-
1
-
-
0037084628
-
Comparison of multivariate statistical process monitoring methods with applications to the Eastman challenge problem
-
Kano M, Nagao K, Hasebe H, Hashimoto I, Ohno H, Strauss R, Bakshi BR. Comparison of multivariate statistical process monitoring methods with applications to the Eastman challenge problem. Comput Chem Eng. 2002; 26: 161-174.
-
(2002)
Comput Chem Eng.
, vol.26
, pp. 161-174
-
-
Kano, M.1
Nagao, K.2
Hasebe, H.3
Hashimoto, I.4
Ohno, H.5
Strauss, R.6
Bakshi, B.R.7
-
2
-
-
0242354134
-
Statistical process monitoring: basics and beyond
-
Qin SJ. Statistical process monitoring: basics and beyond. J Chemom 2003; 17: 480-502.
-
(2003)
J Chemom
, vol.17
, pp. 480-502
-
-
Qin, S.J.1
-
3
-
-
6344265494
-
Multidimensional visualization of principal component scores for process historical data analysis
-
Wang XZ, Medasani S, Marhoon F, Albazzaz H. Multidimensional visualization of principal component scores for process historical data analysis. Ind Eng Chem Res. 2004; 43: 7036-7048.
-
(2004)
Ind Eng Chem Res.
, vol.43
, pp. 7036-7048
-
-
Wang, X.Z.1
Medasani, S.2
Marhoon, F.3
Albazzaz, H.4
-
4
-
-
18244408225
-
Data-based latent variable methods for process analysis, monitoring and control
-
MacGregor JF, Yu HL, Munoz SG, Flores-Cerrillo J. Data-based latent variable methods for process analysis, monitoring and control. Comput Chem Eng. 2005; 29: 1217-1223.
-
(2005)
Comput Chem Eng.
, vol.29
, pp. 1217-1223
-
-
MacGregor, J.F.1
Yu, H.L.2
Munoz, S.G.3
Flores-Cerrillo, J.4
-
5
-
-
33645389475
-
Evaluation of a pattern matching method for the Tennessee Eastman challenge process
-
Singhai A, Seborg DE. Evaluation of a pattern matching method for the Tennessee Eastman challenge process. J Process Control. 2006; 16: 601-613.
-
(2006)
J Process Control.
, vol.16
, pp. 601-613
-
-
Singhai, A.1
Seborg, D.E.2
-
6
-
-
35648993555
-
Online monitoring of multi-phase batch processes using phase-based multivariate statistical process control
-
Doan XT, Srinivasan R. Online monitoring of multi-phase batch processes using phase-based multivariate statistical process control. Comput Chem Eng. 2008; 32: 230-243.
-
(2008)
Comput Chem Eng.
, vol.32
, pp. 230-243
-
-
Doan, X.T.1
Srinivasan, R.2
-
7
-
-
78650046728
-
Statistics pattern analysis: a new process monitoring framework and its application to semiconductor batch processes
-
He QP, Wang J. Statistics pattern analysis: a new process monitoring framework and its application to semiconductor batch processes. AIChE J. 2011; 57: 107-121.
-
(2011)
AIChE J.
, vol.57
, pp. 107-121
-
-
He, Q.P.1
Wang, J.2
-
8
-
-
79952591121
-
Nonlinear bioprocess monitoring using multiway kernel localized fisher discriminant analysis
-
Yu J. Nonlinear bioprocess monitoring using multiway kernel localized fisher discriminant analysis. Ind Eng Chem Res. 2011; 50: 3390-3402.
-
(2011)
Ind Eng Chem Res.
, vol.50
, pp. 3390-3402
-
-
Yu, J.1
-
10
-
-
0041530045
-
Process monitoring based on probabilistic PCA
-
Kim D, Lee IB. Process monitoring based on probabilistic PCA. Chem Intell Lab Syst. 2003; 67: 109-123.
-
(2003)
Chem Intell Lab Syst.
, vol.67
, pp. 109-123
-
-
Kim, D.1
Lee, I.B.2
-
11
-
-
35648957812
-
Model identification and error covariance matrix estimation from noisy data using PCA
-
Narasimhan S, Shah SL. Model identification and error covariance matrix estimation from noisy data using PCA. Control Eng Pract. 2008; 16: 146-155.
-
(2008)
Control Eng Pract.
, vol.16
, pp. 146-155
-
-
Narasimhan, S.1
Shah, S.L.2
-
12
-
-
78650303983
-
A unified statistical framework for monitoring multivariate systems with unknown source and error signals
-
Feital T, Kruger U, Xie L, Schubert U, Lima EL, Pinto JC. A unified statistical framework for monitoring multivariate systems with unknown source and error signals. Chem Intell Lab Syst. 2010; 104: 223-232.
-
(2010)
Chem Intell Lab Syst.
, vol.104
, pp. 223-232
-
-
Feital, T.1
Kruger, U.2
Xie, L.3
Schubert, U.4
Lima, E.L.5
Pinto, J.C.6
-
13
-
-
33646177719
-
Calibration, prediction and process monitoring model based on factor analysis for incomplete process data
-
Kim DS, Yoo CK, Kim YI, Jung JK, Lee IB. Calibration, prediction and process monitoring model based on factor analysis for incomplete process data. J Chem Eng Jpn. 2005; 38: 1025-1034.
-
(2005)
J Chem Eng Jpn.
, vol.38
, pp. 1025-1034
-
-
Kim, D.S.1
Yoo, C.K.2
Kim, Y.I.3
Jung, J.K.4
Lee, I.B.5
-
14
-
-
67249116501
-
A novel statistical-based monitoring approach for complex multivariate processes
-
Ge ZQ, Xie L, Song ZH. A novel statistical-based monitoring approach for complex multivariate processes. Ind Eng Chem Res. 2009; 48: 4892-4898.
-
(2009)
Ind Eng Chem Res.
, vol.48
, pp. 4892-4898
-
-
Ge, Z.Q.1
Xie, L.2
Song, Z.H.3
-
15
-
-
0028892168
-
Disturbance rejection and isolation by dynamic principal component analysis
-
Ku W, Storer RH, Georgakis C. Disturbance rejection and isolation by dynamic principal component analysis. Chem Intell Lab Syst. 1995; 30: 179-196.
-
(1995)
Chem Intell Lab Syst.
, vol.30
, pp. 179-196
-
-
Ku, W.1
Storer, R.H.2
Georgakis, C.3
-
16
-
-
0037039540
-
On-line batch process monitoring using dynamic PCA and dynamic PLS models
-
Chen J, Liu K. On-line batch process monitoring using dynamic PCA and dynamic PLS models. Chem Eng Sci. 2002; 14: 63-75.
-
(2002)
Chem Eng Sci.
, vol.14
, pp. 63-75
-
-
Chen, J.1
Liu, K.2
-
17
-
-
10044259622
-
Nonlinear dynamic process monitoring based on dynamic kernel PCA
-
Choi SW, Lee IB. Nonlinear dynamic process monitoring based on dynamic kernel PCA. Chem Eng Sci. 2004; 59: 5897-5908.
-
(2004)
Chem Eng Sci.
, vol.59
, pp. 5897-5908
-
-
Choi, S.W.1
Lee, I.B.2
-
18
-
-
77951090351
-
On-line batch process monitoring using batch dynamic kernel principal component analysis
-
Jia MX, Chu F, Wang FL, Wang W. On-line batch process monitoring using batch dynamic kernel principal component analysis. Chem Intell Lab Syst. 2010; 101: 110-122.
-
(2010)
Chem Intell Lab Syst.
, vol.101
, pp. 110-122
-
-
Jia, M.X.1
Chu, F.2
Wang, F.L.3
Wang, W.4
-
19
-
-
77957303678
-
Statistical analysis and adaptive technique for dynamic process monitoring
-
Zhang YW, Li ZW, Zhou H. Statistical analysis and adaptive technique for dynamic process monitoring. Chem Eng Res Des. 2010; 88: 1381-1392.
-
(2010)
Chem Eng Res Des.
, vol.88
, pp. 1381-1392
-
-
Zhang, Y.W.1
Li, Z.W.2
Zhou, H.3
-
20
-
-
3242705894
-
Improved principal component monitoring of large-scale processes
-
Kruger U, Zhou YQ, Irwin GW. Improved principal component monitoring of large-scale processes. J Process Control. 2004; 14: 879-888.
-
(2004)
J Process Control.
, vol.14
, pp. 879-888
-
-
Kruger, U.1
Zhou, Y.Q.2
Irwin, G.W.3
-
21
-
-
33645007202
-
Statistical monitoring of dynamic multivariate processes part1 modeling autocorrelation and cross-correlation
-
Xie L, Kruger U, Lieftucht D, Littler T, Chen Q, Wang SQ. Statistical monitoring of dynamic multivariate processes part1 modeling autocorrelation and cross-correlation. Ind Eng Chem Res. 2006; 45: 1659-1676.
-
(2006)
Ind Eng Chem Res.
, vol.45
, pp. 1659-1676
-
-
Xie, L.1
Kruger, U.2
Lieftucht, D.3
Littler, T.4
Chen, Q.5
Wang, S.Q.6
-
22
-
-
44749086556
-
Subspace identification for two-dimensional dynamic batch process statistical monitoring
-
Yao Y, Gao FR. Subspace identification for two-dimensional dynamic batch process statistical monitoring. Chem Eng Sci. 2008; 63: 3411-3418.
-
(2008)
Chem Eng Sci.
, vol.63
, pp. 3411-3418
-
-
Yao, Y.1
Gao, F.R.2
-
23
-
-
77954660281
-
State-space independent component analysis for nonlinear dynamic process monitoring
-
Odiowei PP, Cao Y. State-space independent component analysis for nonlinear dynamic process monitoring. Chem Intell Lab Syst. 2010; 103: 59-65.
-
(2010)
Chem Intell Lab Syst.
, vol.103
, pp. 59-65
-
-
Odiowei, P.P.1
Cao, Y.2
-
24
-
-
22744452329
-
On-line dynamic process monitoring using wavelet-based generic dissimilarity measure
-
Alabi SI, Morris AJ, Martin EB. On-line dynamic process monitoring using wavelet-based generic dissimilarity measure. Chem Eng Res Des. 2005; 83: 698-705.
-
(2005)
Chem Eng Res Des.
, vol.83
, pp. 698-705
-
-
Alabi, S.I.1
Morris, A.J.2
Martin, E.B.3
-
25
-
-
36849039411
-
Dynamic model-based batch process monitoring
-
Choi SW, Morris J, Lee IB. Dynamic model-based batch process monitoring. Chem Eng Sci. 2008; 63: 622-636.
-
(2008)
Chem Eng Sci.
, vol.63
, pp. 622-636
-
-
Choi, S.W.1
Morris, J.2
Lee, I.B.3
-
26
-
-
78049444138
-
Fault detection in non-Gaussian vibration systems using dynamic statistical-based approaches
-
Ge ZQ, Kruger U, Lamont L, Xie L, Song ZH. Fault detection in non-Gaussian vibration systems using dynamic statistical-based approaches. Mech Syst Signal Process. 2010; 24: 2972-2984.
-
(2010)
Mech Syst Signal Process.
, vol.24
, pp. 2972-2984
-
-
Ge, Z.Q.1
Kruger, U.2
Lamont, L.3
Xie, L.4
Song, Z.H.5
-
27
-
-
67349245154
-
Reconstruction-based contribution fro process monitoring
-
Alcala CF, Qin SJ. Reconstruction-based contribution fro process monitoring. Automatica. 2009; 45: 1593-1600.
-
(2009)
Automatica.
, vol.45
, pp. 1593-1600
-
-
Alcala, C.F.1
Qin, S.J.2
-
28
-
-
0033556862
-
A unifying review of linear Gaussian models
-
Roweis S, Ghahramani Z. A unifying review of linear Gaussian models. Neural Comput. 1999; 11: 305-345.
-
(1999)
Neural Comput.
, vol.11
, pp. 305-345
-
-
Roweis, S.1
Ghahramani, Z.2
-
29
-
-
60649095294
-
Unified inference for variational Bayesian linear Gaussian state-space model
-
Schölkopf B, Platt J, Hoffman T, editors. Cambridge, MA: MIT Press
-
Barber D, Chiappa S. Unified inference for variational Bayesian linear Gaussian state-space model. In: Schölkopf B, Platt J, Hoffman T, editors. Advances in Neural Information Processing Systems 19. Cambridge, MA: MIT Press, 2007: 81-88.
-
(2007)
Advances in Neural Information Processing Systems 19
, pp. 81-88
-
-
Barber, D.1
Chiappa, S.2
-
31
-
-
84868695025
-
-
Contribution plots: the missing link in multivariate quality control. In: Fall Conf. of the ASQC and ASA. Milwaukee, WI
-
Miller P, Swanson RE, Heckler CF. Contribution plots: the missing link in multivariate quality control. In: Fall Conf. of the ASQC and ASA. Milwaukee, WI, 1993.
-
(1993)
-
-
Miller, P.1
Swanson, R.E.2
Heckler, C.F.3
-
32
-
-
0030269512
-
Identification of faulty sensors using PCA
-
Dunia R, Qin SJ, Edgar T, McAvoy T. Identification of faulty sensors using PCA. AIChE J. 1996; 42: 2797-2812.
-
(1996)
AIChE J.
, vol.42
, pp. 2797-2812
-
-
Dunia, R.1
Qin, S.J.2
Edgar, T.3
McAvoy, T.4
-
33
-
-
0035802262
-
Reconstruction based fault identification using a combined index
-
Yue H, Qin SJ. Reconstruction based fault identification using a combined index. Ind Eng Chem Res. 2001; 40: 4403-4414.
-
(2001)
Ind Eng Chem Res.
, vol.40
, pp. 4403-4414
-
-
Yue, H.1
Qin, S.J.2
-
34
-
-
60249095677
-
Probabilistic contribution analysis for statistical process monitoring: a missing variable approach
-
Chen T, Sun Y. Probabilistic contribution analysis for statistical process monitoring: a missing variable approach. Control Eng Pract. 2009; 17: 469-477.
-
(2009)
Control Eng Pract.
, vol.17
, pp. 469-477
-
-
Chen, T.1
Sun, Y.2
-
35
-
-
79958194197
-
Data-driven fault detection and isolation for multimode processes
-
Liu J. Data-driven fault detection and isolation for multimode processes. Asia-Pacific J Chem Eng. 2011; 6: 470-483.
-
(2011)
Asia-Pacific J Chem Eng.
, vol.6
, pp. 470-483
-
-
Liu, J.1
-
36
-
-
0027561446
-
A plant-wide industrial process control problem
-
Downs JJ, Vogel EF. A plant-wide industrial process control problem. Comput Chem Eng. 1993; 17: 245-255.
-
(1993)
Comput Chem Eng.
, vol.17
, pp. 245-255
-
-
Downs, J.J.1
Vogel, E.F.2
|