고    scopus 로고
    • Dynamic model-based batch process monitoring
    • Choi SW, Morris J, Lee IB. Dynamic model-based batch process monitoring. Chem Eng Sci. 2008; 63: 622-636.
    • (2008) Chem Eng Sci. , vol.63 , pp. 622-636
    • Choi, S.W.1    Morris, J.2    Lee, I.B.3
  • 26
    • 78049444138 scopus 로고    scopus 로고
    • Fault detection in non-Gaussian vibration systems using dynamic statistical-based approaches
    • Ge ZQ, Kruger U, Lamont L, Xie L, Song ZH. Fault detection in non-Gaussian vibration systems using dynamic statistical-based approaches. Mech Syst Signal Process. 2010; 24: 2972-2984.
    • (2010) Mech Syst Signal Process. , vol.24 , pp. 2972-2984
    • Ge, Z.Q.1    Kruger, U.2    Lamont, L.3    Xie, L.4    Song, Z.H.5
  • 27
    • 67349245154 scopus 로고    scopus 로고
    • Reconstruction-based contribution fro process monitoring
    • Alcala CF, Qin SJ. Reconstruction-based contribution fro process monitoring. Automatica. 2009; 45: 1593-1600.
    • (2009) Automatica. , vol.45 , pp. 1593-1600
    • Alcala, C.F.1    Qin, S.J.2
  • 28
    • 0033556862 scopus 로고    scopus 로고
    • A unifying review of linear Gaussian models
    • Roweis S, Ghahramani Z. A unifying review of linear Gaussian models. Neural Comput. 1999; 11: 305-345.
    • (1999) Neural Comput. , vol.11 , pp. 305-345
    • Roweis, S.1    Ghahramani, Z.2
  • 29
    • 60649095294 scopus 로고    scopus 로고
    • Unified inference for variational Bayesian linear Gaussian state-space model
    • Schölkopf B, Platt J, Hoffman T, editors. Cambridge, MA: MIT Press
    • Barber D, Chiappa S. Unified inference for variational Bayesian linear Gaussian state-space model. In: Schölkopf B, Platt J, Hoffman T, editors. Advances in Neural Information Processing Systems 19. Cambridge, MA: MIT Press, 2007: 81-88.
    • (2007) Advances in Neural Information Processing Systems 19 , pp. 81-88
    • Barber, D.1    Chiappa, S.2
  • 31
    • 84868695025 scopus 로고
    • Contribution plots: the missing link in multivariate quality control. In: Fall Conf. of the ASQC and ASA. Milwaukee, WI
    • Miller P, Swanson RE, Heckler CF. Contribution plots: the missing link in multivariate quality control. In: Fall Conf. of the ASQC and ASA. Milwaukee, WI, 1993.
    • (1993)
    • Miller, P.1    Swanson, R.E.2    Heckler, C.F.3
  • 32
    • 0030269512 scopus 로고    scopus 로고
    • Identification of faulty sensors using PCA
    • Dunia R, Qin SJ, Edgar T, McAvoy T. Identification of faulty sensors using PCA. AIChE J. 1996; 42: 2797-2812.
    • (1996) AIChE J. , vol.42 , pp. 2797-2812
    • Dunia, R.1    Qin, S.J.2    Edgar, T.3    McAvoy, T.4
  • 33
    • 0035802262 scopus 로고    scopus 로고
    • Reconstruction based fault identification using a combined index
    • Yue H, Qin SJ. Reconstruction based fault identification using a combined index. Ind Eng Chem Res. 2001; 40: 4403-4414.
    • (2001) Ind Eng Chem Res. , vol.40 , pp. 4403-4414
    • Yue, H.1    Qin, S.J.2
  • 34
    • 60249095677 scopus 로고    scopus 로고
    • Probabilistic contribution analysis for statistical process monitoring: a missing variable approach
    • Chen T, Sun Y. Probabilistic contribution analysis for statistical process monitoring: a missing variable approach. Control Eng Pract. 2009; 17: 469-477.
    • (2009) Control Eng Pract. , vol.17 , pp. 469-477
    • Chen, T.1    Sun, Y.2
  • 35
    • 79958194197 scopus 로고    scopus 로고
    • Data-driven fault detection and isolation for multimode processes
    • Liu J. Data-driven fault detection and isolation for multimode processes. Asia-Pacific J Chem Eng. 2011; 6: 470-483.
    • (2011) Asia-Pacific J Chem Eng. , vol.6 , pp. 470-483
    • Liu, J.1
  • 36
    • 0027561446 scopus 로고
    • A plant-wide industrial process control problem
    • Downs JJ, Vogel EF. A plant-wide industrial process control problem. Comput Chem Eng. 1993; 17: 245-255.
    • (1993) Comput Chem Eng. , vol.17 , pp. 245-255
    • Downs, J.J.1    Vogel, E.F.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.