메뉴 건너뛰기




Volumn 43, Issue 22, 2004, Pages 7036-7048

Multidimensional visualization of principal component scores for process historical data analysis

Author keywords

[No Author keywords available]

Indexed keywords

ALGORITHMS; DATA REDUCTION; DATABASE SYSTEMS; PARALLEL PROCESSING SYSTEMS; STATISTICAL PROCESS CONTROL; VISUALIZATION;

EID: 6344265494     PISSN: 08885885     EISSN: None     Source Type: Journal    
DOI: 10.1021/ie030816j     Document Type: Article
Times cited : (40)

References (55)
  • 4
    • 0026108818 scopus 로고
    • Multivariate statistical monitoring of process operating performance
    • Kresta, J. V.; MacGregor, J. F.; Marlin, T. E. Multivariate statistical monitoring of process operating performance. Can. J. Chem. Eng. 1991, 69, 35.
    • (1991) Can. J. Chem. Eng. , vol.69 , pp. 35
    • Kresta, J.V.1    MacGregor, J.F.2    Marlin, T.E.3
  • 5
    • 0029357005 scopus 로고
    • Analysis, monitoring and fault diagnosis of batch processes using multiblock and multiway PLS
    • Kourti, T.; Nomikos, P.; MacGregor, J. F. Analysis, monitoring and fault diagnosis of batch processes using multiblock and multiway PLS. J. Process Control 1995, 5, 277.
    • (1995) J. Process Control , vol.5 , pp. 277
    • Kourti, T.1    Nomikos, P.2    MacGregor, J.F.3
  • 6
    • 0028483476 scopus 로고
    • Monitoring batch processes using multiway principal component analysis
    • Nomikos, P.; Macgregor, J. F. Monitoring batch processes using multiway principal component analysis. AIChE J. 1994, 40, 1361.
    • (1994) AIChE J. , vol.40 , pp. 1361
    • Nomikos, P.1    Macgregor, J.F.2
  • 7
    • 0029267381 scopus 로고
    • Statistical process control of multivariate processes
    • MacGregor, J. F.; Kourti, T. Statistical process control of multivariate processes. Control Eng. Pract. 1995, 3, 403.
    • (1995) Control Eng. Pract. , vol.3 , pp. 403
    • MacGregor, J.F.1    Kourti, T.2
  • 10
    • 0033626031 scopus 로고    scopus 로고
    • Software analyser design using data mining technology for toxicity prediction of aqueous effluents
    • Yuan, B.; Wang, X. Z.; Morris, T. Software analyser design using data mining technology for toxicity prediction of aqueous effluents. Waste Manage. 2000, 20, 677.
    • (2000) Waste Manage. , vol.20 , pp. 677
    • Yuan, B.1    Wang, X.Z.2    Morris, T.3
  • 11
    • 0034233724 scopus 로고    scopus 로고
    • Discovery of operational spaces from process data for production of multiple grades of products
    • Chen, F. Z.; Wang, X. Z. Discovery of operational spaces from process data for production of multiple grades of products. Ind. Eng. Chem. Res. 2000, 39, 2378.
    • (2000) Ind. Eng. Chem. Res. , vol.39 , pp. 2378
    • Chen, F.Z.1    Wang, X.Z.2
  • 12
    • 58149421595 scopus 로고
    • Analysis of a complex of statistical variables into principal components
    • Hotelling, H. Analysis of a complex of statistical variables into principal components. J Educ. Psychol. 1933, 24, 417.
    • (1933) J. Educ. Psychol. , vol.24 , pp. 417
    • Hotelling, H.1
  • 13
    • 0000325341 scopus 로고
    • On lines and planes of closest fit to systems of points in space
    • Pearson, K. On lines and planes of closest fit to systems of points in space. Phil. Mag. 1901, 2, 559.
    • (1901) Phil. Mag. , vol.2 , pp. 559
    • Pearson, K.1
  • 15
    • 0012224096 scopus 로고    scopus 로고
    • Qualitative/quantitative simulation of process temporal behavior using clustered fuzzy digraphs
    • Li, R. F.; Wang, X. Z. Qualitative/quantitative simulation of process temporal behavior using clustered fuzzy digraphs. AIChE J. 2001, 47, 906.
    • (2001) AIChE J. , vol.47 , pp. 906
    • Li, R.F.1    Wang, X.Z.2
  • 17
    • 0026113980 scopus 로고
    • Nonlinear principal component analysis using autoassociative neural networks
    • Kramer, M. A. Nonlinear principal component analysis using autoassociative neural networks. AIChE J. 1991, 37, 233.
    • (1991) AIChE J. , vol.37 , pp. 233
    • Kramer, M.A.1
  • 18
    • 0043015539 scopus 로고    scopus 로고
    • Nonlinear principal component analysis based on principal curves and neural networks
    • Dong, D.; McAvoy, T. J. Nonlinear principal component analysis based on principal curves and neural networks. Comput. Chem. Eng. 1996, 20, 65.
    • (1996) Comput. Chem. Eng. , vol.20 , pp. 65
    • Dong, D.1    McAvoy, T.J.2
  • 19
    • 6344264864 scopus 로고    scopus 로고
    • Data visualization: Ideas, methods, and problems
    • Saltenis, V.; Ausraite, J. Data visualization: Ideas, methods, and problems. Inf. Educ. 2002, 1, 129.
    • (2002) Inf. Educ. , vol.1 , pp. 129
    • Saltenis, V.1    Ausraite, J.2
  • 26
    • 0032378647 scopus 로고    scopus 로고
    • Visual data mining with parallel coordinates
    • Inselberg, A. Visual data mining with parallel coordinates. Comput. Stat. 1998, 13, 47.
    • (1998) Comput. Stat. , vol.13 , pp. 47
    • Inselberg, A.1
  • 28
    • 84950434348 scopus 로고
    • Hyperdimensional data analysis using parallel coordinates
    • Wegman, E. J. Hyperdimensional data analysis using parallel coordinates. J. Am. Stat. Assoc. 1990, 85, 664.
    • (1990) J. Am. Stat. Assoc. , vol.85 , pp. 664
    • Wegman, E.J.1
  • 29
    • 0037185373 scopus 로고    scopus 로고
    • Visualization and data mining of high-dimensional data
    • Inselberg, A. Visualization and data mining of high-dimensional data. Chemom. Intell. Lab. Syst. 2002, 60, 147.
    • (2002) Chemom. Intell. Lab. Syst. , vol.60 , pp. 147
    • Inselberg, A.1
  • 30
    • 6344290931 scopus 로고    scopus 로고
    • Curvaceous Software Ltd., http://www.curvaceous.com/.
  • 31
    • 6344283986 scopus 로고    scopus 로고
    • Institute of Computational Science, ETH Zentrum: Zürich, Switzerland
    • Hinterberger, H. Visulab; Institute of Computational Science, ETH Zentrum: Zürich, Switzerland, 1998; http://www.inf.ethz.ch/personal/ hinterbe/Research.htm#Representation.
    • (1998) Visulab
    • Hinterberger, H.1
  • 32
    • 0345808300 scopus 로고    scopus 로고
    • Viewing process information multidimensional for improved process understanding, operation and control
    • Boston, MA, Oct 12-16
    • Brooks, R. W. Viewing process information multidimensional for improved process understanding, operation and control. Presented at the Aspen World Conference, Boston, MA, Oct 12-16, 1997.
    • (1997) Aspen World Conference
    • Brooks, R.W.1
  • 33
    • 0347069700 scopus 로고    scopus 로고
    • New dimensions for improving refinery profitability
    • Paris, France, Nov 22-24
    • Brooks, R. W. New dimensions for improving refinery profitability. Presented at the European Refining Technology Conference, Paris, France, Nov 22-24, 1999.
    • (1999) European Refining Technology Conference
    • Brooks, R.W.1
  • 35
    • 6344268098 scopus 로고    scopus 로고
    • Geometric process control improves abnormal situation management
    • Paris, France, Nov 22-24
    • Brooks, R. W.; Drury, J.; van Walsem, F. D. Geometric process control improves abnormal situation management. Presented at the European Refining Technology Conference, Paris, France, Nov 22-24, 1999.
    • (1999) European Refining Technology Conference
    • Brooks, R.W.1    Drury, J.2    Van Walsem, F.D.3
  • 36
    • 10444219509 scopus 로고    scopus 로고
    • Multidimensional visualisation for process historical data analysis: A comparative study with multivariate statistical process control
    • in press
    • Albazzaz, H.; Wang, X. Z.; Marhoon, F. Multidimensional visualisation for process historical data analysis: a comparative study with multivariate statistical process control. J. Process Control, in press.
    • J. Process Control
    • Albazzaz, H.1    Wang, X.Z.2    Marhoon, F.3
  • 37
    • 77956721409 scopus 로고    scopus 로고
    • Cluster identification using a parallel coordinate system for knowledge discovery and nonlinear optimization
    • van Schijndel, J., Ed.; Elsevier: Amsterdam
    • Wang, K.; Salhi, A.; Fraga, E. S. Cluster identification using a parallel coordinate system for knowledge discovery and nonlinear optimization. In 12th European Symposium on Computer Aided Process Engineering (ESCAPE 12); van Schijndel, J., Ed.; Elsevier: Amsterdam, 2002; p 1003.
    • (2002) 12th European Symposium on Computer Aided Process Engineering (ESCAPE 12) , pp. 1003
    • Wang, K.1    Salhi, A.2    Fraga, E.S.3
  • 38
    • 0032118892 scopus 로고    scopus 로고
    • Multiscale PCA with application to multivariate statistical process monitoring
    • Bakshi, B. R. Multiscale PCA with application to multivariate statistical process monitoring. AIChE J. 1998, 44, 1596.
    • (1998) AIChE J. , vol.44 , pp. 1596
    • Bakshi, B.R.1
  • 39
    • 0035301101 scopus 로고    scopus 로고
    • Multilevel PCA inductive learning for knowledge extraction from operational data of batch processes
    • Yuan, B.; Wang, X. Z. Multilevel PCA and inductive learning for knowledge extraction from operational data of batch processes. Chem. Eng. Commun. 2001, 185, 201.
    • (2001) Chem. Eng. Commun. , vol.185 , pp. 201
    • Yuan, B.1    Wang, X.Z.2
  • 40
    • 0001067412 scopus 로고    scopus 로고
    • A comparison of principal component analysis, multi-way principal component analysis, trilinear decomposition and parallel factor analysis for fault detection in a semiconductor etch process
    • Wise, B. M.; Gallagher, N. B.; Butler, S. W.; White, D. D., Jr.; Barna, G. G. A comparison of principal component analysis, multi-way principal component analysis, trilinear decomposition and parallel factor analysis for fault detection in a semiconductor etch process. J. Chemom. 1999, 13, 379.
    • (1999) J. Chemom. , vol.13 , pp. 379
    • Wise, B.M.1    Gallagher, N.B.2    Butler, S.W.3    White Jr., D.D.4    Barna, G.G.5
  • 41
    • 0000609488 scopus 로고    scopus 로고
    • Comparing alternative approaches for multivariate statistical analysis of batch process data
    • Westerhuis, J. A.; Kourti, T.; Macgregor, J. F. Comparing alternative approaches for multivariate statistical analysis of batch process data. J. Chemom. 1999, 13, 397.
    • (1999) J. Chemom. , vol.13 , pp. 397
    • Westerhuis, J.A.1    Kourti, T.2    Macgregor, J.F.3
  • 42
    • 0034015053 scopus 로고    scopus 로고
    • Multivariate statistical process control of batch processes based on three-way models
    • Louwerse, D. J.; Smilde, A. K. Multivariate statistical process control of batch processes based on three-way models. Chem. Eng. Sci. 2000, 55, 1225.
    • (2000) Chem. Eng. Sci. , vol.55 , pp. 1225
    • Louwerse, D.J.1    Smilde, A.K.2
  • 43
    • 0033284825 scopus 로고    scopus 로고
    • Statistical process and controller performance monitoring. A tutorial on current methods and future directions
    • IEEE Press: Piscataway, NJ
    • Cinar, A.; Undey, C. Statistical process and controller performance monitoring. A tutorial on current methods and future directions. In Proceedings of the 1999 American Control Conference; IEEE Press: Piscataway, NJ, 1999; Vol. 4, p 2625.
    • (1999) Proceedings of the 1999 American Control Conference , vol.4 , pp. 2625
    • Cinar, A.1    Undey, C.2
  • 44
    • 0030530039 scopus 로고    scopus 로고
    • The process chemometrics approach to process monitoring and fault detection
    • Wise, B. M.; Gallagher, N. B. The process chemometrics approach to process monitoring and fault detection. J. Process Control 1998, 6, 329.
    • (1998) J. Process Control , vol.6 , pp. 329
    • Wise, B.M.1    Gallagher, N.B.2
  • 46
    • 0242354134 scopus 로고    scopus 로고
    • Statistical process monitoring: Basics and beyond
    • Qin, S. J. Statistical process monitoring: basics and beyond. J. Chemom. 2003, 17, 480.
    • (2003) J. Chemom. , vol.17 , pp. 480
    • Qin, S.J.1
  • 47
    • 6344266742 scopus 로고    scopus 로고
    • maintained by University of California, Irvine, CA. Information available for download at ftp://ftp.ics.uci.edu/pub/machine-learning-databases/
    • Water Treatement Plant Database, maintained by University of California, Irvine, CA. Information at http://www.ics.uci.edu/~mlearn/MLSummary.html and available for download at ftp://ftp.ics.uci.edu/pub/machine-learning-databases/.
    • Water Treatement Plant Database
  • 48
  • 49
    • 0031099258 scopus 로고    scopus 로고
    • Learning causal networks from data: A survey and a new algorithm for recovering possibilistic causal networks
    • Sanguesa, R.; Cortès, U. Learning causal networks from data: A survey and a new algorithm for recovering possibilistic causal networks. AI Commun. 1997, 10, 31.
    • (1997) AI Commun. , vol.10 , pp. 31
    • Sanguesa, R.1    Cortès, U.2
  • 51
    • 0033166138 scopus 로고    scopus 로고
    • Application of fuzzy causal networks to wastewater treatment plants
    • Huang, Y. C.; Wang, X. Z. Application of fuzzy causal networks to wastewater treatment plants. Chem. Eng. Sci. 1999, 54, 2731.
    • (1999) Chem. Eng. Sci. , vol.54 , pp. 2731
    • Huang, Y.C.1    Wang, X.Z.2
  • 53
    • 0030296884 scopus 로고    scopus 로고
    • Missing data methods in PCA and PLS: Score calculations with incomplete observations
    • Nelson, P. R. C.; Taylor, P. A.; MacGregor, J. F. Missing data methods in PCA and PLS: Score calculations with incomplete observations. Chemom. Intell. Lab. Syst. 1996, 35, 45.
    • (1996) Chemom. Intell. Lab. Syst. , vol.35 , pp. 45
    • Nelson, P.R.C.1    Taylor, P.A.2    MacGregor, J.F.3
  • 54
    • 0036685755 scopus 로고    scopus 로고
    • Dealing with missing data in MSPC: Several methods, different interpretations, some examples
    • Arteaga, F.; Ferrer, A. Dealing with missing data in MSPC: Several methods, different interpretations, some examples. J. Chemom. 2002, 16, 408.
    • (2002) J. Chemom. , vol.16 , pp. 408
    • Arteaga, F.1    Ferrer, A.2
  • 55
    • 0033230994 scopus 로고    scopus 로고
    • Selection of the number of principal components: The variance of the reconstruction error criterion with a comparison to other methods
    • Valle, S.; Li, W. H.; Qin, S. J. Selection of the number of principal components: the variance of the reconstruction error criterion with a comparison to other methods. Ind. Eng. Chem. Res. 1999, 38, 4389.
    • (1999) Ind. Eng. Chem. Res. , vol.38 , pp. 4389
    • Valle, S.1    Li, W.H.2    Qin, S.J.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.